
2804 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Reliable and Error Detection Architectures of
Pomaranch for False-Alarm-Sensitive

Cryptographic Applications
Mehran Mozaffari-Kermani, Member, IEEE, Reza Azarderakhsh, Member, IEEE, and Anita Aghaie

Abstract— Efficient cryptographic architectures are used
extensively in sensitive smart infrastructures. Among these
architectures are those based on stream ciphers for protection
against eavesdropping, especially when these smart and
sensitive applications provide life-saving or vital mechanisms.
Nevertheless, natural defects call for protection through design
for fault detection and reliability. In this paper, we present
implications of fault detection cryptographic architectures
(Pomaranch in the hardware profile of European Network
of Excellence for Cryptology) for smart infrastructures.
In addition, we present low-power architectures for its
nine-to-seven uneven substitution box [tower field architectures
in GF(33)]. Through error simulations, we assess resiliency
against false-alarms which might not be tolerated in sensitive
intelligent infrastructures as one of our contributions. We further
benchmark the feasibility of the proposed approaches through
application-specific integrated circuit realizations. Based on
the reliability objectives, the proposed architectures are a
step-forward toward reaching the desired objective metrics
suitable for intelligent, emerging, and sensitive applications.

Index Terms— Application-specific integrated circuit (ASIC),
reliability, smart infrastructures.

I. INTRODUCTION

CRYPTOGRAPHIC architectures provide protection
for sensitive and smart infrastructures such as secure

healthcare, smart grid, fabric, and home [1]–[8]. Nonetheless,
the use of cryptographic architectures does not guarantee
immunity against faults occurring in these infrastructures.
Defects in VLSI systems may cause smart usage models
to malfunction. Extensive research has been done for
detecting such faults in the cryptographic algorithms such
as elliptic curve cryptography and the Advanced Encryption
Standard (AES) [9]–[14] (also refer to [15] for reliable
architectures for lightweight cryptography).

Design for reliability and fault immunity ensures that with
the presence of faults, reliability is provided for the aforemen-
tioned sensitive cryptographic architectures. The proposed
work presents false-alarm sensitive fault detection schemes for

Manuscript received July 8, 2014; revised October 8, 2014 and December 7,
2014; accepted December 14, 2014. Date of publication January 14, 2015; date
of current version November 20, 2015. The work of M. Mozaffari-Kermani
and R. Azarderakhsh was supported by the Texas Instruments Faculty Award.

M. Mozaffari-Kermani and A. Aghaie are with the Department of Electrical
and Microelectronics, Rochester Institute of Technology, Rochester,
NY 14623 USA (e-mail: mmkeme@rit.edu; aa6964@mail.rit.edu).

R. Azarderakhsh is with the Department of Computer Engineering,
Rochester Institute of Technology, Rochester, NY 14623 USA (e-mail:
rxaeec@rit.edu).

Digital Object Identifier 10.1109/TVLSI.2014.2382715

cryptostructures (we note that to have a thorough analysis, we
choose the Pomaranch stream cipher also known as a cascade
jump controlled sequence generator (CJCSG) [16]–[18]).
Such false alarms could be exploited to induce distrust to the
user, i.e., repetitive false detections result in either ignoring
the alarms by the user or abandoning the devices in which the
cryptographic architectures are embedded. From a user’s point
of view, at the very least, this is uncomfortable; however,
false alarms could lead to financial loss if abandoning the
crypto-architectures happens. Finally, such a false detection
would result in higher dynamic power consumption,
resulting in extra energy depletion especially for constrained
applications. The uneven architecture of this cipher presents
unique challenges, which are motivations to its choice for the
proposed work.

We would like to emphasize that the proposed work can
be applied to similar ciphers and this paper does not intend
to benchmark the algorithmic attacks or the performance
efficiency for a certain cipher. Pomaranch is classified in
the hardware profile of European Network of Excellence for
Cryptology. This stream cipher includes an uneven substitution
box (also refer to [19]) and has been the center of attention
to achieve efficient hardware architectures. Natural defects,
which are inevitable in VLSI systems call for protecting these
architectures through detection mechanisms to preserve their
reliability.

A. Major Contributions

Assessing the implications of providing fault detection
and secure architectures useful for emerging usage models
and smart infrastructures is of paramount importance.
These architectures need to be feasible to use for different
performance and implementation objectives of sensitive smart
applications. Moreover, with respect to concurrent error detec-
tion architectures, the fault diagnosis approaches proposed for
the structures of the nine-to-seven substitution box need to
be carefully devised to detect possible false alarms. The main
contributions of this paper can be summarized as follows.

1) We present lightweight and low-power architectures for
the substitution box of the Pomaranch stream cipher
(realized in composite fields). The proposed structures
are based on tower field architectures of this substitution
box in [19]. Specifically, we present low-power
restructured architectures for this uneven substitution
box useful for emerging constrained and sensitive usage
models.

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MOZAFFARI-KERMANI et al.: RELIABLE AND ERROR DETECTION ARCHITECTURES OF POMARANCH 2805

2) We propose fault diagnosis approaches for the light-
weight and low-power architectures of the nine-to-seven
substitution box of Pomaranch. The proposed framework
can be modified based on the objectives to achieve.

3) Through simulations for various fault models, we
benchmark the fault detection capability of the
proposed schemes. The occurrence of false alarms is
evaluated through simulations and the approaches to
avoid them are elaborated.

4) Finally, we synthesize the proposed fault detection
architectures on the application-specific integrated
circuit (ASIC) platform using 65-nm CMOS technology.
Our results show that the proposed efficient fault
detection architectures can be feasibly utilized for
reliable architectures of the Pomaranch stream cipher
making them suitable for the required performance and
implementation metrics to achieve.

The organization of this paper is as follows. In Section II,
we review the preliminaries. In Section III, the modified archi-
tectures for the nine-to-seven substitution box are presented.
In Section IV, the proposed fault detection architectures
are presented. In Section V, the proposed architectures
are benchmarked through fault simulations to assess their
effectiveness for various fault models. In Section VI, the
efficiencies of the proposed structures are benchmarked
through ASIC syntheses. Finally, we conclude in Section VII.

II. PRELIMINARIES

In what follows, preliminaries on the substitution box of the
Pomaranch stream cipher, the most complex architecture in the
design of this cipher, and also fault diagnosis are presented.
The structure of Pomaranch is based on linear feedback
shift registers that allow fast implementation and produce
sequences with a large period if the feedback polynomial is
chosen appropriately (often clock controlled for complexity
induction and used in conjunction with jumping to increase
the efficiency and reach a CJCSG structure). The CJCSG
consists of eight identical sections plus an incomplete ninth
section [16]–[18].

The structure of a jump register section includes jump
control in (JCi) and out (JCo) signals, which are fed into and
out of the section. The substitution box is part of this unit
which nonlinearly affects the jump control out signal which
is used as an input of the following section. Fig. 1 shows the
aforementioned sections cascaded nine times to contribute to
the key stream of the cipher. As observed in this figure, this
accumulated cascade jump control in key stream generation
mode combines the outputs of the nine sections to reach to
the key stream needed.

As part of its key generation process, Pomaranch uses
eight uneven substitution boxes with a 9-bit input and a 7-bit
output. Each substitution unit is based on the inverse modulo
an irreducible polynomial of degree nine, i.e., x9 + x + 1,
whose period is 73. The 9-bit output is then converted into
a 7-bit one with deletion of the most significant and least
significant bits of the result.

For the hardware implementations of the uneven substitution
box of Pomaranch, multiple instances (memories or lookup

Fig. 1. Simplified accumulated cascade jump control.

tables) are needed. In field-programmable gate array (FPGA)
platforms, one needs to use block memories or distributed
pipelined memories and in ASIC, memory macros or
synthesized logic is needed which are not preferable for
high-performance and low-complexity applications. Thus,
the inverse can be realized in composite fields such that
the composite field G F((23)3) is used through which the
complexity of the operations needed for realizing the inverse
is much reduced.

The finite field G F(29) is represented by elements (in terms
of polynomials) of degree eight. The field G F(29) can also be
represented as G F((23)3), where, here, the elements of this
composite field are given as polynomials of degree at most 2
with coefficients from G F(23) [19]. We follow the represen-
tation in [19] and based on the search performed through the
set of primitive polynomials of degree nine over G F(2), it is
determined that the polynomial p(x) = x9 + x7 + x5 + x +1 is
suitable for efficient architectures. Consequently, the polyno-
mials q(x) = x3 +x +γ and r(x) = x3 +x +1 are used as the
tower field polynomials for construction of the composite field
operations. One can refer to [19] for detailed information and
numeric examples. In this case, (α7)9 +α7 +1 = 0, eventually
determining the linear transformation mapping polynomials
modulo x9 + x + 1 to polynomials modulo p(x).

In general, time and hardware redundancy are two main
methods for fault diagnosis. Hardware redundancy adds
hardware to the original structure for diagnosis and time
redundancy repeats the operations two times for detection
of transient faults. Permanent faults through time redundancy
can be detected using various methods which are, generally,
denoted as recomputation with encoded operands. The fault
diagnosis methods alarm the errors in the architectures;
however, even if the overhead is acceptable, there could
be a chance for false alarms, i.e., detection of faults that
do not result in erroneous outputs. Such false alarms could
be exploited to induce distrust to the user, i.e., repetitive,
false detections result in either ignoring the alarms by the
user or abandoning the devices in which the cryptographic
architectures are embedded.

III. EFFICIENT ARCHITECTURES FOR

THE SUBSTITUTION BOX

In this section, we present efficient low-power architectures
for the Pomaranch substitution box. Moreover, we perform

2806 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 2. 9-to-7 substitution box and its uneven structure.

Fig. 3. Architectures for the composite field substitution box and the
presented low-power modifications, (a) first subpart, (b) second subpart, and
(c) third subpart.

an accurate analysis for power consumption through ASIC
implementations and show alleviations, where applicable.

The substitution box is part of a unit in Pomaranch cipher
which implements a key-dependent filter function, containing
a 9-to-7-bit box and a balanced nonlinear Boolean function
of seven variables. The 9-bit output of the substitution box is
converted into a 7-bit one with deletion of the most significant
and the least significant bits, as shown in Fig. 2.

Composite fields can be utilized to realize the substitution
box to achieve low-complexity architectures. The structure of
the substitution box using composite fields is shown in Fig. 3.
As shown in Fig. 3(a) and (c), a transformation matrix (M)

transforms the elements in the binary field to the composite
field G F((23)3). Then, the operations are done in composite
fields to achieve the inverse which is then retransformed to
binary field using an inverse transformation matrix (M−1).
Eventually, the two most and least significant bits are discarded
to get to the uneven structure of the substitution box of
Pomaranch. The resulting transformation matrix M and its
inverse M−1 are given in [19] (mapping vectors in G F(29)
defined by x9 +x +1 to vectors in G F((23)3) defined by p(x)
and γ = α73).

The operations used in composite fields include addition,
multiplication (including multiplication with constant γ),
squaring, cubing, and inversion in G F(23). The architec-
ture of the substitution box in Fig. 3 includes a first
subpart [Fig. 3(a)] which contains the transformation matrix M
whose input is shown by X ∈ G F(29) to get an output of
A ∈ G F((23)3). This 9-bit element is then divided into 3-bit
elements denoted by a2, a1, a0 which are then processed to
get the output of this subpart, i.e., D ∈ G F(23). In Fig. 3(b)
(second subpart), the inversion operation in G F(23) is shown
which yields to D−1 ∈ G F(23). Finally, as shown in Fig. 3(c)
(third subpart), D−1 ∈ G F(23) is further modified to obtain
3-bit elements denoted by b2, b1, b0 in Fig. 3(c) and eventually
B ∈ G F((23)3), which is then retransformed by the inverse
transformation matrix M−1 to get the output Y ∈ G F(29) in
the binary field, which is discarded eventually to a 7-bit output.

A. Low-Power Architectures

The substitution box occupies much of the area and
consumes much of the power in Pomaranch. Based on our
ASIC synthesis, the S-boxes occupy around 91% of the
top-level key map and roughly 88% of the top-level power is
consumed by the S-boxes.

One needs to carefully pinpoint the approaches for realizing
this unit so that the eventual architecture is usable for sensitive
applications in various constrained smart infrastructures.
To reduce the dynamic hazards in the hardware
implementations of the substitution box of the Pomaranch
stream cipher for low-power designs, one can base the
architectures devised on the propagation probability of
signal transitions [20]. One observation is that XOR gates can
increase the power consumption due to the fact that such logic
gates have the probability of signal propagation of one and thus
propagating all the hazards, increasing the power consumed.

To achieve more low-power architectures for the substitution
box of the Pomaranch stream cipher, we have restructured it
so that a two-level logic, i.e., AND–XOR structure, is obtained
for subparts one and three of composite field realization
of the substitution box, i.e., Fig. 3(a) and (c), respectively.
Specifically, in Fig. 3(a), the combined restructured transfor-
mation matrix and part of logic gates in composite fields
[specified in Fig. 3(a) by the curly bracket] are modified
to achieve an AND–XOR structure. Moreover, in Fig. 3(c),
the combined restructured inverse transformation matrix and
part of logic gates [shown in Fig. 3(c) by the curly bracket]
are transformed into an AND–XOR structure for power
preservation.

MOZAFFARI-KERMANI et al.: RELIABLE AND ERROR DETECTION ARCHITECTURES OF POMARANCH 2807

The original composite field structure and the two modified
low-power ones [one with only the AND–XOR structure, as
shown in Fig. 3(c), and the other with both of the modified
architectures in Fig. 3(a) and (c)] are synthesized in ASIC and
the area and power consumptions are derived and compared.
We note that composite field realization is of paramount ben-
efit for low-complexity architectures compared with memory-
macros or synthesized registers on the ASIC platform.
Moreover, power preservation will lead to low-energy
solutions for sensitive and constrained, battery-powered
embedded systems.

The proposed low-power architectures increase the area
with the benefit of much decrease in power consumption.
Indeed, based on the synthesis results, the power savings
are much higher than the induced area for the structures.
Specifically, at a typical working frequency, although the
composite field architecture is 7% and 24% more area
efficient than the proposed architectures, respectively, its
power consumption is 19% and 47% higher compared with
the proposed low-power structures, respectively (without much
difference in the delay and thus frequency and throughput).
Specifically, the power consumption corresponding to the
original architecture is 14.5 nW, which is reduced to 11.75 nW
(at the expense of a 7% increase in area and a saving of 19%
in power) and to 7.69 nW (at the expense of a 7% increase
in area and a saving of 19% in power).

IV. PROPOSED FAULT DETECTION ARCHITECTURES

In this section, we propose fault detection architectures
for the substitution box of Pomaranch considering the
vulnerability of such structures to false alarms due to their
uneven architectures. Specifically, we propose a framework
that can be tailored based on the available resources and the
reliability objectives to achieve.

A. Fault Diagnosis Approaches

In what follows, fault diagnosis approaches are provided
for the architectures presented in Fig. 3. Multiterm signatures
are devised and presented as a fault diagnosis framework
that can be used depending on the requirements in smart
infrastructures in terms of reliability. We carefully pinpoint the
false-alarm vulnerability of such approaches and modifications
needed to counteract such instances are presented. These are
benchmarked in detail in terms of error coverage and efficiency
in the following sections.

We first present two theorems that are used in deriving
the signatures needed for our fault diagnosis approaches.
Based on the structures in Fig. 3(a) and (c), multiplications
in composite fields are used frequently to perform operations
in the subfield G F(23). Moreover, observing Fig. 3(b), the
architecture of inversion in G F(23) is shown which is used
in each substitution box iteration. Accordingly, the following
two theorems are presented to derive the predicted parities of
these two important operations in the subfield G F(23).

Theorem 1: Let X ∈ G F(23) and Y ∈ G F(23) be
two elements in composite fields. Let the vectors
X = (x2, x1, x0) and Y = (y2, y1, y0) be their respective

vectors representing these elements. The predicted parity of
R = X × Y ∈ G F(23), i.e., P̂R , is derived as

P̂R = x0(y0 + y1 + y2) + x1(y0 + y1) + x2 y0 (1)

where + denotes the XOR operation (modulo-2 add).
Proof: Considering the formulas for the multiplications

in the subfield G F(23) as follows:

r0 = x0 y0 + x1y2 + x2y1 (2)

r1 = x0 y1 + x1y0 + x1 y2 + x2y1 + x2 y2 (3)

r2 = x0 y2 + x2 y0 + x1y1 + x2 y2 (4)

we can modulo-2 add the coordinates of the respective vectors
representing the result, i.e., through x0 y0 + x1y2 + x2y1 +
x0y1 + x1y0 + x1y2 + x2 y1 + x2y2 + x0y2 + x2 y0 + x1y1 + x2 y2,
to reach to the predicted parity derived in (1) and the proof is
complete.

Theorem 2: Let X ∈ G F(23) be an element in composite
fields. Let the vector X = (x2, x1, x0) be its respective vector
representing this element. The predicted parity of the inverse
element X−1 ∈ G F(23), i.e., P̂X−1 , is derived as

P̂X−1 = x0x1 + (x1 + x0)x2. (5)

Proof: Considering the formulas for the inversion output
bits in the subfield G F(23), i.e., x0 + (x1 ∨ x2), x0x1 + x2,
and x1 + x0x2 (where the symbol ∨ represents the
OR operation), one can perform a modulo-2 addition to reach
P̂X−1 in (5), which completes the proof.

In addition to the aforementioned predicted parities, as
shown in Fig. 3, one needs to derive the predicted parities for
a number of other operations in G F(23). These are presented
through the following theorem.

Theorem 3: Let X ∈ G F(23) be an element in composite
fields. Let γ ∈ G F(23) be a constant in composite fields
as well. The predicted parities for squaring X2, i.e., P̂X2,
cubing, and multiplication by the constant γ , i.e., P̂X3γ , and
multiplication by the constant γ , i.e., P̂Xγ , are presented
below

P̂X2 = x0 + x1 (6)

P̂X3γ = x0x1 + (x0 + x1)x2 (7)

P̂Xγ = x0 + x1. (8)

Proof: Based on the formulas for the squaring output
bits in the subfield G F(23), i.e., x0, x2, and x1 + x2,
one can perform a modulo-2 addition to reach P̂X2 in (6).
Considering the equations for the cubing and multiplica-
tion by the constant output bits in the subfield G F(23),
i.e., x0x1 + x2, (x0 ∨ x2) + x1x2, and (x0 ∨ x2) + x0x2, one
can perform a modulo-2 addition to reach P̂X3γ in (7). Finally,
considering the multiplication by the constant γ output bits in
the subfield G F(23), i.e., x2, x2 +x0, and x1, one can perform
a modulo-2 addition to reach P̂Xγ in (8). This completes the
proof.

Remark 1: The hardware complexities for the predicted
parities of R = X × Y ∈ G F(23), i.e., P̂R , in Theorem 1
and X−1 ∈ G F(23), i.e., P̂X−1 , in Theorem 2 in terms of logic
gates and considering the same complexities for different gates
are seven and six logic gates, respectively.

2808 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 4. Predicted signatures of the substitution box for (a) subpart 1 and
(b) subpart 3.

Remark 2: The hardware complexities for the predicted
parities of squaring X2, i.e., P̂X2, cubing, and multiplication
by the constant γ , i.e., P̂X3γ , and multiplication by the
constant γ , i.e., P̂Xγ , are one, four, and one logic gate(s),
respectively.

We have presented the architectures for different subparts of
the substitution box of the Pomaranch stream cipher in Fig. 4.
As observed in this figure, different predicted parities within
the architectures are shown with the P̂ notations. Let us
explain in detail how these predicted parities are derived
through utilizing Theorems 1–3.

As shown in Fig. 4(a), one can derive the detection
signatures for the transformation matrix M whose input is
shown by X ∈ G F(29) to get an output of A ∈ G F((23)3).
In this regard, we propose using two different signatures. The
first one to derive is the predicted parity of the transformation
unit, i.e., P̂A, as shown in Fig. 4(a). This predicted parity
is useful for single stuck-at errors as we present in later
sections. The second alternate parity is the bit-interleaved
parities which are of paramount use in detecting adjacent
errors. We present the following theorem and proposition for
deriving these predicted parities.

Theorem 4: Let A ∈ G F((23)3) be an element in composite
fields, as shown in Fig. 4. Then, the predicted parity of the
transformation matrix, i.e., P̂A , as shown in Fig. 4(a), can
be derived as follows based on the bit elements of the input
to the unit, i.e., X ∈ G F(29), acting as the row vector
[x8, . . . , x1, x0] multiplied by the transformation matrix to
derive the 9-bit row vector representing A ∈ G F((23)3)

P̂A = x0 + x1 + x5 + x6 + x7 + x8

= PX + x2 + x3 + x4 (9)

where PX is the actual parity for the input X ∈ G F(29).
Proof: Considering the transformation matrix presented

in the previous section, one can modulo-2 add the rows
noting that the bit elements of the input, i.e., X ∈ G F(29),
act as the row vector [x8, . . . , x1, x0] multiplied by the

transformation matrix to derive the 9-bit row vector represent-
ing A ∈ G F((23)3). Moreover, noting that PX = x0 + x1 +
x2 + x3 + x4 + x5 + x6 + x7 + x8, one can derive the predicted
parity of the transformation matrix, i.e., P̂A, as shown
in Fig. 4(a), and the proof is complete. We note that the
latter formulation leads to using only three XOR gates if PX is
available prior to the computations.

Proposition 1: The bit-interleaved parities of
A ∈ G F((23)3) (used for detecting burst and adjacent
errors) as an element in composite fields can be derived as
follows noting that P̂A,0 is for even entries (e.g., zeroth,
second, fourth, and so on) and P̂A,1 is for odd entries
(e.g., first, third, fifth, and so on), which are functions of the
bit elements of the input to the unit, i.e., X ∈ G F(29)

P̂A,0 = x0 + x2 + x3 + x4 + x5 + x7

= PX + x1 + x6 + x8 (10)

P̂A,1 = x1 + x2 + x4 + x6 + x7 + x8

= PX + x0 + x3 + x5 (11)

where PX is the actual parity for the input X ∈ G F(29).
The predicted signatures for the next four signatures

shown in Fig. 4(a) can be derived based on Theorems 1–3.
Specifically, for P̂B1, P̂B3, P̂B00, and P̂D , one can use the
predicted parities for multiplication and inversion as well as
those for the operations in Theorem 3 to obtain the aforemen-
tioned predicted parities. We consider B00 = [θ2, θ1, θ0] and
B1 = [ω2, ω1, ω0]. For the sake of brevity, we just present
these as follows using the notations in Fig. 4(a) and the proof
is omitted

P̂B1 = a0(a3 + a4 + a5) + a1(a3 + a4) + a2a5

+ a8 + a6 (12)

P̂B3 = a0(a7 + a6) + a1(a8 + a6) + a2(a7 + a8) (13)

P̂B00 = a7 + a6 + a5 + a4 + a3 (14)

P̂D = ω0(θ0 + θ1 + θ2) + ω1(θ0 + θ1) + ω2θ2

+ a3a4 + (a3 + a4)a5. (15)

The predicted parity of the inversion is already presented
through Theorem 2. Therefore, we only need to derive the
predicted signatures for the subparts shown in Fig. 4(b).
As observed in this figure, we have segmented this architecture
through the dotted and dashed lines and the predicted parities
are denoted by P̂B and P̂Y representing those for the
two segments. We would like to point out that depending on
the reliability objectives and the overhead tolerated, one can
use one to the three predicted parities for the 9-bit output of the
composite field operations, i.e., B . These are derived through
the presented Theorems 1–3 and are not presented for the sake
of brevity.

The inverse transformation matrix converts the elements in
composite fields into the corresponding ones in binary field,
as shown in Fig. 4(b). Eventually, after discarding two of
the 9-bit output, one can obtain the output of the substitu-
tion box of Pomaranch which has seven bits. Nonetheless,
any devised architecture for the predicted parities of this
inverse transformation matrix needs to be carefully obtained
to avoid false alarms. In other words, instead of choosing the

MOZAFFARI-KERMANI et al.: RELIABLE AND ERROR DETECTION ARCHITECTURES OF POMARANCH 2809

Fig. 5. Parity-based detection mechanism.

9-bit output before discarding to a 7-bit output to obtain
the predicted parity (or bit-interleaved signatures as needed),
one may consider the final output to avoid detection of
the errors at the output which are due to the faults in
the substitution box but not affecting the 7-bit final output.
These faults show the defects but they do not affect the
final output and their detection leads to false-alarms. This
is one of the major complications for this very substitution
box which has been our motivation in choosing it for our
case study. More details are presented in the next section. We
finalize this proposed fault diagnosis approach by presenting
the predicted parities for the inverse substitution box as
follows.

Theorem 5: Let B ∈ G F((23)3) be an element in composite
fields, as shown in Fig. 4(b). Then, the predicted parity of
the inverse transformation matrix, i.e., P̂Y , can be derived as
follows considering the derived and partly discarded seven-bit
row vector representing Y ∈ G F(29)

P̂Y = b3 + b4 + b8. (16)

Proof: Considering the inverse transformation matrix
presented in the previous section, one can modulo-2 add the
rows. Finally, one can derive the predicted parity of the inverse
transformation matrix, i.e., P̂Y , as shown in Fig. 4(b), and the
proof is complete.

Proposition 2: The bit-interleaved parities of Y can be
derived as follows noting that P̂Y,0 is for even entries and
P̂Y,1 is for odd entries

P̂Y,0 = b1 + b2 + b4 + b7 (17)

P̂Y,1 = b1 + b2 + b3 + b7 + b8. (18)

The merit of these flags is that they alarm the user of
the infrastructures-to-become-secure in case of any faults
detected. This is in line with the objectives of such infrastruc-
tures in terms of fault diagnosis and false alarm resistivity.
Specifically, the high coverage of the proposed solutions
in this paper will make the crypto-architectures resistant
against faults and the false-alarm resistivity ensures that such
detections are valid, which is a key point in having reliable
solutions.

We finalize the proposed approach by mentioning that the
predicted signatures are compared with the actual ones to
reach the error indication flags. For illustrating such a scheme,
this has been shown in Fig. 5. As observed in this figure,
n subblocks with n outputs (shown by Oi , 1 ≤ i ≤ n in Fig. 5)
have n actual parities which are derived by modulo-2 addition
of output bits (denoted by P(Oi), 1 ≤ i ≤ n in Fig. 5).

The derived actual parities for the subblocks are XORed with
the derived predicted parities (denoted by P Pi , 1 ≤ i ≤ n
in Fig. 5) and the error detection flags (fi , 1 ≤ i ≤ n) are
derived which alert about any detected fault in the structure.
Finally, for the bit-interleaved solution, similar schemes are
used for deriving the flags used for indicating the faults.
A minor modification in Fig. 5, i.e., deriving pairs of bit-
interleaved actual/predicted parities for the blocks, results in
the detection mechanism using such signatures.

B. Diagnosis Method for Key Map Subparts

Here, we explain other subparts of Pomaranch within key
map and mention the respective diagnosis methods for them.
Nevertheless, the reason for the emphasis on the S-box is its
nonlinearity within Pomaranch compared to other subparts.
Such S-boxes occupy most of the area and consume much of
the power of the Pomaranch.

Nine least significant bits of the section key are XORed
(bit wise) with v. Fault diagnosis of such XOR operation is
performed by hardware or time redundancy depending on the
objectives, for instance, recomputing with rotated operands
can be used to detect both transient and permanent faults
through time redundancy. The 7-bit output of the S-box is
again XORed with section key. Boolean function F is the last
subpart [16]–[18] and takes seven bits and outputs one bit
(JC out bit) of the section, denoted by JC0. This can be treated
as a simple 7-to-1 S-box for which known lookup table fault
diagnosis techniques can be used, including duplication and
hardware/time redundancy.

V. ERROR SIMULATIONS AND BENCHMARK

Single event upsets in the VLSI systems are also of great
importance which lead to erroneous outputs. One may also
consider multiple faults for which the locations, types, and
numbers of the faults are random. Finally, we consider burst
faults affecting adjacent bits in the microchips. VLSI defects
can introduce such burst faults. One needs to also note that
due to the constraints in fault injection technology, instead of
the ideal case of single faults, what actually may happen in
practice is occurrence of burst faults.

A. Results

Based on the fault diagnosis schemes presented in the
previous section, we have performed simulations starting from
single stuck-at faults, we have exhaustively injected faults
at the output of the subparts shown in Fig. 4 (this includes
the outputs of the respective signature-deriving architectures).
Specifically, the top-level fault model is the stuck-at fault
model for both the error detection scheme and the original
architecture. Using such a stuck-at fault model and utilizing
the predicted parities presented, we were able to detect all the
injected single faults. We emphasize that using bit-interleaved
signatures does not affect the fault detection capabilities
of the architectures for this fault model; however, they are
avoided in this case because of the slightly higher overhead
they introduce when applied to the transformation and inverse

2810 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

transformation matrices. We have performed RTL simulations
(not gate-level netlist simulations). The gate-level simulation
with error model can increase the number of unnoticed errors
(compared with RTL error simulation) due to nonlinear
functionality in substitution boxes.

The second fault model, i.e., multiple faults, has been used
and the faults were injected uniformly with random locations,
numbers, and types of faults. Using the predicted parities for
the aforementioned schemes (not the bit-interleaved ones),
more than 99% of the faults were detected. The proposed
methodology alleviates the problem of faults but does not
make the architectures fully reliable. The experiments were
based on injecting 10 000 stuck-at zero and stuck-at one
faults and monitoring the cases for which we get erroneous
outputs, i.e., eliminating the cases for which the faults are
masked. We note that considering eight substitution boxes of
Pomaranch, this would be very close to 100%. Multiple faults
and, as we cover next, burst faults are also much important
when it comes to the practicality of such injections and the
probability of occurrence.

Finally, although bit-interleaved signatures slightly increase
the hardware complexities of fault diagnosis structures, they
are used when adjacent burst faults are of concern. Based on
the bit-interleaved signatures obtained in the previous section
and considering random locations and types for injected
faults, in addition to detecting an odd number of faults, we
were able to detect all the two-bit stuck-at zero or stuck-
at one burst faults. Two notes need to be considered with
respect to these signatures; first, one may use bit-interleaved
predicted parities not only for the transformation matrices
but also for the inner subparts and second, all the faults
of odd number are detected and for the even number, e.g.,
four, if more than two adjacent bits are of concern, one
may use the proposed framework by slightly modifying
the formulas to reach, e.g., three-bit, interleaved predicted
signatures.

The objective of the proposed approaches in this paper is to
provide fault immunity and reliability to smart infrastructures.
This framework can be used in conjunction with the
presented low-power architectures to provide secure and
usable infrastructures for emerging sensitive usage models.
The suitability of the proposed solutions stems from their
high error coverage (which is crucial in smart infrastructures
using cryptographic hardware and embedded systems), as
well as their acceptable overhead.

We would also like to present the objectives of the proposed
approaches in terms of false-alarm resistance as well as their
suitability for smart infrastructures. First, it is emphasized that
the false-alarm immunity of crypto-systems also determines
the immunity against inducing distrust to the user. Such
malicious intents might try to divert the fault diagnosis stream
so that without having errors at the output of the crypto-
architectures used in smart infrastructures, alarms get falsely
initiated, which would eventually cause abandoning the entire
system. In short, protecting against such cases would result
in reliable and false-alarm immune smart infrastructures that
are trustworthy and can be used safely for different usage
models.

B. False Alarms

False alarms could have adverse effects on the utilization
of cryptographic solutions. Specifically, if such alarms
get repetitive, they might hinder the normal operations of
cryptographic algorithms by inducing distrust to the user,
who may eventually abandon the entire solution.

Let us separate the false-alarm vulnerabilities of such
crypto-systems into two streams. The first one deals with those
false alarms that are the results of the single stuck-at fault
model, which is a probable case with respect to natural faults.
We would like to emphasize that for the inverse transformation
matrix, the 7-bit output needs to be considered to avoid
possible false-alarms. Indeed, through simulations, around
22% false-alarms were observed if this is not carefully
followed. This is a clear distinction compared with the
substitution boxes with the same number of inputs and
outputs (another instance is the uneven 6-to-4 S-box of
Data Encryption Standard).

Now, let us consider the cases in which the fault model deals
with multiple, random stuck-at faults. For such cases, a number
of causes may result in having false-alarms in crypto-systems.
Because we are dealing with multiple signatures, there might
be cases in which we detect faults in an inner subpart which
will not be eventually translated into errors in the 7-bit output.
This might be due to the masking of such faults or due to
the occurrence of such faults only in the most and the least
significant bits of the output to be discarded. We emphasize
that such a case is due to fault diagnosis approaches in which
error detection is expected to reveal the error at the output
of the functions; yet, the diagnosis method alarms also the
faults affecting the middle subparts which are masked at the
output. This second case is due to fault detection methods
which could affect any general S-box architecture such as
that of the AES (and in general crypto-architectures beyond
S-boxes) and is not confined to the uneven S-boxes. If the
tower field fault detection architectures of the composite-field
S-boxes within the AES (or other transformations within) use
multiple signatures for the subparts, for instance, false-alarms
could also affect the detection schemes.

Through simulations, considering different numbers of
stuck-at zero and one cases, we have identified such cases
(the former is a general case among the substitution boxes
whereas the latter is specific to this uneven box). The results
are shown in Table I. As observed in this table, different
number of faults is injected for two types and the number
of masked and false alarms are shown. We would like to
point out that these presented percentages are higher unless, as
used here, we utilize just the (bit interleaved) signature(s) for
the inverse transformation matrix considering the 7-bit output.
Finally, we note that these false-alarms show that there exists
natural defect(s) in the architectures; nevertheless, these do
not result in erroneous outputs for that particular simulation
instance.

VI. ASIC IMPLEMENTATIONS

This section presents the results of our ASIC syntheses
performed for the original and the error detection structures

MOZAFFARI-KERMANI et al.: RELIABLE AND ERROR DETECTION ARCHITECTURES OF POMARANCH 2811

TABLE I

FALSE-ALARM ASSESSMENTS FOR MULTIPLE, RANDOM FAULTS IN ONE POMARANCH SUBSTITUTION BOX

TABLE II

ASIC SYNTHESES AND OVERHEAD ASSESSMENTS FOR THE

SUBSTITUTION BOX OF POMARANCH

of the substitution box of Pomaranch algorithm to benchmark
the overheads as the result of the added structures. We note
that we have chosen the ASIC platform based on the
resources available to us; because our presented schemes
are not dependent on the hardware platform, similar
overheads are expected for FPGAs. Through the performed
ASIC syntheses, the overheads in terms of hardware and
timing are derived. We have used the TSMC 65-nm
standard-cell library [21] in the Synopsys Design
Compiler [22].

We have presented the results of our syntheses in Table II.
in Table I, for the original algorithm, i.e., the substitution box
of Pomaranch in composite fields, and for the proposed error
detection schemes (both the regular and the bit-interleaved
signatures), the areas (in terms of μm2), maximum working
frequencies (in terms of MHz), and throughputs (in terms of
gigabits per second) have been shown. To make the area results
transferable when switching technologies, we have provided
the NAND-gate equivalency (in terms of gate equivalent,
denoted by Gate Equivalent). This is performed using the area
of a NAND gate in the utilized library, which is 1.41 μm2. Fur-
thermore, the area and throughput degradations are presented
in parentheses to benchmark the proposed error detection
schemes.

As shown in Table II, the hardware complexity (area) of the
original substitution box of Pomaranch is 339.8 μm2, whereas,
for the signature-based and bit-interleaved architectures, the
areas are 402.7 μm2 and 411.5 μm2 (leading to overheads of
18.6% and 21.1%), respectively. These hardware overheads

need to be tolerated to achieve fault detection architectures for
reliable usage models. We have also derived the area overheads
for four different cases, i.e., for the two proposed schemes
(Table II) and considering the effects on the entire top-level
with detection for the S-boxes as well as the worst case
scenario of duplication for other subparts. For the
former case, the area overheads are 16.8% and 19.5%,
respectively, and for the latter, they are 20.4% and 23.1%
(for the signature-based and bit-interleaved schemes).
The maximum frequencies in which these architectures
can work are 809, 703, and 711 MHz, respectively,
leading to the throughputs of 5.66, 4.92, and 4.98 Gb/s,
respectively. These lead to throughput degradations of
13% (for the signature-based approach) and 12% (for
the bit-interleaved scheme). We would like to point out
that based on the reliability requirements, performance
and implementation metrics to achieve, and resources
available (overheads tolerated) one can use the presented
framework to achieve fault detection and false-alarm-aware
architectures.

VII. CONCLUSION

In this paper, reliability and false-alarm sensitivity of
sensitive cryptographic applications are benchmarked through
a case study, i.e., the uneven substitution box of a stream
cipher, to elaborate on the respective effects on smart
infrastructures. We have presented low-power architectures
for this stream cipher and then proposed a framework to
provide fault immunity for infrastructures that need to deal
with sensitive information and are smart and ubiquitous.
The proposed architectures are benchmarked in terms of
error coverage for different fault models and assessed for
false-alarm immunity. Moreover, they have been synthesized
on an ASIC platform and it is shown that with an acceptable
overhead, high error coverage can be achieved for the proposed
architectures. Furthermore, we have assessed the benefits and
effects of such architectures for smart infrastructures. The
benchmark details the smart infrastructure implications and
elaborates on the fact that using the proposed framework,
smart infrastructures can be more efficiently and reliably
utilized.

2812 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

REFERENCES

[1] K. Fu and J. Blum, “Controlling for cybersecurity risks of medical
device software,” Commun. ACM, vol. 56, no. 10, pp. 35–37,
Oct. 2013.

[2] D. Halperin, T. Kohno, T. S. Heydt-Benjamin, K. Fu, and W. H. Maisel,
“Security and privacy for implantable medical devices,” IEEE Pervasive
Comput., vol. 7, no. 1, pp. 30–39, Jan./Mar. 2008.

[3] M. Rostami, W. Burleson, A. Jules, and F. Koushanfar, “Balancing
security and utility in medical devices?” in Proc. 50th ACM/EDAC/IEEE
Int. Conf. Design Autom., May/Jun. 2013, pp. 1–6.

[4] M. Zhang, A. Raghunathan, and N. K. Jha, “Trustworthiness of med-
ical devices and body area networks,” Proc. IEEE, vol. 102, no. 8,
pp. 1174–1188, Aug. 2014.

[5] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, “Smart-grid security
issues,” IEEE Security Privacy, vol. 8, no. 1, pp. 81–85, Jan./Feb. 2010.

[6] M. Mozaffari-Kermani, M. Zhang, A. Raghunathan, and N. K. Jha,
“Emerging frontiers in embedded security,” in Proc. 26th Int. Conf. VLSI
Design, Jan. 2013, pp. 203–208.

[7] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of things,”
Computer, vol. 44, no. 9, pp. 51–58, Sep. 2011.

[8] T. H.-J. Kim, L. Bauer, J. Newsome, A. Perrig, and J. Walker,
“Challenges in access right assignment for secure home networks,”
in Proc. USENIX Conf. Hot Topics Secur., 2010, pp. 1–6.

[9] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the Advanced Encryption Stan-
dard,” IEEE Trans. Comput., vol. 59, no. 5, pp. 608–622, May 2010.

[10] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A low-power high-
performance concurrent fault detection approach for the composite
field S-box and inverse S-box,” IEEE Trans. Comput., vol. 60, no. 9,
pp. 1327–1340, Sep. 2011.

[11] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the Advanced Encryption Stan-
dard using composite fields,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 19, no. 1, pp. 85–91, Jan. 2011.

[12] A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-performance
concurrent error detection scheme for AES hardware,” in Proc. 10th
Int. Workshop CHES, Aug. 2008, pp. 100–112.

[13] P. Maistri and R. Leveugle, “Double-data-rate computation as a counter-
measure against fault analysis,” IEEE Trans. Comput., vol. 57, no. 11,
pp. 1528–1539, Nov. 2008.

[14] X. Guo and R. Karri, “Recomputing with permuted operands: A con-
current error detection approach,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 32, no. 10, pp. 1595–1608, Oct. 2013.

[15] M. Mozaffari-Kermani and R. Azarderakhsh, “Efficient fault diagno-
sis schemes for reliable lightweight cryptographic ISO/IEC standard
CLEFIA benchmarked on ASIC and FPGA,” IEEE Trans. Ind. Electron.,
vol. 60, no. 12, pp. 5925–5932, Dec. 2013.

[16] C. J. A. Jansen, T. Helleseth, and A. Kholosha, “Cascade
jump controlled sequence generator (CJCSG),” in Proc. Workshop
Symmetric Key Encryption, 2005, pp. 1–16. [Online]. Available:
http://www.ecrypt.eu.org/stream/ciphers/pomaranch/pomaranch.pdf

[17] C. J. A. Jansen, T. Helleseth, and A. Kholosha, “Cascade jump controlled
sequence generator and Pomaranch stream cipher (version 3),” Dept.
Informat., Univ. Bergen, Bergen, Norway, Tech. Rep. 2006/006, 2006.
[Online]. Available: http://www.ecrypt.eu.org/stream/papers.html

[18] C. J. A. Jansen, T. Helleseth, and A. Kholosha, “Cascade jump controlled
sequence generator and Pomaranch stream cipher,” in Proc. eSTREAM
Finalists, 2008, pp. 224–243.

[19] C. J. A. Jansen, A. Kholosha, and T. Helleseth, “A lightweight
implementation of the Pomaranch S-box,” in Proc. eSTREAM, 2007,
pp. 1–6.

[20] S. Morioka and A. Satoh, “An optimized S-box circuit archi-
tecture for low power AES design,” in Proc. CHES, 2003,
pp. 172–186.

[21] Taiwan Semiconductor Manufacturing Company. TSMC Standard-Cell
Library. [Online]. Available: http://www.tsmc.com/, accessed Jan. 2015.

[22] Synopsys, Inc. Synopsys Design Compiler. [Online]. Available:
http://www.synopsys.com/, accessed Jan. 2015.

Mehran Mozaffari-Kermani (M’11) received
the B.Sc. degree in electrical and computer
engineering from the University of Tehran,
Tehran, Iran, in 2005, and the M.E.Sc. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined Advanced Micro Devices, Markham,
ON, Canada, as a Senior ASIC/Layout Designer,
integrating sophisticated security/cryptographic

capabilities into a single accelerated processing unit. He joined the
Department of Electrical Engineering, Princeton University, Princeton,
NJ, USA, as a Natural Sciences and Engineering Research Council of
Canada (NSERC) Post-Doctoral Research Fellow, in 2012. He is currently
with the Department of Electrical and Microelectronic Engineering,
Rochester Institute of Technology, Rochester, NY, USA. His current research
interests include emerging security/privacy measures for deeply embedded
systems, cryptographic hardware systems, fault diagnosis and tolerance in
cryptographic hardware, VLSI reliability, and low-power secure, and efficient
field-programmable gate array and application-specified integrated circuit
designs.

Dr. Mozaffari-Kermani was a recipient of the prestigious NSERC
Post-Doctoral Research Fellowship. He is a Guest Editor of the IEEE
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING for the special
issue of Emerging Security Trends for Deeply-Embedded Computing
Systems from 2014 to 2015. He serves as the Technical Committee Member
for a number of security/reliability conferences, including the International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, the Fault Diagnosis and Tolerance in Cryptography Conference, the
Conference on RFID Security, the International Workshop on Lightweight
Cryptography for Security and Privacy, and the International Workshop on
the Arithmetic of Finite Fields. His research is funded through the Texas
Instruments Faculty Award (Douglas Harvey) from 2014 to 2015.

Reza Azarderakhsh (M’12) received the
B.Sc. degree in electrical and electronic engineering
and the M.Sc. degree in computer engineering
from the Sharif University of Technology, Tehran,
Iran, in 2002 and 2005, respectively, and the
Ph.D. degree in electrical and computer engineering
from the University of Western Ontario, London,
ON, Canada, in 2011.

He joined the Department of Electrical and
Computer Engineering, University of Western
Ontario, as a Limited Duties Instructor, in 2011.

He has been a Natural Sciences and Engineering Research Council of
Canada (NSERC) Post-Doctoral Research Fellow with the Center for
Applied Cryptographic Research and the Department of Combinatorics
and Optimization, University of Waterloo, Waterloo, ON, Canada. He is
currently with the Department of Computer Engineering, Rochester Institute
of Technology, Rochester, NY, USA. His current research interests include
finite field and its application, elliptic curve cryptography, and pairing-based
cryptography.

Prof. Azarderakhsh was a recipient of the prestigious NSERC Post-Doctoral
Research Fellowship in 2012.

Anita Aghaie received the B.S. degree in
electrical and computer engineering from the
Isfahan University of Technology, Isfahan,
Iran, in 2013. She is currently pursuing the
Ph.D. degree with the Rochester Institute of
Technology, Rochester, NY, USA, under the
co-supervision of Prof. M. Mozaffari-Kermani and
Prof. R. Azarderakhsh.

Her current research interests include fault
diagnosis and tolerance in digital systems,
field-programmable gate array, and VLSI design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

