
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015 1893

Systematic Poisoning Attacks on and Defenses
for Machine Learning in Healthcare

Mehran Mozaffari-Kermani, Member, IEEE, Susmita Sur-Kolay, Senior Member, IEEE,
Anand Raghunathan, Fellow, IEEE, and Niraj K. Jha, Fellow, IEEE

Abstract—Machine learning is being used in a wide range of ap-
plication domains to discover patterns in large datasets. Increas-
ingly, the results of machine learning drive critical decisions in
applications related to healthcare and biomedicine. Such health-
related applications are often sensitive, and thus, any security
breach would be catastrophic. Naturally, the integrity of the re-
sults computed by machine learning is of great importance. Recent
research has shown that some machine-learning algorithms can be
compromised by augmenting their training datasets with malicious
data, leading to a new class of attacks called poisoning attacks. Hin-
drance of a diagnosis may have life-threatening consequences and
could cause distrust. On the other hand, not only may a false di-
agnosis prompt users to distrust the machine-learning algorithm
and even abandon the entire system but also such a false positive
classification may cause patient distress. In this paper, we present a
systematic, algorithm-independent approach for mounting poison-
ing attacks across a wide range of machine-learning algorithms and
healthcare datasets. The proposed attack procedure generates in-
put data, which, when added to the training set, can either cause the
results of machine learning to have targeted errors (e.g., increase
the likelihood of classification into a specific class), or simply intro-
duce arbitrary errors (incorrect classification). These attacks may
be applied to both fixed and evolving datasets. They can be applied
even when only statistics of the training dataset are available or, in
some cases, even without access to the training dataset, although
at a lower efficacy. We establish the effectiveness of the proposed
attacks using a suite of six machine-learning algorithms and five
healthcare datasets. Finally, we present countermeasures against
the proposed generic attacks that are based on tracking and detect-
ing deviations in various accuracy metrics, and benchmark their
effectiveness.

Index Terms—Healthcare, machine learning, poisoning attacks,
security.

I. INTRODUCTION

MACHINE learning is ubiquitously used to extract infor-
mation patterns from datasets in a wide range of applica-

tions. Increasingly, machine-learning algorithms are being used

Manuscript received March 11, 2014; revised June 14, 2014; accepted July
26, 2014. Date of publication July 30, 2015; date of current version November
3, 2015. This work was supported in part by the National Science Foundation
under Grant CNS-1219570. Recommended for publication by Associate Editor
D. A Clifton.

M. Mozaffari-Kermani is with the Department of Electrical and Microelec-
tronic Engineering, Rochester Institute of Technology, Rochester, NY 14623
USA (e-mail: m.mozaffari@rit.edu).

S. Sur-Kolay is with the Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata 700108, India (e-mail: ssk@isical.ac.in).

A. Raghunathan is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907 USA (e-mail: raghunathan@
purdue.edu).

N. K. Jha is with the Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA (e-mail: jha@princeton.edu).

Digital Object Identifier 10.1109/JBHI.2014.2344095

in critical applications where they drive decisions with large
personal, organizational, or societal impact. These applications
include healthcare [1], network intrusion detection systems[2],
spam and fraud detection, phishing detection [3], political de-
cision making [4], adversarial advertisement detection [5], and
financial engineering [6].

Among the aforementioned applications, the sensitivity of
those related to healthcare calls for efficient and reliable protec-
tion against potential malicious attacks. It is important to inves-
tigate whether machine-learning algorithms used for healthcare
applications are vulnerable to security and privacy threats. Many
applications, such as medical machine learning, often require
analysis to be performed on datasets without compromising
the privacy of people or entities who provided the data. Thus,
privacy-preserving machine learning and data mining have been
the subject of considerable research [7]–[9]. The robustness of
machine-learning algorithms to noise in the training data has
also been investigated [10], [11] to evaluate its effects on the
decision-making process.

More recent efforts have considered the possibility that vul-
nerabilities in machine-learning algorithms may be exploited
by attackers to influence the algorithm’s results [12]–[16]. It is
now well known that classification algorithms need to take into
account these adversarial intent, i.e., adversarial classification
and, in general, machine learning, to preserve their effective-
ness [17]–[20]. These include analyzing the vulnerabilities of
algorithms and developing design approaches for their security
in adversarial environments.

Two main categories of security attacks on machine learning
have been considered in the literature: exploratory and causative
[16], [18], [21]. Exploratory attacks exploit existing vulnerabil-
ities without altering the training process. On the other hand,
causative attacks alter the training process, typically by modi-
fying the training dataset. Poisoning attacks [22] are a class of
causative attacks in which carefully-crafted malicious instances
are added to the training dataset, leaving the rest of the dataset
intact.

In healthcare applications, poisoning attacks are highly rel-
evant because although manipulation of existing data in the
training dataset may be difficult or impossible for attackers,
addition of new data might be relatively easy. For instance, hin-
derance of a hypothyroid diagnosis may have life-threatening
consequences due to delayed treatment. This may reduce trust
in the machine-learning algorithm. On the other hand, a false
positive classification may cause unnecessary concern. If poi-
soning attacks are detected, the user or owner of the dataset
may take appropriate action, such as disregarding the results

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1894 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

of machine learning or attempting to cleanse the dataset of the
malicious data. From an attacker’s perspective, it is therefore
desirable to mount poisoning attacks such that they are diffi-
cult to detect. On the other hand, if such attacks are successful
(which is definitely a possibility, given the need to access health-
care data anywhere/anytime and especially through cloud-based
computing), the resulting erroneous conclusions may lead to
serious adverse impact on people, institutions, and healthcare
services.

In this paper, we present a systematic machine-learning
algorithm-independent attack mechanism in the context of
healthcare. To evaluate the proposed scheme, we have exper-
imented with six different machine-learning algorithms. More-
over, we show that the proposed attack is successful even with-
out prior knowledge of the machine-learning algorithm details
(though with slight degradation in its effectiveness), e.g., the
type of the discriminant function of the classifier or its param-
eters, such as feature weights in the case of linear algorithms.
Furthermore, we elaborate upon the effectiveness of the pro-
posed attack in the context of real patterns [16]. Although the
proposed attack is of the poisoning type and acts based on the
addition of malicious instances to the training patterns, it does
not necessarily require knowledge of the exact attribute values
in the training dataset; knowledge of their statistics is sufficient
for mounting the attack. Moreover, we show that one may obtain
a surrogate dataset to mount the attacks, eliminating the need
for access to the training dataset.

A. Our Contributions

In this paper, we focus on poisoning attacks on machine-
learning algorithms and defenses, also referred to henceforth
as countermeasures, for algorithms for healthcare applications,
and make the following contributions.

1) We propose a systematic approach for mounting poison-
ing attacks on machine learning, which is independent
of the underlying machine-learning algorithm. We target
both fixed datasets (in which users do not add authentic
data during the attack) and evolving datasets (in which
users can add authentic data). We evaluate the scheme for
six machine-learning algorithms and five different health-
care datasets from various contexts. We establish that poi-
soning attacks can be successfully mounted even if the
attacker does not know the type of algorithm used or the
training dataset. We also elaborate upon the extension of
our attack from datasets to real patterns.

2) Finally, we present countermeasures against the presented
attacks and benchmark their effectiveness in the context of
the considered machine-learning algorithms and datasets.
These countermeasures are based on monitoring devia-
tions in accuracy metrics of the training dataset and the
number of instances added to it. The effectiveness of these
countermeasures suggests that there is a need for devising
attacks that are capable of circumventing them.

The remainder of this paper is organized as follows. In
Section II, we present the relevant previous work. In Section
III, we discuss preliminary concepts. In Section IV, we present

and evaluate our systematic approach for mounting attacks. We
describe countermeasures against these attacks in this section
as well. Finally, we conclude in Section V.

II. PREVIOUS WORK

Since we target causative (specifically, poisoning) attacks and
countermeasures against them in this paper, we present the rel-
evant previous work next.

Taxonomies for attacks against machine-learning systems
and countermeasures against them are presented in [18] and
[21]. Many of these attacks, along with countermeasures against
them, were demonstrated against SpamBayes, a statistical spam
filter. Experiments have been done for causative availability at-
tacks which causes the filter to mislabel all legitimate e-mails
as spam. Some countermeasures are based on methods for elim-
inating the newly added data instances that have a substantial
negative impact on classification accuracy and also devising
procedures to limit the impact of adversarial data.

A number of poisoning attacks on specific machine-learning
algorithms have been proposed in [22]–[24]. The attacks pre-
sented in [23] and [24] work in the feature space. Experiments
are done for an intrusion detection scenario (data from a sample
of real HTTP traffic from a web server). The attack is successful
with the need to only overwrite up to 35% of the initial data
points. Moreover, an attacker needs to control 5–15% of traffic
to successfully stage a poisoning attack. However, the work pro-
posed in [22] only depends on the gradients of dot products of
points in the input space. It investigates poisoning attacks against
one particular machine-learning algorithm, namely support vec-
tor machines (SVMs), based on increasing the classifier’s test
error. The attacks are experimentally evaluated using a classical
handwritten digit recognition dataset (a two-class subproblem
consisting of discrimination between two distinct digits). In the
exemplary experimental runs reported in [22], a single attack
data point caused the classification error to rise from the initial
error rates of 2–5% to 15–20%. Machine-learning methods that
account for data manipulation by adversaries (robust classifiers)
have also been investigated [25], [26].

Adversarial machine learning has gained attention in the lit-
erature [17]–[20] as an emerging field for analyzing the vul-
nerabilities of machine-learning algorithms in adversarial envi-
ronments, developing methods for benchmarking the classifier
security, and presenting countermeasures to counteract or alle-
viate these security concerns. A framework for evaluating clas-
sifier security in the design phase, in order to provide practical
guidelines and tools for pattern recognition system designers,
has been discussed in [16].

III. PRELIMINARIES

In this section, we present preliminary concepts related
to machine-learning algorithms, datasets, attack models, and
notations.

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1895

A. Machine-Learning Algorithms and Datasets

In this paper, we experiment with six different machine-
learning algorithms. We use these algorithms to perform various
classification tasks, by constructing models based on a training
dataset and using the models to classify a test dataset.

The first is a tree-based algorithm, i.e., BFTree (best-first
decision tree) [27], [28]. BFTree uses a tree constructed from
binary splits on attributes. The “best” node is the node that max-
imally reduces impurity among all nodes available for splitting.
An increase of the training set size results in an increase of
tree size and complexity in this algorithm. The second algo-
rithm is Ridor (ripple-down rule learner) [29], [30], which is a
rule-based algorithm that consists of a data structure and knowl-
edge acquisition scenarios, where experts’ knowledge is stored
in the data structure and the knowledge is coded as a set of
rules. Specifically, it generates a default rule first and then the
exceptions for the default rule with the least (weighted) error
rate. Then, it generates the “best” exceptions for each excep-
tion and iterates until pure. The exceptions are a set of rules
that predict classes other than the default. The third algorithm
is NBTree, which is a decision tree with naive Bayes classifiers
at the leaves [31]. This algorithm is suitable for the learning
scenarios in which many attributes are likely to be relevant for
a classification task, yet the attributes are not necessarily con-
ditionally independent given the label. The fourth algorithm is
IB1 (nearest-neighbor classifier) [32], which uses normalized
Euclidean distance to find the training instance closest to the
given test instance. IB1 has been chosen as the simplest form
of instance-based learning algorithms, yet, the presented attacks
and countermeasures are, generally, suitable for other variants
as well. The fifth algorithm is Multilayer Perceptron (MLP),
which is based on a feedforward artificial neural network that is
trained using backpropagation [33]. MLP became useful with
the introduction of the backpropagation training algorithm. Its
counterpart, SVM, is known to improve the generalization per-
formance for binary classification tasks, which forms the base
of the sixth algorithm: sequential minimal optimization (SMO)
[34] for training an SVM [35], [36]. Note that SVM is a more
recent algorithm compared to MLP and has been widely ap-
plied in biological and other sciences. The specialized SMO
algorithm breaks the problem down into 2-D subproblems that
may be solved analytically, eliminating the need for a numeri-
cal optimization algorithm. A summary on the aforementioned
details is presented in Table I.

For our experiments, we have used two tree-based (BFTree
and NBTree), one rule-based (Ridor), two functions (SMO and
MLP), and one lazy (IB1) classifier. The choice of NBTree as the
second tree-based classifier is based on the fact that it is the only
tree-based classifier that performs naive Bayes classification at
the leaves.

We evaluate the aforementioned algorithms on five differ-
ent medical datasets from UCI’s machine-learning repository.
We use the Thyroid Disease dataset [37], Breast Cancer dataset
[38], Acute Inflammations dataset [39], Echocardiogram dataset
[40], and Molecular Biology (Splice-junction Gene Sequences)
dataset [41]. Table II presents the details of these datasets.

TABLE I
MACHINE-LEARNING ALGORITHMS

Name Details

BFTree Tree-based with
(Best-first decision tree) binary splits on attributes
Ridor Rule-based through
(Ripple-down rule learner) knowledge acquisition
NBTree Decision tree with
(Naive Bayes decision tree) naive Bayes classifiers
IB1 Normalized Euclidean
(Nearest-neighbor classifier) distance-based
MLP Feedforward artificial
(MultilayerPerceptron) neural network-based
SMO (Sequential Support-vector
minimal optimization) machine-based

TABLE II
DETAILS OF DATASETS WITH NUMBER OF ATTRIBUTES IN EACH

TYPE IN PARENTHESES

Name #Inst., #Attr. Attr. types

Thyroid Disease 7104, 21 Numeric
Breast Cancer 699, 10 Nominal
Acute 120, 6 Numeric (1),
Inflammations Nominal (5)
Echocardiogram 132, 12 Numeric (10),

Nominal (2)
Molecular 3190, 61 Nominal
Biology

Columns #Inst. and #Attr. refer to the number of data instances
in the dataset and the number of attributes for each instance,
respectively. Column Attr. types specifies the attribute types,
where Nominal refers to attributes that can only take a limited
number of distinct values, e.g., exon/intron boundaries or in-
tron/exon boundaries in the Molecular Biology (Splice-junction
Gene Sequences) dataset, and Numeric refers to attributes for
which the values are integers or real numbers.

B. Attack Model

In our attack model, we assume that the attackers have knowl-
edge of the training dataset and use this knowledge to construct
malicious data. In practice, this knowledge can be obtained ei-
ther because the dataset is publicly available or because the
attackers have employed various means, such as eavesdropping
on network traffic or compromising a system where the dataset
is stored, in case security measures, such as the ones presented
in [42], are compromised. However, the success of the proposed
attacks is only dependent on the knowledge of the statistics of
the training dataset, as discussed in Section IV.

In scenarios where gaining access to the training datasets is
difficult, we present an alternative approach in which attack-
ers construct a proxy training dataset drawn from the same
distribution as the original dataset [13]. This is possible since
our proposed attacks are based on the statistics of the training
dataset (and not the exact values of attributes within the dataset).
By presenting artificial test instances as inputs to the targeted
machine-learning application and observing its responses, one

1896 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

TABLE III
NOTATIONS

Notation Definition

N number of instances
M number of attributes
χi , 1 ≤ i ≤ N ith instance
χj

i , 1 ≤ i ≤ N , 1 ≤ j ≤ M j th attribute value
of ith instance

χj , 1 ≤ j ≤ M j th attribute
Υ i , 1 ≤ i ≤ N ith class label

Fig. 1. Instances, attributes, and class labels.

can construct a “proxy” dataset that can be used to mount the
attack.

In Section IV, we show that such an attack would be success-
ful with only a minor degradation in the success rate compared
to the case where the training dataset is directly accessible.
Moreover, in many cases, launching poisoning attacks may be
much easier than launching general causative attacks in which
modifications to current instances are required.

We also assume that attackers have access to significant com-
puting resources. For example, they can repeatedly modify the
training dataset and evaluate the effectiveness of the modifica-
tions by constructing models and testing them on a validation
dataset. The attacker can construct a golden validation dataset
from the original training dataset to which access is assumed,
e.g., a subset of the original training dataset before launching
the attacks.

Unlike general causative attacks in which attackers are as-
sumed to be capable of arbitrarily manipulating datasets by
adding, changing, or removing data, our attack model considers
poisoning attacks in which attackers can only add malicious
data. Finally, in our attack model, we assume that attackers can
add new malicious training data in a manner that generally may
not raise suspicion (rather than arbitrarily generated instances
that can be flagged by simple tests such as range checks on the
attribute values).

C. Notations

The notations used henceforth are summarized in Table III.
These include notations for data instances, class labels, and
attributes. Fig. 1 depicts a training dataset that is composed of
instances, which, in turn, consist of attributes and class labels.

Fig. 2. Typical attacks on two-way classification problems.

IV. SYSTEMATIC MACHINE-LEARNING ATTACKS

AND COUNTERMEASURES

In this section, we present and evaluate our proposed schemes
for attacking machine-learning algorithms applied to medical
datasets. Then, we discuss and evaluate countermeasures against
the attacks.

A. Attack Objectives

In healthcare, attackers may have varying motivations for
poisoning training datasets, ranging from generally degrading
the accuracy of the algorithm to biasing the results in a specific,
targeted manner.

As an example of targeted attacks, let us consider the Thyroid
Disease dataset, in which data instances are associated with
two classes: normal and hypothyroid. Targeted attacks might
compromise the effectiveness of the machine-learning algorithm
either to prevent a hypothyroid diagnosis or to falsely lead to
a hypothyroid diagnosis. Let us first consider the former case.
The prevention of such a diagnosis, when maliciously done,
would, at least, cause distrust and annoyance for the patients
and clinicians once diagnosis is correctly performed. Moreover,
it could lead to (catastrophic) health issues if the diagnosis
is mainly based on the results of the algorithm. As for the
latter case, false alarms would induce distrust and force users to
abandon the system. In short, these cases could either lead to an
adverse health impact or a loss of trust in the system.

Let us consider the scenario in which a malicious attacker
intends to prevent a hypothyroid diagnosis. In this scenario,
we denote the hypothyroid class as the attacked class and the
benign class as the attacking class. As shown in Fig. 2, the
attacker adds malicious instances to the training dataset such that
instances belonging to the attacked class (Class 1) are predicted
and classified as belonging to the attacking class (Class 2). If
the attacker wishes to cause false hypothyroid diagnoses, the
attacking and attacked classes are switched.

The attack schemes that we propose can be used for targeted
or nontargeted attacks. However, we describe the procedure in
the context of targeted attacks, since attacks that simply aim to
increase classification error can be viewed as a special case of
targeted attacks where all classes are attacked classes.

Next, we discuss the proposed attack schemes that system-
atically generate inputs that are highly effective in poisoning a
given medical training dataset.

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1897

B. Attack Scheme

Unlike prior work that shows how to attack specific machine-
learning algorithms, our objective is to propose a generic and
algorithm-independent attack scheme. In other words, the pro-
posed attacks can be applied to a wide range of machine-learning
algorithms and medical datasets. In fact, the attacker does not
even need to know the type of machine-learning algorithm
used to apply the proposed attack scheme. Furthermore, highly
algorithm-specific attacks may be thwarted by simply chang-
ing the machine-learning algorithm used. However, knowledge
of the machine-learning algorithm being used increases the
efficacy of the attacks, as discussed later. In addition to our
original attack scheme, we consider and benchmark through
experiments four variants of the proposed scheme, i.e., attack-
ing without access to the training dataset, attacking unknown
machine-learning algorithms, adapting the attacks to real pat-
terns, and attacking n-way classification.

The proposed attack scheme is described in Algorithm 1. Let
the original dataset be denoted as D ∈ (χ,Υ) with N instances,
where χ and Υ represent an instance’s attributes and class la-
bel, respectively. Algorithm 1 adds N ′ malicious instances to
the original dataset to create a manipulated dataset D′ ∈ (χ,Υ)
with N + N ′ instances. To add a malicious instance, I pseu-
dorandom candidates are generated (using Algorithm 2). Intu-
itively, Algorithm 2 generates candidates whose attribute values
match the statistics of the attacked class, but whose labels are
set to the attacking class (recall that the objective is to bias the
model away from the attacked class and toward the attacking
class). For each candidate, the algorithm builds a model on the
same machine-learning algorithm and evaluates its classifica-
tion accuracy on the validation set. The candidate that results in
the highest degradation in classification accuracy is selected and
added to the dataset. I is a constant set by the attacker and trades
off efficacy of the malicious instances versus the computational
effort expended to generate them.

Algorithm 2 is called from Algorithm 1 to generate malicious
instance candidates. Its inputs are χj , 1 ≤ j ≤ M , which rep-
resents the jth attribute set (see Fig. 1), and Υi , 1 ≤ i ≤ N ,
which represents the ith class. Its output is the malicious in-
stance candidate consisting of attribute values (αj , 1 ≤ j ≤ M)
and a class label.

For each attribute χj , the algorithm analyzes the training
dataset to compute statistics that relate the possible values of
χj to the class labels. We divide the range of χj into g bins
(where g is a specified constant; the attacks can be tailored by
using more bins based on the resources available to the attacker
and the attack objectives). For each bin, we identify instances
from the training dataset whose jth attributes assume values
that lie in the bin. In Algorithm 2, χj (k), 1 ≤ k ≤ g, are the g
subsets of χj . We then compute the distribution of the instances
in each bin across the attacked and attacking classes. For an
n-way classification, let us denote ηk,j and η′

k,j as the number
of entries in χj (k) corresponding to the attacked and attacking
class, respectively. These statistics (ηk,j and η′

k,j) are used for
computing probabilities Pk , which are, in turn, used to generate
a weighted-pseudorandom value for αj through weighted pseu-

Algorithm 1 Algorithm-independent attacks.

1:Input: Dataset D ∈ (χ,Υ) with N instances, validation
dataset V , number of iterations I .
2:Output: Maliciously manipulated dataset D′ ∈ (χ,Υ)
with N + N ′ instances, where N ′ is the number of added
malicious instances.
3:Begin
4: Assign D′ ← D
5: for k = 1 to N ′ do
6: //Select kth malicious instance
7: for i = 1 to I do
8: Use Algorithm 2 to generate malicious instance
candidate i
9: Add the candidate to D′ to create a temporary
training set DT ∈ (χ,Υ) with N + k instances
10: Build the model using DT and record its
classification accuracy on the validation set V as Ai

11: endfor
12: Select instance î such that Aî = min(Ai), 1 ≤ i ≤ I

13: Add instance î to D′

14: endfor
15:End
16:Return: D′ ∈ (χ,Υ).

dorandom functions. To choose each specific attribute value
α, the weighted function S within Weka 3 machine-learning
workbench [43] uses the attribute probabilities Pk = Wk∑

1≤i≤g Wi
,

k = 1, . . . , g. This function pseudorandomly chooses α, biased
through attribute probabilities thus obtained. The label of the
malicious instance candidate is set to the attacking class.

Algorithm 2 Deriving a malicious instance candidate.

1:Input: χj , 1 ≤ j ≤ M and Υi , 1 ≤ i ≤ N , g bins (a
specified constant).
2:Output: χN +1 ,ΥN +1 (malicious instance candidate).
3:Denote: ηk,j and η′

k,j as the number of entries in χj (k)
corresponding to the attacked class and the attacking class,
respectively.
4:Begin
5: for j = 1 to M do
6: for k = 1 to g do
7: Calculate ηk,j and η′

k,j

8: Assign Wk ← ηk , j

η ′
k , j

9: endfor
10: Compute attribute probabilities (Pk = Wk∑

1≤i≤g Wi
),

k = 1 to g
11: Weighted function S selects attribute value αj

pseudorandomly based on attribute probabilities
12: endfor
13:End
14:Return: Malicious instance candidate is χN +1 = {αj ,
1 ≤ j ≤ M}, ΥN +1 = Attacking class.

1898 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

Fig. 3. Malicious attribute value derivation example (g = 10, Υ ∈ {Class 1,
Class 2}).

TABLE IV
ATTACKED AND ATTACKING CLASSES OF DATASETS FOR THE EXPERIMENTS

Dataset Attacked class Attacking class

Thyroid Disease Normal Hypothyroid
Breast Cancer Benign Malignant
Acute Inflammations Negative Positive
Echocardiogram Dead (after 1 year) Alive
Molecular Biology intron/exon exon/intron

Let us consider an illustrative example of a two-way clas-
sification problem (Υ ∈ {Class 1, Class 2}) where each data
instance has one attribute. We assume g = 10, i.e., we divide
the range of the attribute into ten bins and assign the instances
in the training dataset to these bins. Fig. 3 shows the distribution
of instances in each bin (each bar represents a bin) across the
two classes (the subbars represent the two classes). Classes 1
and 2 are the attacked and attacking classes, respectively. Using
Algorithm 2, weights Wk, 1 ≤ k ≤ 10, are computed by look-
ing at the ratio of the number of instances in bin k that belong to
Class 1 to the number of instances in bin k that belong to Class
2. We show four values for Wk , k ∈ {1, 2, 9, 10}, in the fig-
ure. The malicious instance candidate is created by generating
a weighted pseudorandom value for the attribute. Wk∑

1≤j ≤1 0 Wj

is used as the probability that the malicious instance candidate
will have an attribute value in bin k. The label of the malicious
instance candidate is set to Class 2.

C. Experimental Evaluation

We next present the results of applying the proposed attack
procedure to the six machine-learning algorithms and five med-
ical datasets discussed in Section III. We implemented the pro-
posed attack scheme using the Weka 3 machine-learning work-
bench [43]. The training and validation datasets are extracted
by splitting the original dataset.

Table IV shows the attacked and attacking classes for the
chosen datasets. For the experiments reported in this paper, we
simply chose the class with more data instances as the attacked
class. However, note that this is not a limitation; we verified that
the attacks are successful regardless of how the attacking and
attacked classes are chosen. In Table IV, the datasets are based

Fig. 4. Results of attacks on the Thyroid Disease dataset for the fixed (solid
line) and evolving (dashed line) cases.

Fig. 5. Results of attacks on the Breast Cancer dataset for the fixed (solid line)
and evolving (dashed line) cases.

on two-way classifications. However, our attacks are applicable
to n-way classification problems as well.

The results of our attacks for the five datasets are shown in
Figs. 4–8. In each of these figures, the classification accuracy
degradations corresponding to the classification results for the
attacked class, after adding malicious data to the training dataset,
are shown for the six machine-learning algorithms. The feasi-
bility of adding malicious instances to the datasets depends on
the specific applications and contexts. Moreover, the presented
results for the attacks (in which up to 30% malicious instances
are added) are only meant to be illustrative and provide general
guidelines. In other words, as seen from the tables throughout
the paper, attacks with lower number of malicious instances

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1899

Fig. 6. Results of attacks on the Acute Inflammations dataset for the fixed
(solid line) and evolving (dashed line) cases.

Fig. 7. Results of attacks on the Echocardiogram dataset for the fixed (solid
line) and evolving (dashed line) cases.

could be considered “successful,” depending on the goal of the
attacker. Based on the attack objectives, restrictions on how
many malicious entries can be added, and the overhead that can
be tolerated, the attacker can choose an appropriate number of
added malicious instances to mount the attacks.

The two curves in each graph represent two different as-
sumptions about the nature of the training dataset. In the first
one (solid lines in the graphs), the training dataset is consid-
ered to be fixed for the duration of the attack. In the second
one (dashed lines in the graphs), the dataset is considered to
be evolving (i.e., unknown to the attacker, other users can add
authentic data to the training set during the attack). In the latter
case, we assume that the number of added authentic instances
is the same as the number of added malicious instances. Note

Fig. 8. Results of attacks on the Molecular Biology dataset for the fixed (solid
line) and evolving (dashed line) cases.

that the evolving dataset assumption makes the problem tougher
for the attacker, since the statistics of the newly added authentic
instances are unknown to him, and the attack has to be based on
the original training dataset. The figures show that the attacks
are quite successful across all datasets and algorithms. As the
number of added malicious instances increases, the misclassi-
fication increases, as indicated by the classification accuracy
percentage decreasing (note that the classification accuracies
for the datasets and machine-learning algorithms were origi-
nally very high). The attack remains effective even for evolving
datasets, causing the misclassification to be only slightly lower
than in the case of fixed datasets.

For the results described previously, we set the number of
iterations I to 50 in Algorithm 1. To check that this was adequate,
we also used I = 100 in a few cases (thus utilizing twice the
CPU time). However, the misclassifications (which reflect the
efficacy of the attacks) increased by less than 1% (compared to
the 50 iterations case), when 30% malicious data were added
to the training dataset. Since this is not that significant, we
conclude that I = 50 appears to be sufficient for achieving the
attack objectives.

We would like to emphasize that the proposed approach is suc-
cessful without raising suspicion when the attacks are mounted.
One may simply suggest flipping the class labels of the instances
in the training dataset to create malicious instances. However,
not only is such a scheme not efficient when the number of
instances in the training dataset is high, but it might also raise
suspicion. The precision of the proposed scheme (by changing
the number of iterations at the cost of more CPU time) gives
the attacker flexibility to mount attacks based on the resources
available. Moreover, the analysis of statistics in the proposed
approach before devising the attacks makes it applicable to
large datasets. Indeed, when we deal with evolving datasets,
the problem gets tougher since the statistics of the newly added

1900 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

TABLE V
COMPARISON OF THE EFFECTIVENESS OF OUR ATTACKS ON THE MACHINE-LEARNING ALGORITHMS CONSIDERED

Attack Thyroid Disease (most to least vulnerable) Breast Cancer (most to least vulnerable)
15% added IB1 BFTree Ridor NBTree MLP SMO MLP IB1 BFTree Ridor NBTree SMO

(9%) (7%) (5%) (4%) (3%) (3%) (14%) (11%) (8%) (4%) (3%) (3%)
30% added MLP Ridor BFTree IB1 NBTree SMO MLP BFTree Ridor IB1 NBTree SMO

(20%) (18%) (18%) (16%) (13%) (12%) (26%) (23%) (22%) (18%) (16%) (16%)
Acute Inflammations (most to least vulnerable) Echocardiogram (most to least vulnerable)

15% added Ridor BFTree IB1 NBTree MLP SMO Ridor NBTree IB1 MLP BFTree SMO
(9%) (9%) (8%) (8%) (6%) (6%) (8%) (8%) (7%) (6%) (3%) (3%)

30% added Ridor BFTree IB1 MLP NBTree SMO NBTree IB1 MLP Ridor BFTree SMO
(21%) (18%) (18%) (14%) (12%) (12%) (20%) (18%) (16%) (16%) (11%) (11%)

Molecular Biology (most to least vulnerable)
15% added IB1 BFTree Ridor NBTree MLP SMO Note: Changes in the misclassification percentage compared to

(9%) (9%) (7%) (6%) (6%) (5%) the original dataset, i.e., the effectiveness of attacks, are
30% added BFTree IB1 MLP NBTree Ridor SMO shown in parentheses.

(18%) (17%) (15%) (15%) (12%) (12%)

authentic instances are unknown. However, the presented attack
mechanism is still successful in such cases.

Table V presents a comparison of the six machine-learning
algorithms on the five datasets for the case of evolving datasets,
to gauge the vulnerability of these algorithms to poisoning at-
tacks. It looks at the vulnerability half-way during the attack
(when half of the malicious instances are added, i.e., 15% of the
original dataset), and at the end (when all malicious instances
are added, i.e., 30% of the original dataset). The entries in this
table indicate the reductions in the attacked label percentage that
are achieved. The entries are sorted from the most vulnerable
algorithm (left) to the least vulnerable algorithm (right). The
results indicate that, at the end of the attacks, SMO is found to
be the most robust.

In order to further evaluate the efficacy of the proposed at-
tack strategies, we performed experiments on the Breast Cancer
dataset for the six machine-learning algorithms through addition
of pseudorandom malicious instances. These instances are gen-
erated by pseudorandomly choosing the attribute values without
using Algorithm 2 for deriving the malicious instance candi-
dates, i.e., equal weights are given to the subsets with weights
W ≥ 1 within the bins and the other bins are ignored. The exper-
imental results show that after adding 30% malicious instances,
a significant reduction in the success of attacks is seen compared
to the proposed attack approach. Specifically, for MLP, BFTree,
Ridor, IB1, NBTree, and SMO, the effectiveness for the pro-
posed (pseudorandom) attack is, respectively: 26% (16%), 23%
(15%), 22% (13%), 18% (12%), 16% (9%), and 16% (10%).
We note that this type of attack in not completely random as
the cases, for which W < 1, are ignored. The difference in the
effectiveness of the proposed attack and a random attack would
be even more than the above difference with respect to a pseu-
dorandom attack.

IB1 machine learning uses normalized Euclidean distance to
find the training instance closest to the given test instance, and
predicts the same class as this training instance. If multiple in-
stances have the same (smallest) distance to the test instance,
the first one found is used. We also performed experiments us-
ing IBk (k-nearest neighbor classifier in which parameter k can
be optimized to improve classifier performance) for the Breast

Cancer dataset for k = 2, for which slightly better performance
is observed. The results show that the proposed attacks are suc-
cessful with a success rate close to that of IB1 (around 18%
change in the attacked label percentage). We would like to em-
phasize that although the algorithm performance is an important
factor, benchmarking the success of attacks (countermeasures)
with respect to the original performance of the machine-learning
algorithms is our primary focus.

We also experimented with a regression-based logistic classi-
fier, SimpleLogistic [44], for building linear logistic regression
models for the five datasets. After mounting the attacks (adding
30% malicious instances), the decrease in the attacked label
percentages for Thyroid Disease, Breast Cancer, Acute Inflam-
mations, Echocardiogram, and Molecular Biology datasets are
17%, 20%, 18%, 17%, and 16%, respectively. These success
rates put the SimpleLogistic classifier roughly in the middle of
the other classifiers in terms of vulnerability to attacks.

In some applications, when there is incomplete or incoherent
knowledge, e.g., noisy data, classification based on similarity
of objects (termed similarity-based classification) may be used
[45]. In such approaches, a similarity criterion is used to quantify
the similarities among objects by deriving a numerical measure
that is eventually utilized for inference. Accordingly, for n-way
classification, similarity-based classification returns n classes
with which n similarity degrees are associated.

The proposed algorithm-independent attacks can be adapted
to such classification approaches as well. Here, the aforemen-
tioned similarity criterion needs to be converted to a malicious
one so that the incoming new objects have higher similarity de-
grees for a particular attacking class. In other words, the attack
will be directed toward decreasing the similarity degree(s) of
the attacked class(es) and increasing that of the attacking class.
Depending on the method used for deriving the similarity cri-
terion, Algorithms 1 and 2 can be used to mount the attacks.
For instance, if any statistical measure (for the objects getting
compared) is used as the similarity criterion, one may slightly
modify Algorithm 1 to benchmark this measure (as the effec-
tiveness factor) to cause a deviation in the similarity degree of
the attacked class. We would like to emphasize that instead of
attacking the training datasets or their surrogates, the similarity

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1901

criterion is maliciously targeted to reach the attacker’s objectives
in this case.

1) Attacking Without Access to the Training Dataset: Our
experiments so far demonstrate that the proposed attack scheme
can be applied to machine-learning algorithms whose training
datasets are known to the attackers. We now consider the case in
which prior knowledge of the statistics of the training datasets
is not assumed for the attackers. The attack in this case is based
on getting feedback from the machine-learning algorithm to
construct an “artificial” dataset.

For performing experiments in this case, an “artificial” dataset
is created by giving test inputs to the machine-learning al-
gorithm. We note that based on the classification accuracy of
the machine-learning algorithm used, this newly created dataset
may contain a few incorrect class labels. This might cause minor
deviations (based on the misclassification ratio) in the choice of
the malicious instance candidate (see Algorithm 2). Our experi-
ments indicate that after adding malicious data to this “artificial”
dataset, the attack is still quite successful, with the results being
very close to the results obtained through the original approach.
Specifically, for the machine-learning algorithms BFTree (one
of the most vulnerable ones in Table V) and SMO (the least
vulnerable one in Table V), only 1–2% and 2–3% change are
observed in the attacking class misclassification, respectively,
for the five datasets.

We would like to emphasize that this approach is less effective
when the classification accuracy of the machine-learning algo-
rithms is less; nonetheless, due to inaccurate results, typically,
these types of algorithms are not used for sensitive applications.
The presented approach can be applied to other datasets and
machine-learning algorithms as well. Moreover, the attacker
does not necessarily need to know the type of the machine-
learning algorithm used.

2) Attacking Unknown Machine-Learning Algorithms: Our
experiments suggest that the proposed attack scheme can be ap-
plied to a wide range of machine-learning algorithms. However,
in our discussions so far, the machine-learning algorithm used
was assumed to be known to the attacker (recall that Algorithm
1 performs training and validation to evaluate the efficacy of the
malicious instances). Algorithm 1 can be modified to the sce-
nario where the attacker does not know the machine-learning
algorithm used. We eliminate the inner loop in Algorithm 1,
which generates I malicious instance candidates and evaluates
them through training and validation to pick the most suitable
one. Instead, we simply pick each malicious instance candidate
generated by Algorithm 2 and add it to the dataset. The results
of our experiments show that the attacks still succeed, although
they are not as effective as when the attacker knows the algo-
rithm being used. For instance, for the Breast Cancer dataset
and for different machine-learning algorithms, our experiments
show that the effectiveness of the attacks is 8–10% higher when
the machine-learning algorithm is known.

In summary, knowing the machine-learning algorithm used
and performing retraining and validation to select each mali-
cious instance does result in higher attack efficacy. However,
hiding this information does not eliminate the ability of the
attacker to mount poisoning attacks.

3) Adapting the Attacks to Real Patterns: The proposed at-
tacks are effective on datasets whose features (attributes) are
derived through a feature extraction process (which is a reduc-
tion step) from real patterns. However, applying these attacks,
in practice, would require that inputs be generated as real pat-
terns, and not simply in the feature space. We next discuss issues
involved in adapting the proposed attacks to real patterns.

It is possible to create real attack patterns from the malicious
datasets derived through our proposed attacks. We note that
knowledge of the feature extraction scheme is required for this
backward projection. For example, consider the Breast Cancer
dataset whose attributes are the tissue physical/chemical char-
acteristics, e.g., clump thickness or uniformity of cell size, in the
patterns from the reports of clinical cases. Once the proposed
attacks result in malicious training datasets that are represented
in the attribute space, one could generate real patterns, i.e.,
synthetic clinical reports that exhibit the maliciously chosen tis-
sue characteristics. However, these patterns are not necessarily
unique, i.e., there might be more than one malicious pattern
corresponding to a malicious attribute vector. Moreover, one
can attack patterns directly by maliciously targeting parts of the
clinical reports corresponding to the target attributes.

Let us consider and elaborate upon two scenarios for the
aforementioned dataset, i.e., Breast Cancer. In the first scenario,
assuming that the feature extraction process is known (tissue
physical/chemical characteristics), removing or adding values
for tissue characteristics in order to create malicious patterns
is equivalent to changing the feature vectors. In fact, one can
construct attack patterns exhibiting the same feature values of
a malicious instance used in the attacks; thus, simulating the
attacks can be performed by directly modifying the feature vec-
tors instead of the patterns [16]. In the second scenario, consider
dealing with more than one feature extraction method for the
patterns used for different applications to create different fea-
ture sets. In this case, the attacker needs to target the union
of features of these methods for the attacks, e.g., a number of
tissue characteristics sets for different methods. This, in turn,
would increase the number of changes needed by the attack-
ers in the real patterns to cover the feature sets (typically, the
intersection of these feature sets is large). In summary, we be-
lieve that the feature vectors generated by the proposed attacks
are typically extensible to real patterns; nevertheless, solving
the general problem of generating real patterns is outside the
scope of our study and is an interesting future research topic.

4) Attacking n-Way Classification: So far, we have pre-
sented results for two-way classifications. However, our attack
scheme can be generalized to n-way classification in a straight-
forward manner. For example, let us consider a four-way classifi-
cation problem based on the Hypothyroid dataset from UCI [46]
in which class labels are negative, compensated-hypothyroid,
primary-hypothyroid, and secondary-hypothyroid. In this case,
an attacker can mount the proposed attack using the structure
shown in Fig. 9, in which the objective of the attack is misclas-
sification of the three attacked class labels (Classes 1, 3, and
4) toward the attacking compensated-hypothyroid label (Class
2). Table VI shows the results of the mounted attacks for the
NBTree machine-learning algorithm. After adding around 20%

1902 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

Fig. 9. Attack structure for a four-way classification problem, e.g., on the
Hypothyroid dataset.

TABLE VI
ATTACK RESULTS FOR THE HYPOTHYROID DATASET AFTER ADDING 20%

MALICIOUS INSTANCES

Attack Class 1 2 (attacking) 3 4

Before 92% 4% 2% 2%
After 80% 18% 1% 1%

malicious instances to the training dataset based on Algorithms
1 and 2, classification results on the validation set show a sig-
nificant bias toward the attacking class label (from 4% to 18%).

D. Countermeasures Against Poisoning Attacks

In this section, we present a countermeasure to the proposed
poisoning attacks. The proposed method is based on periodically
constructing a model using the training dataset, evaluating its
accuracy on the validation dataset, and raising an alarm in case of
any suspicious change in the accuracy metrics. The effectiveness
of the presented countermeasure suggests devising attacks that
are resistant to such methods, capable of circumventing these
countermeasures. While several metrics are used to evaluate the
accuracy of classification, we consider the following two in our
study.

1) Correctly classified instances (CCI): This statistic indi-
cates the fraction of instances that are classified correctly
in an n-way classification (the higher the CCI value, the
better the classification).

2) Kappa statistic [47]: This statistic measures relative im-
provement over random predictors, i.e., it is a measure of
how good the classifier is compared to a random classifier
(the higher the Kappa statistic, the better the classifica-
tion).

The proposed countermeasure is described in Algorithm 3.
For any chosen accuracy metric, the user first computes a
“golden” value by building a model when the dataset is in a
trusted state and evaluating the model on a fixed validation set
(note that the validation set does not evolve as new data are added
to the training dataset). The user then sets a threshold value for
the accuracy metric that is lower than the golden value. The
model is periodically regenerated from the training dataset and
evaluated on the validation set. An alarm is raised if the accu-

Algorithm 3 Presented countermeasure.

1:Input: Evolving Dataset D ∈ (χ,Υ) with N + X
instances, validation dataset V .
2:Output: Attack flag AF .
3:Begin
4: Set a threshold for the accuracy metrics, e.g., CCI or
Kappa statistic
5: Obtain accuracy metrics for V after building the model
through D
6: While the accuracy metrics have not reached the set
threshold, compute the accuracy metrics
7: If any of the thresholds is reached, set AF=1
8:End
9:Return: AF .

racy falls below the threshold value. The choice of the threshold
value trades off the sensitivity of the countermeasure to attacks
with the likelihood of false alarms due to natural variations in the
benign data added to the dataset. In addition to absolute values
of accuracy metrics, users can also track the rates of change of
these metrics as new instances are added to the training dataset.

The changes in accuracy metrics for the attacks on the six
machine-learning algorithms and the five evolving datasets pre-
sented earlier in this section are given in Table VII. The values
tabulated correspond to the half-way and the end of the attacks
(i.e., 15% and 30% increase in the dataset, respectively). The
lowest and the second lowest changes shown for each metric are
depicted by “++” and “+,” respectively. Based on these values,
we would draw the same conclusion that we drew earlier from
Table V, i.e., SMO is the most difficult to attack (note that the
degradation in the values of these metrics is the least; among
the six algorithms, it maintains the highest accuracy under the
attacks).

For setting a threshold value for accuracy metrics, e.g., CCI,
a conservative rule of thumb could be to allow a 10% devi-
ation from the original value after mounting the attacks. The
reason for such a choice is that in our experiments, classifica-
tion accuracies were found to be higher than 90% (inaccuracies
of less than 10%), and thus, a 10% deviation would be close
to twice the inaccuracies in many cases, reducing the chance of
encountering false alarms. However, this choice is highly depen-
dent on the context and datasets. Hence, we have not specified
a fixed threshold for the countermeasure experiments. Based
on the results shown in Table VII, with such a conservative
threshold, all the attacks are detected after adding 30% mali-
cious instances. However, except for two cases for the Breast
Cancer dataset, none are detected after adding 15% malicious
instances. The threshold could be tailored dynamically to trade
off countermeasure sensitivity to attacks with the likelihood of
false alarms.

Table VII shows changes in the two chosen accuracy metrics,
i.e., CCI and Kappa, when the proposed attacks are mounted.
One can set thresholds for these accuracy metrics to change the
sensitivity of the countermeasures. On the other hand, Table V
shows success results for the proposed attack, where success

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1903

TABLE VII
CHANGE IN ACCURACY METRICS UNDER POISONING ATTACKS

Attack Thyroid Disease Breast Cancer
Metric SMO NBTree BFTree MLP Ridor IB1 Metric SMO NBTree BFTree MLP Ridor IB1

15% added CCI 3%++ 4%+ 7% 3%++ 5% 9% CCI 3%++ 3%++ 8%+ 14% 4%+ 11%
Kappa 8%++ 10%+ 18% 8%++ 13% 24% Kappa 8%++ 8%++ 20% 35% 10%+ 26%

30% added CCI 12%++ 13%+ 18% 20% 18% 16% CCI 12%++ 13%++ 18% 20% 18% 16%
Kappa 32%++ 34%+ 47% 52% 47% 42% Kappa 30%++ 32%+ 45% 50% 45% 40%

Acute Inflammations Echocardiogram
15% added CCI 6%++ 8%+ 9% 6%++ 9% 8%+ CCI 3%++ 8% 3%++ 6%+ 8% 7%

Kappa 15%++ 20%+ 22% 15%++ 22% 20%+ Kappa 8%++ 20% 8%++ 15%+ 20% 17%
30% added CCI 12%++ 12%++ 18% 14%+ 21% 18% CCI 11%++ 20% 11%++ 16%+ 16%+ 18%

Kappa 30%++ 30%++ 45% 35%+ 52% 45% Kappa 26%++ 50% 26%++ 40%+ 40%+ 45%
Molecular Biology

15% added CCI 5%++ 6%+ 9% 6%+ 7% 9% Note: The lowest and the second to lowest changes
Kappa 13%++ 15%+ 22% 15%+ 18% 22% in each of the statistics are depicted

30% added CCI 12%++ 15%+ 18% 15%+ 12%++ 17% by “++” and “+,” respectively.
Kappa 30%++ 36%+ 45% 36%+ 30%++ 43%

is defined as maliciously increasing the classification ratio of
the instances in the attacking class to the ones in the attacked
class. This is why the CCI accuracy metric in Table VII is
higher for the cases in which the attack is less successful in
Table V. However, we emphasize that in other attack scenarios,
e.g., misclassification of the instances in the two classes without
necessarily increasing the classification ratio of the attacking
class to the attacked class, results in Table VII can be used to
raise an alarm even in the absence of a direct correlation to the
classification ratio, which the results in Table V are based on.
Thus, the results in these two tables complement each other.

We note that the differences in robustness or vulnerability
of the machine-learning algorithms to our proposed attacks are
analogous to the dissimilar effects of noise on different machine-
learning algorithms [10], [11]. Finally, the presented counter-
measures could be used to counteract nonmalicious changes in
the classification accuracy as well. Moreover, if such changes
are intended, over time, the golden validation dataset needs to
be updated to reflect the changes in the training dataset.

V. CONCLUSION

In this paper, we proposed systematic attack schemes for
mounting poisoning attacks against machine-learning algo-
rithms used for medical datasets, and suggested countermea-
sures against them. A key feature of the proposed attack schemes
is that they can be applied to a wide range of machine-learning
algorithms, even when the machine-learning algorithm is un-
known. We evaluated the effectiveness of the attacks against six
machine-learning algorithms and five datasets [Thyroid Dis-
ease, Breast Cancer, Acute Inflammations, Echocardiogram,
and Molecular Biology (Splice-junction Gene Sequences)], and
ranked the algorithms based on their ability to withstand the
attacks. We then presented countermeasures against these at-
tacks and evaluated their effectiveness. Finally, we identified
the machine-learning algorithms that are easiest to defend. We
hope that our results will spur further research efforts on under-
standing and countering poisoning attacks on machine learning.

REFERENCES

[1] M. Brameier and W. Banzhaf, “A comparison of linear genetic program-
ming and neural networks in medical data mining,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 17–26, Feb. 2001.

[2] W. Lee, S. J. Stolfo, and K. W. Mok, “Adaptive intrusion detection: A
data mining approach,” Artif. Intell. Rev., vol. 14, no. 6, pp. 533–567,
2000.

[3] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifica-
tion of phishing pages,” in Proc. Symp. Netw. Distrib. Syst. Security, 2010,
pp. 1–14.

[4] M. Conover, B. Goncalves, J. Ratkiewicz, A. Flammini, and F. Menczer,
“Predicting the political alignment of twitter users,” in Proc. IEEE Int.
Conf. Privacy, Security, Risk Trust, Oct. 2011, pp. 192–199.

[5] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y.
Zhou, “Detecting adversarial advertisements in the wild,” in Proc. ACM
Int. Conf. Knowl. Discovery Data Mining, 2011, pp. 274–282.

[6] E. Kirkos, C. Spathis, and Y. Manolopoulos, “Data mining techniques for
the detection of fraudulent financial statements,” Expert Syst. Appl., vol.
32, no. 4, pp. 995–1003, May 2007.

[7] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” SIGMOD
Rec., vol. 29, no. 2, pp. 439–450, May 2000.

[8] Y. Li, M. Chen, Q. Li, and W. Zhang, “Enabling multilevel trust in privacy
preserving data mining,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 9,
pp. 1598–1612, Sep. 2012.

[9] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining
of association rules on horizontally partitioned data,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 9, pp. 1026–1037, Sep. 2004.

[10] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir, “Online learning of
noisy data,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7907–7931, Dec.
2011.

[11] D. F. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the ef-
fect of different types of noise on the precision of supervised learning
techniques,” Artif. Intell. Rev., vol. 33, no. 4, pp. 275–306, 2010.

[12] B. Nelson, B. Biggio, and P. Laskov, “Understanding the risk factors of
learning in adversarial environments,” in Proc. ACM Workshop Security
Artif. Intell., 2011, pp. 87–92.

[13] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U.
Saini, C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to
subvert your spam filter,” in Proc. Usenix Workshop Large-Scale Exploits
Emergent Threats, 2008, pp. 7:1–7:9.

[14] K. M. C. Tan, J. McHugh, and K. S. Killourhy, “Hiding intrusions: From
the abnormal to the normal and beyond,” in Proc. Int. Workshop Inf.
Hiding, 2003, pp. 1–17.

[15] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-H. Lau, S. Rao, N.
Taft, and J. D. Tygar, “Stealthy poisoning attacks on PCA-based anomaly
detectors,” SIGMETRICS Perform. Eval. Rev., vol. 37, no. 2, pp. 73–74,
Oct. 2009.

[16] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern clas-
sifiers under attack,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4, pp.
984–996, Apr. 2014.

1904 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 6, NOVEMBER 2015

[17] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial
classification,” in Proc. ACM Int. Conf. Knowl. Discovery Data Mining,
2004, pp. 99–108.

[18] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in Proc. ACM Symp. Inf., Comput. Commun.
Security, 2006, pp. 16–25.

[19] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in Proc. ACM Workshop Security Artif.
Intell., 2011, pp. 43–58.

[20] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” J. Mach. Learn. Res., vol. 13, pp. 2617–
2654, 2012.

[21] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of
machine learning,” Mach. Learn., vol. 81, no. 2, pp. 121–148, Nov. 2010.

[22] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proc. Int. Conf. Mach. Learn., 2012, pp. 1807–1814.

[23] B. Rubinstein, B. Nelson, L. Huang, A. Joseph, S.-H. Lau, S. Rao, N.
Taft, and J. D. Tygar, “ANTIDOTE: Understanding and defending against
poisoning of anomaly detectors,” in Proc. ACM SIGCOMM Conf. Internet
Meas., 2009, pp. 1–14.

[24] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” J. Mach. Learn. Res., vol. 9, pp. 405–412, 2010.

[25] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging
classifiers for fighting poisoning attacks in adversarial classification tasks,”
in Proc. Int. Conf. Multiple Classifier Syst., 2011, pp. 350–359.

[26] A. Globerson and S. Roweis, “Nightmare at test time: Robust learning by
feature deletion,” in Proc. Int. Conf. Mach. Learn., 2006, pp. 353–360.

[27] H. Shi, “Best-first decision tree learning,” M.Sc. thesis, Dept. Comput.
Sci., Univ. Waikato, Hamilton, New Zealand, 2007.

[28] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[29] R. Dazeley, P. Warner, S. Johnson, and P. Vamplew, “The Ballarat incre-
mental knowledge engine,” in Proc. Int. Conf. Knowl. Manag. Acquisition
Smart Syst. Serv., 2010, pp. 195–207.

[30] D. Richards, “Two decades of ripple down rules research,” Knowl. Eng.
Rev., vol. 24, no. 2, pp. 159–184, 2009.

[31] R. Kohavi, “Scaling up the accuracy of naive-Bayes classifiers: A decision-
tree hybrid,” in Proc. Int. Conf. Knowl. Discovery Data Mining, 1996, pp.
202–207.

[32] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algo-
rithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.

[33] R. Collobert and S. Bengio, “Links between perceptrons, MLPs and
SVMs,” in Proc. Int. Conf. Mach. Learn., 2004, pp. 23–31.

[34] J. C. Platt, Advances in Kernel Methods. Cambridge, MA, USA: MIT
Press, 1999, pp. 185–208.

[35] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to Platt’s SMO algorithm for SVM classifier design,”
Neural Comput., vol. 13, no. 3, pp. 637–649, Mar. 2001.

[36] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-
class classification by pairwise coupling,” J. Mach. Learn. Res., vol. 5, pp.
975–1005, 2004.

[37] Thyroid disease data set. [Online]. Available: http://archive.ics.uci.edu/ml/
datasets/Thyroid+Disease, 2014.

[38] Breast cancer data set. [Online]. Available: http://archive.ics.uci.edu/
ml/datasets/Breast+Cancer+ Wisconsin+ (Original), 2014.

[39] Acute inflammations data set. [Online]. Available: http://archive.ics.
uci.edu/ml/datasets/Acute+Inflammations, 2014.

[40] Echocardiogram data set. [Online]. Available: http://archive.ics.uci.edu/
ml/datasets/Echocardiogram, 2014.

[41] Molecular biology (promoter gene sequences) data set. [Online]. Avail-
able: http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+ (Splice-
junction+Gene+ Sequences), 2014.

[42] R. Azarderskhsh and A. Reyhani-Masoleh, “Secure clustering and sym-
metric key establishment in heterogeneous wireless sensor networks,”
EURASIP J. Wireless Commun. Netw., vol. 2011, pp. 16:1–16:12, Jan.
2011.

[43] Weka 3: Data mining software in Java. [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/index.html, 2014.

[44] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Mach. Learn.,
vol. 59, no. 1, 2, pp. 161–205, 2005.

[45] G. Bisson, “Why and how to define a similarity measure for object based
representation systems,” in Proc. Towards Very Large Knowl. Bases, 1995,
pp. 236–246.

[46] Hypothyroid data set. [Online]. Available: http://repository.seasr.org/
Datasets/UCI/arff/hypothyroid.arff, 2014.

[47] J. Carletta, “Assessing agreement on classification tasks: The Kappa statis-
tic,” Comput. Linguist., vol. 22, no. 2, pp. 249–254, 1996.

Mehran Mozaffari-Kermani (M’11) received the
B.Sc. degree in electrical and computer engineering
from the University of Tehran, Tehran, Iran, in 2005,
and the M.E.Sc. and Ph.D. degrees from the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Western Ontario, London, ON, Canada, in
2007 and 2011, respectively.

He joined Advanced Micro Devices as a Senior
ASIC/Layout Designer, integrating sophisticated se-
curity/cryptographic capabilities into a single accel-
erated processing unit. He received the prestigious

Natural Sciences and Engineering Research Council of Canada (NSERC) Post-
doctoral Research Fellowship. In 2012, he joined the Electrical Engineering
Department, Princeton University, Princeton, NJ, USA, as an NSERC Postdoc-
toral Research Fellow. He is currently with the Department of Electrical and
Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY,
USA. His current research interests include emerging security/privacy measures
for deeply embedded systems, cryptographic hardware systems, fault diagnosis
and tolerance in cryptographic hardware, VLSI reliability, and low-power se-
cure and efficient FPGA and ASIC designs.

He is the Guest Editor of the IEEE TRANSACTIONS ON EMERGING TOPICS

IN COMPUTING for the special issue of Emerging Security Trends for Deeply-
Embedded Computing Systems (2014–2015). He is currently serving as the
Technical Committee Member for a number of security/reliability conferences
including DFT, FDTC, RFIDsec, LightSEC, and WAIFI. His research in 2014–
2015 is funded through the Texas Instruments Faculty Award (Douglas Harvey).

Susmita Sur-Kolay (SM’05) received the B.Tech.
degree in electronics and electrical communication
engineering from IIT, Kharagpur, India, and the Ph.D.
degree in computer science and engineering from
Jadavpur University, Kolkata, India.

She was in the Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge,
MA, USA, from 1980 to 1984. She was a Postdoc-
toral Fellow in the University of Nebraska-Lincoln,
Nebraska-Lincoln, NE, USA, in 1992, a Reader in
Jadavpur University from 1993 to 1999, a Visiting

Faculty Member with Intel Corporation, Santa Clara, CA, USA, in 2002, and a
Visiting Researcher in Princeton University, Princeton, NJ, USA, in 2012. She
is a Professor in the Advanced Computing and Microelectronics Unit, Indian
Statistical Institute, Kolkata. She has coedited two books, authored a book chap-
ter in the Handbook of Algorithms for VLSI Physical Design Automation, and
coauthored about 100 technical articles. Her current research interests include
electronic design automation, hardware security, quantum computing, and graph
algorithms.

Dr. Sur-Kolay was a Distinguished Visitor of the IEEE Computer Society,
India. She has been an Associate Editor of the IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION SYSTEMS and is currently an Associate Editor of
the ACM Transactions on Embedded Computing Systems. She has served on
the technical program committees of several leading conferences, and as the
Program Chair of the 2005 International Conference on VLSI Design, the 2007
International Symposium on VLSI Design and Test, and the 2011 IEEE Com-
puter Society Annual Symposium on VLSI. Among other awards, she received
the President of India Gold Medal from IIT, Kharagpur.

MOZAFFARI-KERMANI et al.: SYSTEMATIC POISONING ATTACKS ON AND DEFENSES FOR MACHINE LEARNING IN HEALTHCARE 1905

Anand Raghunathan (F’12) received the B.Tech.
degree in electrical and electronics engineering from
the Indian Institute of Technology, Madras, India, and
received the M.A. degree from Princeton University,
Princeton, NJ, USA, where he also received the Ph.D.
degree in electrical engineering in 1997.

He is a Professor in the School of Electrical and
Computer Engineering at Purdue University, West
Lafayette, IN, USA, where he leads the Integrated
Systems Laboratory. His research explores domain-
specific architecture, system-on-chip design, embed-

ded systems, and heterogeneous parallel computing. Previously, he was a Senior
Research Staff Member at NEC Laboratories America and held the Gopalakr-
ishnan Visiting Chair in the Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, India.

Dr. Raghunathan has coauthored a book High-Level Power Analysis and
Optimization, eight book chapters, 21 U.S. patents, and more than 200 refereed
journal and conference papers. His publications have been recognized with eight
best paper awards and four best paper nominations. He received the Patent of
the Year Award (recognizing the invention with the highest impact), and two
Technology Commercialization Awards from NEC. He was chosen by MIT’s
Technology Review among the TR35 (top 35 innovators under 35 years, across
various disciplines of science and technology) in 2006, for his work on “mak-
ing mobile secure.” He has served on the technical program and organizing
committees of several leading conferences and workshops. He has chaired the
ACM/IEEE International Symposium on Low Power Electronics and Design,
the ACM/IEEE International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, the IEEE VLSI Test Symposium, and the IEEE
International Conference on VLSI Design. He has served as Associate Edi-
tor of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON VLSI SYSTEMS, ACM Trans-
actions on Design Automation of Electronic Systems, IEEE TRANSACTIONS ON

MOBILE COMPUTING, ACM Transactions on Embedded Computing Systems,
IEEE Design & Test of Computers, and the Journal of Low Power Electronics.
He received the IEEE Meritorious Service Award in 2001 and the Outstanding
Service Award in 2004. He is a Golden Core Member of the IEEE Computer
Society.

Niraj K. Jha (S’85–M’85–SM’93–F’98) received
the B.Tech. degree in electronics and electrical com-
munication engineering from the Indian Institute of
Technology (IIT), Kharagpur, India, in 1981, the M.S.
degree in electrical engineering from S.U.N.Y. at
Stony Brook, NY, USA, in 1982, and the Ph.D. de-
gree in electrical engineering from the University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
in 1985.

He is a Professor of electrical engineering
at Princeton University, Princeton, NJ, USA. His

research interests include FinFETs, low-power hardware/software design,
computer-aided design of integrated circuits and systems, digital system test-
ing, quantum computing, and secure computing. He has given several keynote
speeches in the area of nanoelectronic design and test.

Dr. Jha is a Fellow of the ACM. He received the Distinguished Alumnus
Award from IIT Kharagpur in 2014. He has served as the Editor-in-Chief of IEEE
TRANSACTIONS ON VLSI SYSTEMS and an Associate Editor of IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS I AND II, IEEE TRANSACTIONS ON VLSI
SYSTEMS, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, and Journal of
Electronic Testing: Theory and Applications. He is currently serving as an As-
sociate Editor of IEEE TRANSACTIONS ON COMPUTERS, Journal of Low Power
Electronics and Journal of Nanotechnology. He has also served as the Program
Chairman of the 1992 Workshop on Fault-Tolerant Parallel and Distributed Sys-
tems, the 2004 International Conference on Embedded and Ubiquitous Comput-
ing, and the 2010 International Conference on VLSI Design. He has served as the
Director of the Center for Embedded System-on-a-chip Design funded by New
Jersey Commission on Science and Technology. He received the AT&T Founda-
tion Award and NEC Preceptorship Award for research excellence, NCR Award
for teaching excellence, and Princeton University Graduate Mentoring Award.
He has coauthored or coedited five books titled Testing and Reliable Design of
CMOS Circuits (Kluwer, 1990), High-Level Power Analysis and Optimization
(Norwell, MA, USA: Kluwer, 1998), Testing of Digital Systems (Cambridge,
U.K.: Cambridge Univ. Press, 2003), Switching and Finite Automata Theory
(3rd ed. Cambridge, U.K.: Cambridge Univ. Press, 2009), and Nanoelectronic
Circuit Design (New York, NY, USA: Springer, 2010). He has also authored 15
book chapters. He has authored or coauthored more than 400 technical papers.
He has coauthored 14 papers, which have won various awards. These include
the Best Paper Award at ICCD’93, FTCS’97, ICVLSID’98, DAC’99, PDCS’02,
ICVLSID’03, CODES’06, ICCD’09, and CLOUD’10. A paper of his was se-
lected for “The Best of ICCAD: A collection of the best IEEE International
Conference on Computer-Aided Design papers of the past 20 years,” two pa-
pers by IEEE Micro Magazine as one of the top picks from the 2005 and 2007
Computer Architecture conferences, and two others as being among the most
influential papers of the last ten years at IEEE Design Automation and Test in
Europe Conference. He has coauthored another six papers that have been nom-
inated for best paper awards. He has received 14 U.S. patents. He has served on
the program committees of more than 150 conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

