
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015 1569

High-Performance Two-Dimensional Finite Field
Multiplication and Exponentiation for

Cryptographic Applications
Reza Azarderakhsh, Member, IEEE, and Mehran Mozaffari-Kermani, Member, IEEE

Abstract—Finite field arithmetic operations have been tradi-
tionally used in different applications ranging from error control
coding to cryptographic computations. Among these computa-
tions are normal basis multiplications and exponentiations which
are utilized in efficient applications due to their advantageous
characteristics and the fact that squaring (and subsequent pow-
ering by two) of elements can be obtained with no hardware
complexity. In this paper, we present 2-D decomposition systolic-
oriented algorithms to develop systolic structures for digit-level
Gaussian normal basis multiplication and exponentiation over
GF(2m). The proposed high-performance architectures are suit-
able for a number of applications, e.g., architectures for elliptic
curve Diffie–Hellman key agreement scheme in cryptography.
The results of the benchmark of efficiency, performance, and
implementation metrics of such architectures through a 65-nm
application-specific integrated circuit platform confirm high-
performance structures for the multiplication and exponentiation
architectures presented in this paper are suitable for high-speed
architectures, including cryptographic applications.

Index Terms—Cryptography, finite field, Gaussian normal
basis (GNB), security, systolic architecture.

I. INTRODUCTION

THE PERFORMANCE and efficiency constraints of the
hardware architectures of the systems embedded in

diverse usage models utilizing finite field arithmetic includ-
ing error control coding and cryptographic solutions neces-
sitate having high-speed arithmetic units. Among these
finite field arithmetic operations whose use is widespread
and whose performance affects the aforementioned appli-
cations are exponentiations over GF(2m). In cryptography,
much research work has been performed to achieve high-
performance designs of the arithmetic units within [1]–[3].
Moreover, Gaussian normal basis (GNB) arithmetic operations
have been utilized in the previous works for such applications
(see [4], [5], [7], [8]).

Modular multiplication and exponentiation are key
arithmetic operations for implementing error correcting

Manuscript received October 1, 2014; revised February 18, 2015; accepted
April 3, 2015. Date of publication April 21, 2015; date of current version
September 17, 2015. This work was supported by the Texas Instruments
Faculty Award. This paper was recommended by Associate Editor R. Karri.

R. Azarderakhsh is with the Department of Computer Engineering,
Rochester Institute of Technology, Rochester, NY 14623-5603 USA (e-mail:
rxaeec@rit.edu).

M. Mozaffari-Kermani is with the Department of Electrical and
Microelectronic Engineering, Rochester Institute of Technology, Rochester,
NY 14623-5603 USA (e-mail: m.mozaffari@rit.edu).

Digital Object Identifier 10.1109/TCAD.2015.2424928

codes (and Reed–Solomon codes [9]), and crypto-solutions
Diffie–Hellman key exchange [10]. Elliptic curve dis-
crete signature algorithm requires multiplications and
single- and double-exponentiation. Double-exponentiation
is widely applied in Schnorr- and ElGamal-like signature
verifications [11], [12], and in digital signature standard [13].
For such applications, it is desirable to have high-performance
exponentiation algorithms and hardware architectures. From
the field element representation perspective, the major advan-
tage of normal basis representation in GF(2m) is that squaring
of field elements can be performed by cyclic shift of their
coordinates. In this regard, these multipliers are effectively
applied for deriving exponentiations. Exponentiations in
GF(2m) are traditionally performed using the ordinary binary
method. Reference [14] presents an exponentiation architec-
ture using the normal basis. Moreover, Chiou and Lee [15]
presented fast multiplexer-based double-exponentiation
using the normal basis and the modified Booth’s
algorithm.

Digit-serial GNB multipliers can be employed for the appli-
cations where high-performance results are required. In the
extended binary field GF(2m), various efficient systolic array
multipliers have been suggested and can be classified into
bit-parallel, bit-serial, and digit-serial architectures. Efficient
bit-parallel systolic multipliers have the major advantage of
high-throughout computations. However, these architectures
for polynomial basis in GF(2m) usually require O(m2) XOR
gates, AND gates, and 1-bit latches, and have O(m) latency.
Bit-serial systolic array multipliers require only O(m) space
complexity; nevertheless, they take longer computation time
which in turn affects the performance metrics of their hardware
implementations. For large finite fields in GF(2m), exponen-
tiation can be performed through high-speed systolic array
approach to achieve regular implementations [16]. Such arrays
exhibit hardware structure units which are quite similar for
varying choices of m, given GF(2m), leading to speed boost in
the resulting structures. Low-complexity digit-level parallel-in
parallel-out (DL-PIPO) GNB multipliers have been proposed
in [17]–[19]. In [20] and [21], efficient semi-systolic arith-
metic units for even-type GNB have been presented. Recently,
Azarderakhsh et al. [5] presented a systolic array variant
of GNB multiplier which outperforms previous architectures
available in the literature. In order to achieve low-total com-
putation times and thus high-performance architectures, in
this paper, we propose two-dimensional (2-D) new systolic

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

GNB exponentiation architectures over GF(2m) based on
DL-PIPO structures (see also [6] for a recent related work).
Utilizing our proposed systolic architectures, single- and
double-exponentiation architectures are constructed leveraging
systolic arrays. The main contributions of this paper are as
follows (note that the 1-D variant for multiplications has been
presented in [5]).

1) We propose 2-D systolic architectures for the GNB
digit-level exponentiations. The proposed exponentia-
tions with 2-D systolic architectures can achieve low-
latency structures; specifically, the presented structures
are based on 2-D systolic multipliers over GF(2m) which
require the low latency of ≤ 3� 3

√
m/d� clock cycles,

where d is the selected digit-size.
2) Investing on the properties of normal basis representa-

tion, we utilize the proposed 2-D multiplication schemes
to develop single- and double-exponentiation. Our analy-
sis shows that the proposed exponentiations can achieve
low-critical path delays and latency, suitable for high-
performance applications.

3) Finally, using a 65-nm CMOS standard-cell library, for
different field- and digit-size, we present and com-
pare the results of our application-specific integrated
circuit (ASIC) synthesis for DL-PIPO GNB multi-
pliers to benchmark the efficiencies of the presented
architectures.

We emphasize that the purpose of this paper is to push
the speed limits of the multiplication and exponentiation
computations which are suitable for high-performance appli-
cations in emerging, high-speed usage models. The rest of
this paper is organized as follows. Section II presents the
preliminaries regarding the utilized GNB multiplier and its
optimized architecture. In Section III, we present the 2-D GNB
digit-level systolic multiplications and single- and double-
exponentiation architectures, along with the detailed analysis
of their area and delay complexities. ASIC results are pre-
sented in Section IV. Finally, we conclude the proposed work
in Section V.

II. REVIEW OF THE TRADITIONAL DIGIT-LEVEL

GNB ARCHITECTURES

The set N = {β, β2, β22
, . . . , β2m−1} is denoted as the nor-

mal basis of GF(2m) for β ∈ GF(2m) [β represents a normal
element of GF(2m)]. Let us assume that k is the multipli-
cation order of 2 modulo p, and m > 1 and T > 1 be
two integers such that p = mT + 1 be a prime number
and gcd(mT/k, m) = 1. Moreover, let us consider α as a
primitive mT + 1th root of unity in GF(2Tm). Then, for any
primitive, the Tth root of unity k in Zp, β = ∑T−1

i=0 αki
gen-

erates a normal basis of GF(2m) over GF(2) which is called
the GNB of type T . GNB is a special class of normal basis
over which the multiplication is based on a multiplication
matrix Mm×m [22]. For the sake of simplicity, it is a com-
mon practice to store the columns of 1s of the multiplication
matrix M instead of the entire M. Therefore, we only need
to store those in rows 1 up to m − 1 and build a new matrix

Algorithm 1 Chiou–Lee’s Double-Exponentiation [15]
Inputs: A, B ∈ GF(2m) and P, Q are two positive integers
with m-bit binary representations.
Output: C = APBQ.

1. Initial step:
C = 1
U = AB
V = 1 (just used for clarity, in case piqi = 00)

2. Multiplication step:
for i = 0 to m − 1 do

if (piqi = 00) then C = C · V
if (piqi = 01) then C = C · B
if (piqi = 10) then C = C · A
if (piqi = 11) then C = C · U
U = U2

A = A2

B = B2

endfor

R(m−1)×T [18]. The multiplication matrix has the following
properties.

1) The matrix Mm×m is symmetric.
2) All of its diagonal entries are zero except for the last

entry.
3) The first row has just one nonzero entry.
4) row(m − i) is the i-fold left cyclic shift of row(m).

For an element A ∈ GF(2m), squaring can be achieved by
simple right cyclic shift of A, i.e., A2 = ∑m−1

i=0 aiβ
2i+1 =

(am−1, a0, a1, . . . , am−2) [13]. The GNB exists for every
m > 1 that is not divisible by eight [23]. The complexi-
ties of GNB multipliers (in terms of time and area) depend
on their type T > 1. For the five binary fields recom-
mended by the NIST, i.e., m = 163, 233, 283, 409, and 571,
the values of T are even, and are 4, 2, 6, 4, and 10,
respectively.

Low-complexity DL-PIPO GNB multipliers have been pro-
posed in [17] and [18] (optimized in [19]). The results of such
schemes are available in parallel after q = �m/d�, 1 ≤ d ≤ m,
clock cycles [latency] (d is the digit-size in digit-level archi-
tectures [number of bits for each selected digit] and m is
the field size). The time complexity of the digit-level GNB
multiplier is TA + (�log2 T� + �log2(d + 1)�)TX , and its area
complexity is dm AND gates and ≤ d(m − 1)/2(T − 1) + dm
XOR gates, where TA and TX are the delays of an AND
and an XOR gate. The area complexity is further reduced
by a common subexpression elimination algorithm proposed
in [19] to np + d(m − 1)/2(T/2 − 1) + dm XOR gates, where
np ≤ min{(d(m − 1)/2T/2),

(m
2

)} is a value used for the sake
of brevity.

For very large-scale integration implementations, double-
exponentiation using the normal basis and the modified
Booth’s algorithm has been originally developed in [15]. Here,
we briefly review this double-exponentiation algorithm. Let
A and B be two normal basis elements over GF(2m) and
P = p020 + p121 + · · · + pm−12m−1 and Q = q020+
q121 +· · ·+qm−12m−1 be two positive integers in m-bit binary
representations. The double-exponentiation of the form APBQ

AZARDERAKHSH AND MOZAFFARI-KERMANI: HIGH-PERFORMANCE 2-D FINITE FIELD MULTIPLICATION AND EXPONENTIATION 1571

can be computed as

APBQ = Ap020+p121+···+pm−12m−1
Bq020+q121+···+qm−12m−1

= (
Ap0 Bq0

)20(
Ap1Bq1

)21 · · · (Apm−1Bqm−1
)2m−1

= U20

0 U21

1 · · · U2m−1

m−1 (1)

where Ui = Api Bqi and pi, qi ∈ GF(2) for 0 ≤ i ≤ m − 1.
The function Ui, 0 ≤ i ≤ m − 1, utilizes the binary values
pi and qi to determine one of the four values 1, A, B,
and AB. Therefore, the multiplication of A and B needs to
be precomputed before performing the double-exponentiation.
Based on (1), the double-exponentiation is described in
Algorithm 1.

III. PROPOSED 2-D GNB EXPONENTIATION

ARCHITECTURES

In what follows, first, for reaching high-performance imple-
mentations, we present a 2-D systolic GNB multiplier which
is capable of reaching efficient architectures. Then, the pro-
posed 2-D systolic GNB exponentiation architectures are
proposed.

For the DL-PIPO architecture due to the symmetry of the
multiplication matrix R(m−1)×T , and the fact the two input
operands are both available we can define reduced matrix
um−1/2×T which has half of the rows of R(m−1)×T as pre-
viously proposed in [18]. Assume that for the elements of
the input A (preloaded in a register denoted by 〈X〉) we
have 〈X〉 = (x0, xm−1, xm−2, . . . , x2, x1) = Ā
 1, where
Ā = ∑m−1

i=0 am−1−iβ
2i

. Since the reduced multiplication matrix
um−1/2×T is multiplied only by the input operand B which is
preloaded to the register 〈Y〉, then the product of A and B
using the reduced matrix um−1/2×T = [uk]m−1/2

k=1 , where uk is
the row k, can be obtained using the following formulation:

C = AB =
m−1∑

i=0

J2i
(X
 i, B
 i) (2)

where

J(X, Y) = X � P(Y)

and P(Y) = (y1, s′(1, Y), s′(2, Y), . . . , s′(2, Y), s′(1, Y)),
s′(k, B) = (B
 R(2k, 1)) ⊕ (B
 R(2k, 2)) ⊕ · · · ⊕ (B

R(2k, T)), 1 ≤ k ≤ m − 1/2. For each coordinate, a J(X, Y)

function with appropriately shifted inputs must be computed.
For detailed information, one needs to refer to [18]. Let
q = �m/d�, 1 ≤ d ≤ m, then one can write the product C
in (2) as

C =
q−1∑

i=0

L2id
(X
 id, B
 id) (3)

where

L(X, B) =
d−1∑

j=0

J2j
(X
 j, B
 j). (4)

Let k and n be two integers to satisfy q = k2n. Note that if
q is not divisible by k2, we can zero-pad X and B to satisfy

q = k2n. To derive the 2-D digit-level systolic multiplier, let us
decompose (3) into the sum of n partial results as

C = C0 + C2k2d

1 + · · · + C2(n−1)k2d

n−1 (5)

where

Ci =
k−1∑

j=0

C2kjd

ij (6)

Cij =
k−1∑

z=0

L2dz
(Xij
 dz, Bij
 dz),

Xij = X
 k2id + kjd (7)

and

Bij = B
 k2id + kjd.

Each of the partial results Cij is the sum of k partial products
in (4) and the partial result Ci in (6) is the sum of k-term partial
result Cij. In this regard, the proposed systolic multiplier with
2-D systolic array structure for computing partial result Ci is
shown in Fig. 1. In Fig. 1, the proposed 2-D systolic multiplier
is composed of k systolic arrays, (k − 1) cyclic shifting (CS)
circuits, (k − 1) accumulation circuit (AC1) architectures, and
one AC2 architecture. Each CS block provides kd cyclic shifts
to the right and is only rewiring in hardware.

Proposition 1: Let the field be constructed from even type-
T GNB. Then, the proposed 2-D systolic GNB multiplier
needs the maximum latency of 3� 3

√
m/d� clock cycles with the

number of processing element (PEs) selected by � 3
√

(m/d)�2.
Proof: Let k and n be two positive integers to satisfy

�m/d� = k2n, where d is selected digit-size. Since GNB
multiplication uses k2 PEs to construct the 2-D systolic array
architecture, if this circuit computes Ci, then, we have 2k clock
cycles. Therefore, the GNB multiplication requires 2k + n
clock cycles. The first derivative of 2k + n(= 2k + q/k2)

needs to be zero and we have: 2 − 2q/k3 = 0 which leads to
k = 3

√
q = 3

√
m/d. So, we select k = n = � 3

√
m/d� (GNB mul-

tiplication uses k2 PEs, i.e.,� 3
√

(m/d)�2), and the 2-D systolic
multiplier requires the latency of 2k + n = 3� 3

√
m/d� clock

cycles. Whenever, m/d is not perfect cube, the computation
might be performed in fewer cycles and hence the proof is
complete.

Remark 1: According to Proposition 1, the latency of our
proposed 2-D systolic GNB multiplier is at most 3� 3

√
m� clock

cycles.
By using 2-D systolic array implementation, the proposed

2-D systolic multiplier is composed of � 3
√

(m/d)2� PEs,
(� 3

√
m/d� − 1) CSs, (� 3

√
m/d� − 1) AC1s, and one AC2.

Using this structure, the latency of the GNB multiplier can
reach the minimum latency of ≤ 3� 3

√
m/d� clock cycles. For

instance, using digit-size of one, the 2-D systolic multiplier
over GF(2409) has the latency of 24 clock cycles.

Let A be a field element in GF(2m) over an even type-T
GNB and let P be a positive m-bit integer with binary rep-
resentation as P = (p0, p1, . . . , pm−1)2. Assume that B is
represented by B = A2�m/2�

and P is represented by

P = p020 + p121 + · · · + pm−12m−1 = K + 2�m
2 �Q (8)

1572 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 1. Proposed architecture for 2-D digit-level systolic GNB multiplier.

where

K = k0 + k12 + · · · + k�m
2 �−12�m

2 �−1

Q = q0 + q12 + · · · + q�m
2 �−12�m

2 �−1

ki = pi

qi = p�m
2 �+i.

Note that if m is an odd integer, the coefficient q�m/2�−1 is set
to zero. Thus, computing the exponentiation in the form of AP

yields to

AP = AK+2�m
2 �Q = AKBQ

=
(

Ak0 Bq0
)20(

Ak1 Bq1
)21

· · ·
(

A
k�m

2 �−1 B
q�m

2 �−1
)2�m

2 �−1

= (U0)
20

(U1)
21 · · ·

(
U�m

2 �−1

)2�m
2 �−1

(9)

where Ui = AkiBqi for 0 ≤ i ≤ �m/2� − 1 and ki,
qi ∈ GF(2). We can use 4-to-1 multiplexers (denoted here-
after by MUX4×1) to realize the function Ui. The inputs of
MUX4×1 are A, B, AB, and 1. Note that the multiplication of
A and B is precomputed before performing the exponentiation.
For computing (9), we require �m/2� multiplications repeated

using the normal basis multiplier and the squarer circuit. It
is noted that squaring is cost-free in hardware in the normal
basis representation.

Let us first utilize the regular systolic array for computing
the GNB multiplication. Applying this method, let us define
r = �√m/2�, then, the exponentiation in (9) is decomposed
by r-term partial results as follows:

AP = C0C1 · · · Cr−1 (10)

where

Ci = (Uri)
2ri

(Uri+1)
2ri+1 · · · (Uri+r−1)

2ri+r−1
. (11)

From the relation of Ui = AkiBqi , let us define

U(h)
i = (Ui)

2h =
(

AkiBqi
)2h

=
(

A2h
)ki

(
B2h

)qi
(12)

where h is a positive number. Therefore, the partial result
in (11) can be rewritten as

Ci =
(

U(ri)
ri

)20(
U(ri)

ri+1

)21

· · ·
(

U(ri)
ri+r−1

)2r−1

=
(((

U(ri)
ri+r−1

)2
U(ri)

ri+r−2

)2

· · ·
)2

U(ri)
ri . (13)

AZARDERAKHSH AND MOZAFFARI-KERMANI: HIGH-PERFORMANCE 2-D FINITE FIELD MULTIPLICATION AND EXPONENTIATION 1573

Algorithm 2 Proposed Single-Exponentiation Algorithm
Inputs: A ∈ GF(2m) and P is a positive integer with m-bit
binary representation.
Output: C = AP.

1. Initial step:

1.1 B = A2�m
2 �

1.2 C = 1
1.3 D = AB
1.4 U = 1
1.5 K = k0 + k12 + · · · + k�m

2 �−12�m
2 �−1, where ki = pi

1.6 Q = q0+q12+· · ·+q�m
2 �−12�m

2 �−1, where qi = p�m
2 �+i

2. Multiplication step:
2.1 for i = 0 to r − 1 do
2.2 Ci = 1
2.3 B = B
 ir
2.4 A = A
 ir
2.5 D = D
 ir
2.6 for j = r − 1 to 0 do
2.7 Ci = C2

i
2.8 if (kir+jqir+j = 00) Ci = Ci · U
2.9 if (kir+jqir+j = 01) Ci = Ci · B
2.10 if (kir+jqir+j = 10) Ci = Ci · A
2.11 if (kir+jqir+j = 11) Ci = Ci · D
2.12 endfor
2.13 C = C · Ci

2.14 endfor
3. Return C = AP.

From the structure of (13), computing Ci requires precom-
puting the value A2ri

B2ri
. Based on the above, the proposed

exponentiation is based on Algorithm 2. In the initial step,
the register 〈C〉 is initialized with 1 ∈ GF(2m), where “1” =
(1, 1, . . . , 1) in GNB. Moreover, the values of B = A2�m/2�

and AB = A2�m/2� × A = A2�m/2�+1 are precomputed as the
inputs of the MUX4×1. Therefore, in this step, we need one
multiplication for computing AB. In addition to this multipli-
cation, from the structure of (10), computing exponentiation
is divided by r-term partial products Ci. In the multiplication
step, computing each partial product Ci requires r-time GNB
multiplications, to be stored in the register 〈C〉. Thus, comput-
ing exponentiation in the multiplication step requires (2r − 1)

GNB multiplications. As a result, we require the total number
of 2r GNB multiplications which determines the latency of
the entire operation.

For clarity, we give the following illustrative example to go
over the time and space complexities of the proposed scheme.

Example 1: Let the element A ∈ GF(217) and P = p020 +
p121+· · ·+p16216 be a positive 17-bit integer. Since �17/2� =
9, let us define that B = A29

, K = k020 + k121 + · · · + k828,

and Q = q020 + q121 + · · · + q828, where ki = pi for 0 ≤
i ≤ 8, qi = pi+9 for 0 ≤ i ≤ 7, and q8 = 0. Let us define
r = √

9 = 3. Given (10), the exponentiation C = AP can be
represented as C = AP = AK+29Q = AKBQ = C0C1C2, where
Ci = ((U(3i)

3i+2)
2U(3i)

3i+1)
2U(3i)

3i , and U(3i)
3i+j = (A23i

)k3i+j(B23i
)q3i+j

for 0 ≤ i, j ≤ 2. We select P = K + 29Q = 104 853, where
K = 405 = (110010101)2 and Q = 204 = (011001100)2.

Let us now propose the constructed scheme for the 2-D
systolic array architecture for computing the GNB multiplica-
tion. Let us define r = � 3

√
m/2� (note to differentiate this r

and the one for the 2-D multiplier array approach), then, the
exponentiation in (9) can be represented by

AP = C0C1 · · · Cr−1

where

Ci =
r−1∏

j=0

Ci,j, (14)

Cij =
r−1∏

l=0

(

U
(
ir2+jr

)

ir2+jr+l

)2l

. (15)

From (15), Cij requires r − 1 GNB multipliers to perform the

product of r-term U(ir2+jr)
ir2+jr+l

for 0 ≤ l ≤ r − 1. Moreover,
Ci in (14) is represented by the product of r-term Cij. Thus,
based on (14) and (15), Fig. 2 depicts the proposed 2-D mul-
tiplier array to calculate the Ci multiplication. In this figure,
the multiplier MS in the multiplier array [i] computes the mul-
tiplication result of the multiplier array [i] multiplied by the
previous product results. After finalizing the 2-D array mul-
tiplication for computing Ci, the multiplication using Mf is
performed, see, C = C · Ci, to be stored in the register 〈C〉.
According to the structure of Fig. 2, computing each Ci needs
2r GNB multiplications (latency). Since the exponentiation AP

is represented by the product of r-term Ci for 0 ≤ i ≤ r−1, the
proposed 2-D multiplier array structure for computing expo-
nentiation requires the total number of 3r multiplication delays
as its latency.

A. Application in Double-Exponentiation

Let A and B be two field elements and P and Q be two
positive integers. Then, the computation of the form APBQ

is called “double-exponentiation.” Double-exponentiation is
widely applied in Schnorr- and ElGamal-like signature ver-
ifications [11], [12]. From Algorithm 1, the multiplexer-
based double-exponentiation using normal basis representation
has been firstly proposed in [15]. In [24], a new hybrid
GNB multiplier to improve the performance of double-
exponentiation is proposed. According to (1), two proposed
exponentiation architectures can be extended to implement
double-exponentiation. The space complexity of double-
exponentiation architectures is presented through the following
proposition.

Proposition 2: The 2-D multiplier array architecture for
computing the double-exponentiation can be constructed by
� 3
√

m2� + 1 multipliers, m� 3
√

m2� MUX4×1 components. In
addition, computing double-exponentiation requires 3� 3

√
m�

multiplication delays (latency) using 2-D multiplier array
architectures.

Table I lists the comparison of various double-
exponentiation architectures. In this table, it is shown
that our proposed 2-D multiplier array architectures for com-
puting the double-exponentiation have lower multiplication
delays (latencies) and areas in comparison with the counter-
parts presented. Based on this table and the discussions in

1574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 2. 2-D multiplier array architecture for computing the exponentiation over GF(2m).

TABLE I
COMPARISON OF VARIOUS SINGLE- AND DOUBLE-EXPONENTIATION ARCHITECTURES OVER GF(2m)

this section, we note that our proposed double-exponentiation
architectures are based on the developed GNB multipliers
and they outperform the traditional exponentiation schemes.

IV. ASIC SYNTHESIS AND BENCHMARK

To derive the performance and implementation metrics of
the proposed architecture for digit-serial systolic multipliers,

AZARDERAKHSH AND MOZAFFARI-KERMANI: HIGH-PERFORMANCE 2-D FINITE FIELD MULTIPLICATION AND EXPONENTIATION 1575

TABLE II
ASIC (65-nm CMOS LIBRARY) SYNTHESIS RESULTS FOR THE PREVIOUS AND THE PRESENTED MULTIPLIERS OVER GF(2409)

we have implemented them on ASIC platform. We have
used Taiwan Semiconductor Manufacturing Company 65-nm
standard-cell library for the ASIC results. We have imple-
mented our proposed 2-D architectures for two representative
digit sizes (m = 409 and T = 4) and the results are reported
in Table II. This field size is chosen to support the security
level requirements for the cryptographic computations.

We note that the proposed 2-D systolic GNB multiplier
needs the maximum latency of 3� 3

√
m/d� clock cycles with the

number of PEs selected by � 3
√

(m/d)�2. Benchmark through
hardware platforms is essential in determining the effective-
ness of the devised approaches. As seen in this table, at the
expense of higher area, the proposed architectures achieve bet-
ter total time of computation (18.4 and 14.1 ns) compared to
the other structures. These result in higher performance for
the proposed systolic structures using the GNB.

When the concern is more toward performance and not
area, for instance, in server-side security, using the pre-
sented approaches, we can fulfill the requirement. We target
high-performance applications that require fastest computa-
tion results at the cost of employing more silicon area. This
high performance is not achieved by the previous works. As
seen in Table II, using the proposed 2-D architecture, we
achieve higher performance compared to the previously pre-
sented counterparts. For instance, in comparison to the work
presented in [19], our timing results are about 2.6 times faster
for the digit-size 13. We should note that choosing larger
digit sizes for the architecture presented in [19] is not effi-
cient and makes the routing more difficult and degrades the
maximum operating clock frequency. We would also like to
note that systolic structures intend to boost the performance
of the architectures, as seen in the table. One main advantage
of the proposed architectures is that they give the archi-
tects the ability of selecting different digit sizes based on the
requirements of the designs and the performance objectives
to achieve. Finally, compared to the research work presented
in [26], for the field size 409 and digit-size 13, the pro-
posed multipliers achieve the maximum latency of 12 while
the aforementioned digit-level systolic design has the maxi-
mum latency of 32 (we emphasize that this is the maximum
latency obtained and depending on the digit-size, lower laten-
cies can be achieved for both architectures). For comparing
the total times of [26] and the presented work, we derive the
corresponding values through multiplying the latencies and
the critical path delays; based on which, the ratio is 4 which
confirms the performance of the proposed work. In addition,

compared to the super-systolic architecture of [26], the pre-
sented work achieves lower latency. It should be noted that the
digit-serial systolic multiplier of [25] is a fully systolic archi-
tecture and comparison in terms of the digit sizes might not be
fair. However, we compare the area-time results which gives
better comparison of our presented 2-D systolic architecture.

V. CONCLUSION

In this paper, a high-performance GNB 2-D digit-level sys-
tolic multiplication and exponentiation have been presented.
The derived systolic architectures are new and their major
advantages are their low-latency and high-performance imple-
mentations. Specifically, based on our proposed multiplication
schemes, we have derived the 2-D multiplier array architec-
tures for computing exponentiations which can achieve low-
multiplication delays (latencies) as compared to the existing
exponentiation architectures. The proposed architectures are
also suitable for implementing double-exponentiation. Finally,
although the merit of the proposed architectures is to achieve
high-performance structures, the time×area (efficiency) of the
proposed architectures are higher than some of the previous
works as well.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the
Associate Editor for their useful feedback and comments. The
first author would like to thank B. Bahloul-Azarderakhsh for
help and support.

REFERENCES

[1] J. Imana, R. Hermida, and F. Tirado, “Low complexity bit-parallel mul-
tipliers based on a class of irreducible pentanomials,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 12, pp. 1388–1393,
Dec. 2006.

[2] M. Cenk, C. Nègre, and M. A. Hasan, “Improved three-way split
formulas for binary polynomial and Toeplitz matrix vector products,”
IEEE Trans. Comput., vol. 62, no. 7, pp. 1345–1361, Jul. 2013.

[3] M. Cenk, C. Nègre, and M. A. Hasan, “Improved three-way split for-
mulas for binary polynomial multiplication,” in Proc. Conf. Sel. Areas
Cryptography, Toronto, ON, Canada, 2011, pp. 384–398.

[4] K. Järvinen and J. Skyttä, “On parallelization of high-speed proces-
sors for elliptic curve cryptography,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 9, pp. 1162–1175, Sep. 2008.

[5] R. Azarderakhsh, M. Mozaffari-Kermani, S. Bayat-Sarmadi, and
C.-Y. Lee, “Systolic Gaussian normal basis multiplier architectures suit-
able for high-performance applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., to be published.

1576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

[6] R. Azarderakhsh, M. Mozaffari-Kermani, and K. Järvinen, “Secure
and efficient architectures for single exponentiation in finite field suit-
able for high-performance cryptographic applications,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 3, pp. 332–340,
Mar. 2015.

[7] K. Järvinen and J. Skyttä, “Fast point multiplication on Koblitz
curves: Parallelization method and implementations,” Microprocessors
Microsyst., vol. 33, no. 2, pp. 106–116, Mar. 2009.

[8] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA implemen-
tation of point multiplication on binary Edwards and generalized Hessian
curves using Gaussian normal basis,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1453–1466, Aug. 2012.

[9] I. S. Reed and G. Solmon, “Polynomial codes over certain finite fields,”
SIAM J. Appl. Math., vol. 8, pp. 300–304, Jun. 1960.

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[11] C.-P. Schnorr, “Efficient signature generation by smart cards,”
J. Cryptol., vol. 4, no. 3, pp. 161–174, 1991.

[12] T. E. Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469–472, Jul. 1985.

[13] National Institute of Standards and Technology, DSS Standard FIPS
186-2, Jan. 2000.

[14] C. Wang and D. Pei, “A VLSI design for computing exponentia-
tions in GF(2m) and its application to generate pseudorandom num-
ber sequences,” IEEE Trans. Comput., vol. 39, no. 2, pp. 258–262,
Feb. 1990.

[15] C. W. Chiou and C.-Y. Lee, “Multiplexer-based double-exponentiation
for normal basis of GF(2m),” Comput. Secur., vol. 24, pp. 83–86,
Feb. 2005.

[16] P. K. Meher, “Systolic and non-systolic scalable modular designs of
finite field multipliers for Reed–Solomon codec,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 17, no. 6, pp. 747–757, Jun. 2009.

[17] S. Kwon, K. Gaj, C. H. Kim, and C. P. Hong, “Efficient linear array
for multiplication in GF(2m) using a normal basis for elliptic curve
cryptography,” in Proc. Workshop Cryptograph. Hardw. Embedded Syst.,
Cambridge, MA, USA, 2004, pp. 76–91.

[18] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field
multiplication using Gaussian normal bases,” IEEE Trans. Comput.,
vol. 55, no. 1, pp. 34–47, Jan. 2006.

[19] R. Azarderakhsh and A. Reyhani-Masoleh, “A modified low complexity
digit-level Gaussian normal basis multiplier,” in Proc. Int. Workshop
Arithmet. Finite Fields, Istanbul, Turkey, 2010, pp. 25–40.

[20] C. W. Chiou, C.-C. Chang, C.-Y. Lee, T.-W. Hou, and J.-M. Lin,
“Concurrent error detection and correction in Gaussian normal basis
multiplier over GF(2m),” IEEE Trans. Comput., vol. 58, no. 6,
pp. 851–857, Jun. 2009.

[21] Z. Wang and S. Fan, “Efficient Montgomery-based semi-systolic mul-
tiplier for even-type GNB of GF(2m),” IEEE Trans. Comput., vol. 61,
no. 3, pp. 415–419, Mar. 2012.

[22] D. W. Ash, I. F. Blake, and S. A. Vanstone, “Low complexity normal
bases,” Discrete Appl. Math., vol. 25, no. 3, pp. 191–210, 1989.

[23] A. Menezes et al., Applications of Finite Fields. Boston, MA, USA:
Kluwer Academic, 1993.

[24] R. Azarderakhsh and A. Reyhani-Masoleh, “A low complexity
hybrid architecture for double-multiplication using Gaussian nor-
mal basis,” IEEE Trans. Comput., vol. 62, no. 4, pp. 744–757,
Apr. 2013.

[25] S. Talapatra, H. Rahaman, and J. Mathew, “Low complexity digit serial
systolic Montgomery multipliers for special class of GF(2m),” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 5, pp. 847–852,
May 2010.

[26] P. K. Meher, “Systolic and super-systolic multipliers for finite field
GF(2m) based on irreducible trinomials,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 55, no. 5, pp. 1031–1040, May 2008.

Reza Azarderakhsh (M’12) received the B.Sc.
degree in electrical and electronic engineering and
the M.Sc. degree in computer engineering from
the Sharif University of Technology, Tehran, Iran,
in 2002 and 2005, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of Western Ontario, London, ON,
Canada, in 2011.

He joined the Department of Electrical and
Computer Engineering, University of Western
Ontario, as a Limited Duties Instructor, in 2011.

He was an Natural Sciences and Engineering Research Council of
Canada (NSERC) Post-Doctoral Research Fellow with the Center for
Applied Cryptographic Research and the Department of Combinatorics and
Optimization, University of Waterloo, Waterloo, ON, Canada. He is currently
a Faculty Member with the Department of Computer Engineering, Rochester
Institute of Technology, Rochester, NY, USA. His current research interests
include finite field and its application, elliptic curve cryptography, and pairing-
based cryptography.

Dr. Azarderakhsh was a recipient of the NSERC Post-Doctoral Research
Fellowship in 2011. He serves as the Guest Editor of the IEEE
TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS for
the Special Issue of Emerging Security Trends for Biomedical Computations,
Devices, and Infrastructures in 2015 and 2016.

Mehran Mozaffari-Kermani (M’11) received
the B.Sc. degree in electrical and computer
engineering from the University of Tehran,
Tehran, Iran, in 2005, and the M.E.Sc. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined the Advanced Micro Devices,
Markham, Ontario, Canada, as a Senior
ASIC/Layout Designer, integrating sophisti-

cated security/cryptographic capabilities into a single accelerated processing
unit. In 2012, he joined the Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA, as a Natural Sciences and Engineering
Research Council of Canada (NSERC) Post-Doctoral Research Fellow. He is
currently with the Department of Electrical and Microelectronic Engineering,
Rochester Institute of Technology (RIT), Rochester, NY, USA. He has been
recognized as the Featured Faculty Member in research with the School of
Engineering, RIT in 2014. His current research interests include emerging
security/privacy measures for deeply embedded systems, cryptographic
hardware systems, fault diagnosis and tolerance in cryptographic hardware,
very large-scale integration reliability, and low-power secure and efficient
FPGA and ASIC designs.

Dr. Mozaffari-Kermani was a recipient of the NSERC Post-Doctoral
Research Fellowship in 2011 and the Texas Instruments Faculty Award
(Douglas Harvey) in 2014. He currently serves as an Associate Editor for
ACM Transactions on Embedded Computing Systems and the Lead Guest
Editor for the IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND

BIOINFORMATICS for the Special Issue of Emerging Security Trends for
Biomedical Computations, Devices, and Infrastructures in 2015 and 2016.
He has served as the Lead Guest Editor for the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTING for the Special Issue of Emerging
Security Trends for Deeply-Embedded Computing Systems in 2014 and
2015. He is currently a Technical Committee Member for a number of
related conferences including International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, Workshop on Fault
Diagnosis and Tolerance in Cryptography, Workshop on Security and Privacy
in Radio Frequency Identification, Workshop on Lightweight Security, and
International Workshop on the Arithmetic of Finite Fields.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

