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Abstract—Continuous health monitoring using wireless body area networks of implantable and wearable medical devices (IWMDs) is

envisioned as a transformative approach to healthcare. Rapid advances in biomedical sensors, low-power electronics, and wireless

communications have brought this vision to the verge of reality. However, key challenges still remain to be addressed. The constrained

sizes of IWMDs imply that they are designed with very limited processing, storage, and battery capacities. Therefore, there is a very

strong need for efficiency in data collection, analysis, storage, and communication. In this paper, we first quantify the energy and

storage requirements of a continuous personal health monitoring system that uses eight biomedical sensors: (1) heart rate, (2) blood

pressure, (3) oxygen saturation, (4) body temperature, (5) blood glucose, (6) accelerometer, (7) electrocardiogram (ECG), and (8)

electroencephalogram (EEG). Our analysis suggests that there exists a significant gap between the energy and storage requirements

for long-term continuous monitoring and the capabilities of current devices. To enable energy-efficient continuous health monitoring,

we propose schemes for sample aggregation, anomaly-driven transmission, and compressive sensing to reduce the overheads of

wirelessly transmitting, storing, and encrypting/authenticating the data. We evaluate these techniques and demonstrate that they result

in two to three orders-of-magnitude improvements in energy and storage requirements, and can help realize the potential of long-term

continuous health monitoring.

Index Terms—Body area networks, compressive sensing, continuous health monitoring, implantable and wearable medical devices,

secure wireless sensor network

Ç

1 INTRODUCTION

RAPID technological advances in biomedical sensing and
signal processing, low-power electronics, and wireless

networking are transforming and revolutionizing health-
care. Prevention and early detection of disease are increas-
ingly viewed as critical to promoting wellness rather than
just treating illness. In particular, continuous long-term
health monitoring, where various physiological signals are
captured, analyzed, and stored for future use, is envisioned
as key to enabling a proactive and holistic approach to
healthcare.

Several trends in computing and communications technol-
ogy have converged to advance continuous healthmonitoring
from a distant vision to the verge of practical feasibility. Fore-
most among these is the evolution of implantable and

wearable medical devices (IWMDs). Traditionally, medical
monitoring systems, such as ECG and EEG monitors, have
been used to simply gather raw data, with signal processing
and data analysis being performed offline. However, with the
continuing performance and energy efficiency improvements
in computing, real-time signal processing has become possi-
ble. In the last decade, the number and variety of IWMDs
have increased significantly, ranging from simple wearable
activity and heart-rate monitors to sophisticated implantable
sensors. Moreover, advances in low-power wireless commu-
nications enable radios to be integrated into even the most
energy- and size-constrained devices. This has led to the pos-
sibility of composing IWMDs into wireless body area net-
works (WBANs) [1], [2].

WBANs are opening up new opportunities for continu-
ous health monitoring and proactive healthcare [3]. A typi-
cal WBAN for health monitoring consists of (i) implantable
and wearable sensors, which are attached to the body or
even implanted under the skin to measure vital signs and
body signals, e.g., body temperature, heartbeat, blood pres-
sure, etc. and (ii) external devices (which could be smart-
phones) that act as base stations to collect, store, display,
and analyze the data.

Many recent and ongoing research efforts have addressed
the design and deployment of WBANs. The CodeBlue proj-
ect [4] focused on designing wireless sensor networks for
medical applications. It included an ad-hoc network to trans-
mit vital health signs to healthcare providers. Otto et al. [5]
designed a system architecture to address various challenges
posed by the need for reliable communication within the
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WBAN, and between the WBAN and a medical server. The
MobiHealth project [6] offered an end-to-end mobile health
platform for healthcare monitoring. Different sensors,
attached to a MobiHealth patient, enabled constant monitor-
ing and transmission of vital signals. They considered secu-
rity, reliability of communication resources, and quality of
service (QoS) guarantees.

Notwithstanding advances in IWMDs and WBANs,
some key technical challenges need to be addressed in order
to enable long-term continuous health monitoring. Due to
size constraints and the inconvenience or infeasibility of
battery replacement, IWMDs need to be highly energy-
efficient. IWMDs as well as the external devices that aggre-
gate the monitored data have limited storage capacity.
Finally, healthcare applications also impose strict require-
ments for privacy, security, and reliability [2].

This paper aims to address the challenging question of
whether it is feasible to energy- and storage-efficiently provide
long-term continuous health monitoring based on state-of-the-art
technology. In this paper:

� We first discuss the traditionally used sense-and-
transmit monitoring scheme to establish a baseline
for our analyses. We evaluate a system that consists
of eight biomedical sensors: (1) heart rate, (2) blood
pressure, (3) oxygen saturation, (4) body tempera-
ture, (5) blood glucose, (6) accelerometer, (7) ECG,
and (8) EEG.

� We present analytical models that can be used to
estimate the energy and storage requirements for
these biomedical sensors. Our analysis suggests a
significant gap between the energy and storage
requirements for long-term continuous monitoring
and the capabilities of current devices.

� To address the aforementioned gaps in health moni-
toring, we propose and evaluate three schemes to
reduce the overheads of sensing, storing, and wire-
lessly transmitting the data:
1) First, we explore a simple scheme based on

aggregation of samples to amortize the commu-
nication protocol overheads and reduce the num-
ber of transmissions.

2) Second, we explore anomaly-driven transmis-
sion in which the sensors perform on-sensor sig-
nal processing to identify time intervals of
interest, and only transmit/store data from these
intervals.

3) Finally, we explore the concept of compressive
sensing (CS) [7], together with a newly developed
approach for computation on compressively-
sensed data [8], [9], to drastically reduce energy
and storage.

� We demonstrate that the proposed schemes can
potentially result in two to three orders-of-magni-
tude reduction in energy and storage requirements,
and therefore may be instrumental in enabling con-
tinuous long-term health monitoring.

� We compare all proposed schemes and discuss how
a continuous long-term health monitoring system
should be configured based on patients’ needs and
physicians’ recommendations.

The rest of the paper is organized as follows. Section 2
describes different components, which form aWBANand the
communication protocols that can be used to connect them
together. Section 3 describes the baseline continuous health
monitoring scheme. Section 4 presents our analytical models
and an analysis of the energy and storage requirements for
the baseline WBAN using these models. Section 5 describes
the proposed schemes that include sample aggregation,
anomaly-driven sampling, and CS-based computation, and
evaluates their energy impact. Section 6 evaluates the impact
of the proposed schemes on storage requirements. Section 7
compares different schemes and summarizes the medical
considerations in configuration and optimization of different
sensors. Finally, Section 8 concludes the paper.

2 DIFFERENT COMPONENTS OF A GENERAL-
PURPOSE HEALTH MONITORING SYSTEM

In this section,we first describe two fundamental components
that form a medical WBAN, namely biomedical sensors and
the base station. Second, we discuss the communication pro-
tocols, which can used to connect them together.

2.1 Health Monitoring with Networked Wireless
Biomedical Sensors

Biomedical sensors have been used for health monitoring
for a long time [10]. They sense electrical, thermal, optical,
chemical, and other signals to extract information that are
indicative of a patient’s health condition. Examples of such
sensors include oxygen saturation, glucose, blood pressure,
heart rate, ECG, EEG, and several forms of imaging.

In addition to the biomedical sensors, an important com-
ponent of a WBAN, as shown in Fig. 1, is the base station or
hub, a more capable device that aggregates data from the
biomedical sensors, visualizes health data for the patient,
performs simple analytics, and communicates the health
data to remote health providers or health databases. The
base station, which could be a customized device or a com-
modity mobile device such as a smartphone, contains a
more capable processor, data storage, and one or more
wide-area network interfaces.

2.2 Communication Protocol

A key consideration in the design of a WBAN is the commu-
nication technology (radio and protocol) used to connect the
medical sensors with the base station. Energy efficiency,

Fig. 1. A personal healthcare system.
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security, and interoperability are some of the key factors
that must be considered in this context.

Dementyev et al. analyzed the power consumption char-
acteristics of three popular emerging standards – ANT, Zig-
Bee, and BLE – in a duty-cycled sensor node scenario [11].
They found that BLE achieves the lowest power consump-
tion, followed by ZigBee and ANT. Most of the power con-
sumption differences can be attributed to the time taken for
a sensor to reconnect to the base station after waking up
and the efficiency of the sleep mode used between transmis-
sions of successive packets. In addition to low power con-
sumption, BLE provides several other advantages for
continuous health monitoring:

1) Smartphones have become dominant over other
forms of base stations for potential use in the health
monitoring system. BLE benefits from the wide-
spread use of Bluetooth technology since BLE can be
easily integrated into classical Bluetooth circuitry,
and almost all new smartphones support BLE.

2) BLE is optimized for use in devices that need to com-
municate small packets wirelessly.

3) BLE is optimized to provide a low-rate (< 270 kb/s)
wireless data transfer. As shown later, the maximum
transmission rate of all sensors is much less than
270 kb/s.

4) BLE provides a long transmission range (more than
100 meters) that enhances user convenience.

5) Due to the privacy and safety concerns in medical
systems, security is a key consideration in WBAN
design. BLE supports strong encryption (Advanced
Encryption Standard) to provide confidentiality as
well as per-packet authentication and integrity.

Thus, in our work, we use BLE for short-range transmis-
sions between medical sensors and the base station.

3 BASELINE CONTINUOUS HEALTH MONITORING

SYSTEM

In this section, we first describe our baseline WBAN tar-
geted at long-term continuous health monitoring that con-
sists of eight sensors. Then, we discuss its energy and
storage requirements.

3.1 Baseline WBAN

As mentioned earlier, we use eight biomedical sensors in
the WBAN. In the baseline WBAN, each sensor node gath-
ers raw data at a specific sampling frequency related to its
application. Then, the node generates a BLE packet using a
single sample and sends the raw data to the base station for
further analysis. In this scheme, each sensor transmits the
sample as soon as it is gathered, and the base station is
responsible for processing. In order to implement the
WBAN, first, it is required to specify the sampling rate for
each sensor. This rate must be chosen in such a way that the
requirements of different applications are met. The rates
vary significantly from one sensor to another. Moreover, the
same sensor may need to have different sampling rates in
different applications [12]. We have investigated the range
of possible sampling rates for each sensor by reviewing the
medical literature published between 1997 and 2014. Next,
we provide these ranges for various sensors.

� Heart rate: The heart rate is commonly sampled at 6-8
Hz frequency. For example, this sampling rate is cur-
rently used in fetal heart rate monitors [13]. While the
typical human heart rate is 65-82 beats per minute
(bpm), the rate can sometimes exceed 180 bpm. These
considerations suggest a sampling rate of 2-8Hz [14].

� Blood pressure: During a typical ambulatory blood
pressure monitoring session, the blood pressure is
commonly measured every 15 to 30 minutes over a
24-hour period [15]. In some cases (e.g., occurrence
of a hemorrhage), the blood pressure should be sam-
pled at a much higher frequency. For example, Adi-
buzzaman et al. have investigated the use of a blood
pressure waveform sampled at 100 Hz to monitor
physiological system variations during a hemor-
rhage [16].

� Oxygen saturation: The sampling rate of continuously-
monitored oxygen saturation is suggested to be in the
0.001 Hz to 2.00 Hz range [12], [17], [18]. For example,
Evans et al. use measurements at 5-min intervals
(sampling rate of 0.003 Hz) to monitor critically ill,
mechanically ventilated adult patients during intra-
hospital transport [17].

� Temperature: The body temperature normally fluctu-
ates over the day. Continuous monitoring of these
small fluctuations is suggested by different research-
ers for a variety of applications [12], [19]. For exam-
ple, Simon et al. suggest measurements at 10-min
intervals to determine the influence of circadian
rhythmicity and sleep on 24-hour leptin variations
[19]. However, some applications require a higher
sampling rate (e.g., 1 Hz) [12]. Thus, we assume the
sampling rate of the body temperature sensor to be
in the 0.001 to 1 Hz range.

� Blood sugar: Blood sugar measurements every 5 to
15 minutes are used in a variety of medical applica-
tions [12], [20]. However, some applications, such as
continuous glucose monitoring to detect a sudden
rise or drop in the glucose level of diabetics, require
a higher sampling rate (�100 Hz) [12].

� Accelerometer: An accelerometer is widely used for
physical activity detection. Its sampling rate typi-
cally lies in the 30 to 400 Hz range. However, a lower
sampling rate (e.g., down to 2 Hz) might be enough
for some applications [12], [21], [22], [23].

� ECG: Determining the frequency content of an ECG
signal by investigating its frequency spectrum is
usually difficult because it is hard to distinguish
between frequency components of signal and noise.
Berson et al. record over-sampled ECG signals and
then apply different low-pass filters to them [24].
They describe the effect of filtering on amplitude
variations, concluding that at least a sampling fre-
quency of 50-100 Hz is necessary to prevent ampli-
tude errors. Moreover, Simon et al. demonstrated
that a 1,000 Hz sampling rate is enough for the
majority of ECG-based applications [25]. We con-
sider ECG sampling rates in the 100-1,000 Hz range.

� EEG: Traditionally, the range of EEG frequencies that
was accepted to be clinically relevant was in/below
the gamma band (40-100 Hz). However, filtering of
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the EEG signal at around 70 Hz and using at least a
200 Hz sampling rate are commonly suggested by
medical literature [26]. Moreover, recent studies have
shown that EEG signals may also have physiological
relevance in high-frequency bands (e.g., 100-500 Hz)
[26], [27]. Based on the above discussion, we consider
EEG sampling rates in the 100-1,000Hz range.

Next, we consider the sampling resolution of each sensor,
where resolution is defined as the number of bits required for
representing a sample. We reviewed several recent publica-
tions in the biomedical literature to obtain these resolutions.

� Heart rate: An accurate and compact low-power heart
rate sensor for home-based health care monitoring is
described and implemented in [28]. It shows that a
resolution of 10 bits is appropriate for providing an
accurate measurement of the heart rate.

� Blood pressure: We consider 16 bits of resolution for
blood pressure samples, which is commonly used in
commercial blood pressure monitoring devices [12].

� Oxygen saturation: We consider 8 bits of resolution
for oxygen saturation based on the data reported
in [29], [30].

� Temperature: The body temperature varies within the
35 to 42�C range. An 8-bit resolution is sufficient for
body temperature sampling.

� Blood sugar: Measurements of blood sugar are based
on color reflectance. The meter quantifies the color
change and generates a numerical value that repre-
sents the concentration of glucose. A 16-bit resolu-
tion has been shown to be adequate for blood sugar
monitoring devices [31].

� Accelerometer: We consider 12-bit resolution, which
has been used in a variety of wearable accelerometer
applications and commercial devices [12], [21], [32].

� ECG: Ultra low-power ECG sensors, which are com-
monly used in long-term monitoring, support 8 or 12
bits of resolution [33], [34], [35]. A resolution of 8 bits
may result in a small but noticeable quantization
error. Researchers have shown that greater than 8 bits
of resolution will meet ECG requirements [36]. There-
fore, we assume a resolution of 12 bits.

� EEG: Several low-power wearable EEG sensors [37],
[38] use 10- or 12-bit ADC units. The recording
should represent samples down to 0.5 mV and up to
plus/minus several millivolts. We consider a 12-bit
resolution.

Table 1 summarizes information on sensors, their resolu-
tion and sampling rate, and the maximum wireless data
transmission rate.

3.2 Energy and Storage Requirements

Next, we discuss energy and storage requirements for a con-
tinuous health monitoring system.

Energy consumption can be divided into three catego-
ries: sampling, data transmission, and data analysis [39].
Wireless data transmission is usually the major energy-
consumer. The available energy in each sensor node is often
quite limited. The battery used in the node is typically the
largest contributor in terms of both size and weight. Battery
lifetime is a very important consideration in biomedical

sensors. In particular, battery replacement of implanted sen-
sors may require surgery and, hence, impose cost and
health penalties [3]. Thus, biomedical sensors often need to
maintain their functionality for months or even years
without the need for a battery change. For instance, an
implanted pacemaker requires a battery lifetime of at least
five years. Furthermore, during communication, biomedical
sensors generate heat that may be absorbed in nearby tissue,
with possible harmful effects. Hence, the energy consump-
tion should also be minimized from this perspective [3].

Moreover, a WBAN imposes specific storage require-
ments. Although WBANs facilitate health monitoring and
early detection of health problems, physicians usually want
access to raw data so that they can independently verify the
accuracy of on-sensor processing. Thus, it is important to
enable medical personnel to access all or at least important
chunks of raw data. However, storing the raw data in the
sensor nodes is not feasible for two main reasons. First,
IWMD sizes need to be kept small to facilitate patient mobil-
ity. Second, adding a large storage to a sensor increases its
energy consumption drastically, and as a result, battery life-
time decreases dramatically. Therefore, wemay think of stor-
ing the data in the base station. However, the base station
(e.g., a smartphone) may have its own resource constraints,
thoughmuch less severe, in terms of storage and battery life-
time. In addition, in order to provide data backup, we may
want to periodically send stored data from the base station to
storage servers. Therefore, the costs of long-term storage
using reliable storage services (e.g., Amazon S3 [40]) should
also be considered. Thus, it is important to minimize storage
requirements for long-term health monitoring while main-
taining adequate information for future reference.

4 ANALYTICAL MODELS FOR THE EVALUATION

OF WBAN’S ENERGY AND STORAGE

REQUIREMENTS

In this section, we first describe the analytical models that
we use to abstract the essential characteristics of the contin-
uous health monitoring system. Then, we use the model to
evaluate the baseline IWMDs.

4.1 Analytical Models

Analytical models can be used to predict system require-
ments. They are much more efficient than performing
simulation. Next, we describe the models used to quantify
the energy consumption and storage requirements of the

TABLE 1
Resolution, Sampling Rate, and Maximum Transmission Rate

Sensor Resolution
(bits/sample)

Sampling
rate (Hz)

Maximum
transmission
rate (bits/s)

Heart rate 10 2-8 80
Blood pressure 16 0.001-100 1,600
Oxygen saturation 8 0.001-2 16
Temperature 8 0.001-1 8
Blood sugar 16 0.001-100 1,600
Accelerometer 12 2-400 4,800
ECG 12 100-1,000 12,000
EEG 12 100-1,000 12,000
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continuous health monitoring system. Table 2 provides the
list of variables used in our models.

4.1.1 Energy Consumption

As mentioned earlier in Section 3, energy consumption of a
sensor has three major components: sampling, transmission,
and on-sensor computation. Therefore, we assume that total
energy consumption of the sensor (Etotal) can bewritten as:

Etotal ¼ Es þEt þ Ec: (1)

Sampling Energy. Next, we discuss the sampling
energy that is consumed by the ADC chip. The total energy
consumption of an ADC chip can be divided into: (i) I/O
energy, (ii) reference energy, (iii) sample-and-hold energy,
(iv) ADC core energy, and (v) input energy [41]. However,
separate calculation of these values is difficult. Thus, we use
the actual values of the total on-chip ADC energy consump-
tion per sample (EADC) reported in [41]. It summarizes the
experimental results from more than 1,400 scientific papers
published between 1974 and 2010. Fig. 2 shows the scatter
plot of the reported EADC in each of these papers versus the
effective number of bits (ENOB), where ENOB is defined as:

ENOB ¼ SNR� 1:76

6:02
; SNR ¼ Psignal

Pnoise
: (2)

ENOB is always less than the resolution for all ADC chips.
In particular, for medium-resolution ADCs (8 � N � 16)
that are used in biomedical sensors, ENOB � N � 1 pro-
vides a better boundary for the ENOB. For example, Verma
and Chandrakasan presented a low-power 12-bit resolution
ADC for WSNs [42]. The ENOB of this ADC is reported to
be 10.55 bits.

As shown in Fig. 2, the EADC of modern medium-

resolution ADCs is within the 4ENOB�9pJ to 4ðENOBþ1Þ�9pJ
range. Therefore, the sampling energy consumption per day
(Es) can be upper-bounded as follows:

Es ¼ EADC � S; (3)

EADC < 4ðENOBþ1Þ�9pJ � 4ðN�9ÞpJ; (4)

S ¼ fs
1

s

� �
� 60 s

min

� �
� 60 min

hr

� �
� 24 hr

day

� �
; (5)

) Es < fs
1

s

� �
� 60 s

min

� �
� 60 min

hr

� �
� 24 hr

day

� �
� 4ðN�9ÞpJ:

(6)

Table 3 shows the upper-bound values of Es for all the
sensors. As discussed later, Es values for all sensors are neg-
ligible in comparison to their total energy consumption.
Hence, we can safely assume that Etotal � Et þEc.

Transmission Energy. In our experiments, we used the
Texas Instruments CC2541 Development Kit as the BLE
transmission device. To provide a quantitative comparison,
we experimentally measured the energy consumption of
the transmission chip in a cyclic scenario. In a cyclic trans-
mission, the transmitter takes Tsend seconds to send the data
to the base station and then enters a standby phase for
Tstandby seconds. Hence, the average energy consumption of
transmission can be calculated as follows:

Et ¼ ðTsend � Psend þ Tstandby � PstandbyÞ � C: (7)

C ¼ ft
1

s

� �
� 60 s

min

� �
� 60

min

hr

� �
� 24 hr

day

� �
: (8)

TABLE 2
Variables, Unit, and Description

Variable Unit Description

Etotal J=day Total energy consumption of a biomedical sensor

Es J=day Energy consumption of sampling

Et J=day Energy consumption of transmission

Ec J=day Energy consumption of computation

EADC J=sample Energy consumption of sampling per sample

ft Hz Transmission frequency
fs Hz Sampling frequency

N � Sampling resolution

S 1=day #samples per day

C 1=day #transmissions per day

Psend W Average power consumption in the sending mode

Pstandby W Average power consumption in the standby mode

Isend A Average drained current in the sending mode

Istandby A Average drained current in the standby mode

Tsend s Sending time

Tstandby s Standby time

Vsupply V Supply voltage

SR B=year Required amount of storage in a year

Fig. 2. Scatter plot of the reported EADC versus ENOB bits for different
ADC architectures: asynchronous (�), cyclic (tu), delta-sigma (3), flash
(þ), folding (4), pipeline (	), successive approximation (
), subranging
("), n-Slope (�), n-Step ($ ), and other (5) [41].

TABLE 3
Upper-Bound Values of Es

Sensor Es (J/day)

Heart rate 2 e-6
Blood pressure 1 e-1
Oxygen saturation 4 e-8
Temperature 4 e-8
Blood sugar 1 e-1
Accelerometer 2 e-3
ECG 5 e-3
EEG 5 e-3
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Tsend is a fixed value and measured as 2.6 milliseconds for a
single packet transmission. Tstandby depends on the transmis-
sion frequency (ft):

Tstandby ¼ 1

ft
� Tsend: (9)

Psend and Pstandby can be obtained by measuring the current
drained from the battery with supply voltage Vsupply. We cal-
culated the average power consumption for a single packet
transmission using a standard oscilloscope. Psend and
Pstandby were found to be 30.5 mW and 2.5 mW, respectively,
where Vsupply is set to 2.5 V. In order to measure the power
consumption of a single packet transmission, we also con-
sidered different packet sizes (varying from 1 to 20 B). Our
experimental results show that variations in transmission
energy of a single packet are negligible when the packet
size changes from 1 to 20 B. However, since Psend � Pstandby,
a higher transmission rate obviously leads to a higher
energy consumption.

Computation Energy. Computation energy varies sig-
nificantly from one biomedical application to another. In
most applications, the computation energy can be divided
into feature extraction energy and classification energy.
Since a feature extraction function can be converted into
matrix form, the feature extraction energy can be estimated
as the energy consumption of a matrix multiplication func-
tion. The classification energy can be estimated based on the
reported values of classification energy per vector for vari-
ous methods. However, obtaining a general model for com-
putation energy is difficult because of its dependence on the
application. In this work, when we consider on-sensor com-
putation energy, we use the values reported in [8], [9].

4.1.2 Storage Requirement

Next, we provide an analytical model for estimating the
amount of required storage for one-year storage of raw
medical data. When there is no on-sensor computation, this
only depends on the sampling frequency (fs) and sampling
resolution (N):

SR ¼ fs
1

s

� �
�NðbitsÞ � 1B

8bits

� �
� 31536000 s

year

� �
: (10)

However, simple on-sensor computation can signifi-
cantly decrease the amount of required storage. For
example, if the computation method can efficiently detect

points of interest from the raw data, we may only need
to store those specific points for further analysis. More-
over, on-sensor data compression (e.g., in CS-based
applications) can also decrease the number of transmit-
ted bits from the sensor to the base station by compress-
ing the raw data before transmission.

4.2 Evaluation of the Baseline WBAN

Next, we evaluate the energy consumption and storage
requirement for the baseline scheme, described in Section 3,
using the models described above.

4.2.1 Evaluation of the Energy Consumption

Since each sensor has its own sampling rate and resolution,
its energy consumption differs from that of others. Table 4
shows theminimum andmaximum amounts of energy con-
sumption for different devices in this baseline scenario.
They correspond to the minimum and maximum sampling
rates, respectively. Table 5 shows the battery lifetime of
each sensor. The minimum/maximum battery lifetimes are
reported assuming that each sensor node uses a regular
coin cell battery (CR2032). A regular coin cell battery is
commonly used in biomedical sensors. Not surprisingly,
ECG and EEG sensors are seen to consume the most
amount of energy. Thus, these sensors are the main
obstacles to providing long-term health monitoring.

4.2.2 Evaluation of the Storage Requirement

Next, we evaluate the baseline system from the storage
perspective. We readily realize the baseline transmission
scheme requires a significant amount of storage. Table 6
shows the minimum and maximum amounts of storage
required for long-term health monitoring in this system.
The minimum (maximum) value corresponds to the

TABLE 4
Minimum and Maximum Values of Total Energy Consumption

Sensor Minimum (J/day) Maximum (J/day)

Heart rate 13.99 55.23
Blood pressure 0.26 686.88
Oxygen saturation 0.26 14.00
Temperature 0.26 7.13
Blood sugar 0.26 686.88
Accelerometer 14.00 2,747.52
ECG 686.88 6,868.80
EEG 686.88 6,868.80

TABLE 5
Minimum and Maximum Battery Lifetimes of Different Sensors

Sensor Minimum (days) Maximum (days)

Heart rate 48.8 192.90
Blood pressure 3.93 10,125.69
Oxygen saturation 192.86 10,125.69
Temperature 378.68 10,125.69
Blood sugar 3.93 10,125.69
Accelerometer 0.98 192.86
ECG 0.39 3.93
EEG 0.39 3.93

TABLE 6
Minimum and Maximum Storage Required

for Long-Term Storage

Sensor Minimum (MB/yr) Maximum (GB/yr)

Heart rate 75.18 0.29
Blood pressure 0.07 5.87
Oxygen saturation 0.03 0.06
Temperature 0.03 0.03
Blood sugar 0.07 5.87
Accelerometer 90.23 17.62
ECG 4,511.26 44.06
EEG 4,511.26 44.06
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minimum (maximum) sampling frequency. Since EEG
and ECG signals require the largest amount of storage,
we mainly target these signals for storage reduction.

5 IMPROVING THE ENERGY EFFICIENCY OF

CONTINUOUS HEALTH MONITORING

In this section, we first propose three schemes for signal
processing and transmission that can be used in a
WBAN. Then, we evaluate and compare these schemes
from the energy perspective. We divide the sensors into
two different categories based on their transmission rate:
low-sample-rate sensors (heart rate, blood pressure, oxy-
gen saturation, temperature, blood sugar, accelerometer)
and high-sample-rate sensors (EEG and ECG). Then, we
use the following three schemes to reduce the energy
consumption of each node.

� We accumulate multiple samples in one packet
before transmitting the raw data in order to decrease
the number of transmitted packets. The base station
is responsible for processing and storage of the
raw data. This approach is applicable to both high-
sample-rate and low-sample-rate sensors.

� We process the data in high-sample-rate sensors
(EEG and ECG) using traditional signal processing
methods. Then, we transfer just a fraction of the raw
data from the sensor node for storage in the base sta-
tion based on the result of computation.

� We suggest using CS-based computation in high-
sample-rate sensor nodes before data transmission.
Again, we just transfer a small fraction of the raw
data from the sensor node for storage in the base sta-
tion based on the result of on-sensor computation.

Although on-sensor computation leads to some extra
computational energy consumption, it reduces transmission
energy consumption significantly due to the reduction in
the amount of data transmitted. This is especially true when
the transmission rate of a sensor is very high and important
events (e.g., seizure, heart attack) are rare. However, in the
case of low-sample-rate sensors, the decrease in transmis-
sion energy does not offset the increase in computational
energy. Therefore, we do not employ any on-sensor compu-
tation for low-sample-rate sensors.

Each scheme is discussed in the following sections and
compared against the baseline scheme. We estimated the
minimum/maximum energy consumption of each sensor in
different scenarios, and based on that, we computed the
minimum/maximum battery lifetime.

5.1 Sample Aggregation

In practice, we do not usually need to transmit the data as
fast as we gather them. Thus, we could first accumulate
multiple samples (up to 20 B) in one packet and only then
transmit the packet. The total number of bits transmitted
remains the same. However, the average number of trans-
mitted packets per second is reduced due to the accumula-
tion. The number of samples that can be accumulated in a
single packet varies from one device to another based on its
resolution. In addition, the data processing algorithm in the
base station might have been optimized with a specific
number of required samples in mind. Therefore, the num-
ber of samples per packet may need to be varied between
one and the maximum number. For the devices being evalu-
ated, Table 7 shows the maximum number of samples that
can be gathered into a single packet.

In order to calculate the total energy consumption of a
sensor, we also need to consider the storage energy required
for storing multiple packets before transmission. To store
20 B, which is the maximum number of bytes that can be
sent in a single transmission, we consider the energy con-
sumption of a 160-cell buffer. This storage energy remains
fixed for the maximum and minimum transmission rates.
However, the maximum (minimum) energy consumption is
calculated as the energy consumption of transmission using
the maximum (minimum) rate plus the energy consumed
by the 160-cell buffer. Using the SRAM cell energy reported
for the 90 nm technology node in [43], we calculate the mini-
mum and maximum energy consumption of each device, as
shown in Table 8. The minimum and maximum battery life-
times of each sensor are shown in Table 9. Relative to the

TABLE 7
Maximum Number of Samples

in One Packet

Sensor #Samples

Heart rate 16
Blood pressure 10
Oxygen saturation 20
Temperature 20
Blood sugar 10
Accelerometer 13
ECG 13
EEG 13

TABLE 9
Minimum and Maximum Battery Lifetimes of Different
Sensors While Using Sample Aggregation Scheme

Sensor Minimum (days) Maximum (days)

Heart rate 663.39 1,800
Blood pressure 38.92 4,153.85
Oxygen saturation 2,030.08 4,153.85
Temperature 2,715.10 4,218.75
Blood Sugar 38.92 4,153.85
Accelerometer 12.73 1,588.24
ECG 5.10 50.45
EEG 5.10 50.45

TABLE 8
Minimum and Maximum Values of Total Energy Consumption

While Using the Sample Aggregation Scheme

Sensor Minimum (J/day) Maximum (J/day)

Heart rate 1.50 4.07
Blood pressure 0.65 69.38
Oxygen saturation 0.65 1.33
Temperature 0.64 0.98
Blood sugar 0.65 69.38
Accelerometer 1.70 212.13
ECG 53.52 529.36
EEG 53.52 529.36
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baseline, this method provides up to 13.58	 reduction in
maximum energy consumption for low-sample-rate sen-
sors. The maximum and minimum energy consumptions of
high-sample-rate sensors are reduced by 12.98	 and
12.83	, respectively.

5.2 Anomaly-Driven Transmission

Next, we evaluate a process-and-transmit scheme that is
more appropriate for high-sample-rate sensors (ECG and
EEG), which consume significant amounts of energy. If
we first process raw data in the sensor nodes themselves
and then just transmit some small chunks of data based
on the processing results, we can reduce the transmis-
sion rate significantly. In this scenario, whenever we
detect an abnormal activity, we are required to transmit
the raw data corresponding to the abnormal event, in
order to facilitate offline evaluation of the data. The
computational energy in each sensor node and data
transmission rate directly depend on the intended appli-
cation. We evaluated seizure detection and arrhythmia
detection as applications for EEG and ECG sensors,
respectively. The traditional computation that we have
considered for seizure/arrhythmia detection is as fol-
lows. First, we sample the signal at the Nyquist sam-
pling rate. Second, we use a feature extraction algorithm
(spectral energy analysis for EEG and Wavelet transform
for ECG) to extract the important feature of the signal
and build a feature vector. Third, we classify the feature
vectors using a binary classifier [8], [9], [44], [45], [46].

Let us consider an EEG sensor first. We assume signal
processing in this sensor is based on a traditional algorithm
for seizure detection, as described in [8], [9]. The frequency
of epileptic seizures varies from person to person. In some
cases, seizures may even be separated by years. On the
other extreme, seizures might occur every day. Williamson
et al. [47] studied 90 patients and reported the mean seizure
frequency and mean duration to be 4.7 per month (range: 3
to 9 per month) and 3.8 minutes (range: 1 to 20 minutes),
respectively. Based on their result, if the EEG sensor just
transmits the small fraction of data corresponding to seiz-
ures, the sensor needs to transmit information over a dura-
tion of 17.8 minutes per month, on an average. Table 10
shows the average total energy consumption of the EEG
sensor when we use the traditional signal processing
method described in [8], [9] and only transmit important
chunks of data whenever an abnormality is detected. The
minimum (maximum) value corresponds to the minimum
(maximum) sampling frequency. In this scheme, the proc-
essing module consumes the major part of energy. Relative
to the baseline, it provides up to 177	 reduction in total
energy consumption for the EEG sensor. Table 11 shows the
minimum and maximum battery lifetimes of the EEG sensor
in this scheme.

Next, we consider ECG sensors, and assume that the sig-
nal processing method is the traditional computation
method for arrhythmia detection, as discussed in [9]. Unlike
seizure, the frequency of occurrence of arrhythmia varies
significantly. There are different types of arrhythmia: each
may lead to intermittent or consistent symptoms. Therefore,
it is difficult to predict the frequency of occurrence for
arrhythmia. Fig. 3 shows the total energy consumption and
battery lifetime of the ECG sensor with respect to frequency
of occurrence of arrhythmia in a day, respectively. We
assume that after detecting an abnormal event, the sensor
transmits the information of a standard one-minute ECG
strip to the base station.

5.3 CS-Based Computation and Transmission

As the third scheme, we evaluate an approach for computa-
tion and data transmission that can reduce the energy con-
sumption of EEG and ECG sensors significantly. As
mentioned earlier, since the total energy consumption of
EEG and ECG sensors is very high due to their high data
transmission rates, if we can process the raw data in these
sensors and transmit only small chunks of data upon the
occurrence of an abnormal event, the transmission energy
may be reduced significantly. However, now the computa-
tion energy becomes the major energy bottleneck. Hence,
we try to reduce it through CS-based computation. First, we
briefly describe CS.

CS (also called compressive sampling or sparse sam-
pling) is a signal processing approach for efficiently sam-
pling and reconstructing a signal [7]. The common goal of
various signal processing approaches is to reconstruct a sig-
nal from a finite number of measurements. Without any
prior knowledge or assumptions about the signal, this task

TABLE 10
Average Total Energy Consumption of the EEG Sensor

for the Anomaly-Driven Method

Sensor Minimum (J/day) Maximum (J/day)

EEG 36.27 38.83

TABLE 11
Average Battery Lifetimes for the EEG Sensor

for the Anomaly-Driven Method

Sensor Minimum (days) Maximum (days)

EEG 69.53 74.44

Fig. 3. Energy consumption and battery lifetime of the ECG sensor for
the anomaly-driven method with respect to frequency of occurrence of
arrhythmia in a day.
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is not feasible due to the fact that there is no way to recon-
struct an arbitrary signal in an interval in which it is not
measured. However, under certain conditions and assump-
tions, the signal can be reconstructed using a finite number
of samples. In the CS approach, a signal can be recovered
from far fewer samples than required by Nyquist sampling.
Recovering a signal using the CS approach relies on two
fundamental principles: sparsity and incoherence.

1) Sparsity: This requires that the signal be sparse in
some domain (i.e., the signal’s representation in
some domain should have many coefficients close to
or equal to zero). CS can be used to compress an
N-sample signal X that is sparse in a secondary
basis C. Previous research has shown that ECG
and EEG signals are sparse enough in the Wavelet
transform space [48] and Gabor space [49], [50], [51],
respectively.

2) Incoherence: This indicates that unlike the signal of
interest, the sampling/sensing waveforms have an
extremely dense representation in the transformed
domain.

The main limitation of the classical CS approach is as fol-
lows. Although the signal can be recovered using only a
few samples, the traditional signal processing methods are
not designed to process the compressed form of the signal.
Therefore, the signal needs to be reconstructed before proc-
essing by the traditional signal processing methods. Unfor-
tunately, reconstruction of a signal from its compressed
representation is an energy-intensive task and cannot be
performed on sensors due to their energy constraints. In
WBANs, it is often necessary to process the data sampled
by the biomedical sensors, e.g., to detect anomalies or com-
pute statistics of interest. In this work, we evaluate a modi-
fied version of the classical CS approach that enables ECG
and EEG signals to be processed on the sensor without
being reconstructed (Fig. 4). The need for reconstruction can
be circumvented by performing signal processing computa-
tions directly in the CS domain. Shoaib et al. have devel-
oped precisely such a method [8], [9], and demonstrated
applications to various biomedical signals. This method
reduces the computation energy significantly because much
fewer data samples need to be processed. Generally, this
method consists of three steps:

1) First, we compress the signal of interest using a
low-rank random projection matrix. If we can repre-
sent the signal (X) as C � s, where s is a vector of
K-sparse coefficients, a low-rank random matrix F
can be found to transform X to a set of M samples

where OðKlogðN=KÞÞ < M � N . We can then use
the following equation for obtaining the compressed

samples (denoted by X̂):

X̂M	1 ¼ FM	N 	XN	1: (11)

2) Second, we generate a feature extraction operation in
the CS domain (Ĥ) from its equivalent in the Nyquist
domain (H) by minimizing the error in the inner
product between feature vectors. For any feature
extraction method, which can be represented by

matrix H, we can derive an equivalent Ĥ matrix in
the CS domain [8], [9].

3) Third, we compute Ŷ ¼ Ĥ 	 X̂ and provide Ŷ to the
classification process.

The compression ratio is given by a ¼ N=M. It denotes
the amount of compression obtained by the projection.
Because CS leads to a drastic reduction in the number of
samples, it has the potential for reducing the energy con-
sumption of various sensors, including biomedical sensors.
Direct computation on compressively-sensed data enables
classification to be performed on the sensor node with one
to two orders of magnitude energy reduction. We exploit
this method for long-term continuous health monitoring.

In order to choose a reasonable compression ratio (a), we
first need to compare the outcomes of the CS-based method
for different compression ratios. Next, we discuss sensitiv-
ity (also called recall) and number of false alarms per hour
(FA/h) for different compression ratios. Sensitivity repre-
sents the true positive rate. It measures the percentage of
actual positives that are correctly identified, such as the per-
centage of seizure conditions that are correctly classified as
seizure. FA/h is the number of false positive outcomes in
an hour of detection. Such an outcome is an error in classifi-
cation since a test result indicates the presence of a medical
condition that is not actually present.

Fig. 5 shows the sensitivity and FA/h for seizure detection
with respect to different compression ratios. A compression
ratio a of 8	 is seen to maintain sensitivity and FA/h for sei-
zure classification. Moreover, an 8	 compression ratio also

Fig. 4. Traditional CS versus on-sensor CS-based computation pro-
posed by Shoaib et al. [8], [9].

Fig. 5. Sensitivity and FA/h of seizure detection classification with
respect to compression ratio. Sensitivity and FA/h of CS-based method
using a ¼ 8	 are almost equal to the sensitivity and FA/h of the tradi-
tional method using Nyquist sampling (a ¼ 1	) [8].
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exhibits similar results for arrhythmia detection [8], [9]. Thus,
we assume this ratio for deriving the next set of results.

Next, we examine the EEG sensor in the context of sei-
zure detection. Using the CS-based algorithm for seizure
detection, the average value of total energy consumption of
the EEG sensor (Table 12) is much less than that of the
anomaly-driven signal processing method (Table 10). Rela-
tive to the baseline, the total energy consumption of the
EEG sensor is reduced by up to 724	 in this scheme.
Table 13 shows the battery lifetime of the EEG sensor, which
improves by a similar ratio.

Next, we examine an ECG sensor in the context of
arrhythmia detection. Fig. 6 shows the total energy con-
sumption and battery lifetime of the ECG sensorwith respect
to the frequency of occurrence of arrhythmia in a day. Similar
to the previous scheme, we assumed that after detecting an
arrhythmia, the ECG sensor transmits the information of a
standard one-minute ECG strip to the base station.

5.4 Summary of Proposed Schemes

Next, we summarize the results.
Fig. 7 shows the energy reduction in each sensor for the

sample aggregation scheme. The energy reduction is an
order of magnitude relative to the baseline.

Fig. 8 shows the energy reduction in EEG and ECG sen-
sors when the maximum sampling frequency is employed.

The CS-based approach can be seen to result in two to
three orders of magnitude energy reduction relative to
the baseline.

6 STORAGE REQUIREMENTS

We have described three schemes for decreasing the energy
consumption of sensors: (i) sample aggregation, (ii) anom-
aly-driven, and (iii) CS-based computation in the node. The
first scheme cannot reduce the amount of required storage
because we just accumulate multiple packets in order to
reduce the number of transmissions, but we still transmit all
the data. However, if we can process the raw data in the
sensor nodes and just transmit a chunk of raw data that is
essential for future analysis, we would be able to reduce the
amount of required storage significantly.

When anomaly-driven or CS-based signal processing is
done on the sensor node, the sensor node samples, processes,
and then transmits the data based on the result of processing.
However, in the case of CS-based computation, the data can
be transmitted in compressed form and reconstructed in the
base station or server for further processing if needed.

Let us consider EEG sensors first. Based on the results
in [47], we assume the mean seizure frequency and mean
seizure duration to be 4.7 per month and 3.8 minutes,
respectively. Therefore, as mentioned earlier, the EEG
sensor needs to transmit information for a duration of
17.8 minutes per month, on an average. Table 14 shows
the average amount of storage required for storing the
raw data in the two schemes for seizure detection based
on EEG signal analysis. In this table, the minimum

TABLE 12
Average Total Energy Consumption of the EEG Sensor

for CS-Based Computation

Sensor Minimum (J/day) Maximum (J/day)

EEG 6.93 9.50

TABLE 13
Average Battery Lifetimes of the EEG Sensor

for CS-Based Computation

Sensor Minimum (days) Maximum (days)

EEG 284.43 389.45

Fig. 6. Energy consumption and battery lifetime of the ECG sensor for
the CS-based method with respect to frequency of occurrence of
arrhythmia in a day.

Fig. 7. Energy reduction in each sensor when the sensor accumulates
multiple samples in one packet. Raw data are assumed to be gathered
at the maximum frequency.

Fig. 8. Energy reduction in EEG and ECG sensors. The number of
arrhythmia events in a day is assumed to be 32, and raw data are
assumed to be gathered at the maximum frequency.
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(maximum) value corresponds to the minimum (maxi-
mum) sampling frequency. The anomaly-driven scheme
can be seen to reduce the amount of storage required for
storing these signals by 2418	. The CS-based scheme pro-
vides another 8	 reduction on top of this.

As mentioned earlier, unlike seizures, the frequency
with which arrhythmia occurs may vary significantly. In
order to provide a quantitative analysis for storage
requirements in the case of arrhythmia detection, we
assume that, after each detection, the sensor transmits
the information of a standard one-minute ECG strip to
the base station. Fig. 9 shows the amount of required
storage for the anomaly-driven and CS-based schemes
with respect to the frequency of occurrence. Again, we
observe the significant advantage of the CS-based scheme.

7 CHOOSING THE APPROPRIATE SCHEME AND

HARDWARE PLATFORM

In this section, we first compare the different schemes
we presented, and discuss how the appropriate scheme
can be chosen for each sensor. Second, we discuss two
different types of hardware platforms: application-spe-
cific integrated circuit (ASIC) and general-purpose com-
mercial products. We describe the potential benefits of
using ASIC hardware.

7.1 The Appropriate Scheme for Each Sensor

Each scheme has its own advantages and disadvantages.
For example, sample aggregation decreases energy con-
sumption at the cost of increased latency. Schemes that use
on-sensor computation can significantly increase battery
lifetime, however, provide less raw data to the physicians.

Choosing an appropriate scheme for each sensor
depends on medical considerations such as tolerable latency
and patient’s condition. Next, we discuss different consider-
ations that should be taken into account by designers, in
addition to the battery lifetime and storage requirement.

1) Latency: Latency is the time interval between the
occurrence of an anomaly and the response that
is provided by medical devices, physicians or

medical personnel. Tolerable latency depends on
the patient’s condition.
� Example 1: Consider a continuous health moni-

toring system that is used to monitor a healthy
subject who does not have any history of a
serious illness. The system can be configured
for this subject to provide routine medical
check by collecting and sending medical infor-
mation to physicians or hospitals at long inter-
vals (e.g., once a day). In fact, latency is not
an important factor in this case, and the sen-
sor can be configured to minimize the energy
and storage requirements. For example, we
can use the CS-based computation method for
both EEG and ECG sensors and use the aggre-
gation method for other low-frequency sensors
(e.g., temperature) to maximize the battery
lifetime of all sensors.

� Example 2: Consider a continuous health moni-
toring system that is used to monitor a subject
who has previously been diagnosed with high
blood glucose. As a result, any rapid rise
in blood glucose should be detected and
addressed immediately. In such a scenario, the
latency that might be added by using sample
aggregation for blood glucose levels may not
be acceptable.

Among all the discussed schemes, sample aggregation is the

only one that may lead to a non-negligible increase in latency.

Therefore, the number of samples that can be aggregated in

one packet before transmission can be limited by the latency

that can be tolerated.

2) Amount of raw medical data transmitted: Physicians
may want to examine raw medical data over a

Fig. 9. The amount of storage required for storing important chunks of
ECG signals based on the results of computation.

TABLE 15
Comparison of Different Schemes

Scheme Energy consumption Required storage Latency Amount of raw data transmitted Extensibility

Baseline Very high Very high Low All raw data High
Sample aggregation Very high Very high Varies All raw data High
Anomaly-driven Low Low Low A portion of collected data Low
CS-based Very low Very low Low A portion of compressed data Low

TABLE 14
Average Storage Required for Long-Term Storage

of Processed Data

Sensor Minimum (MB/yr) Maximum (MB/yr)

EEG (Anomaly) 1.87 18.65
EEG (Compressed) 0.23 2.33

NIA ET AL.: ENERGY-EFFICIENT LONG-TERM CONTINUOUS PERSONAL HEALTH MONITORING 95



specific time period to verify on-sensor computation.
The amount of raw information that needs to be
transmitted and stored for further analysis varies
from one device to another. It also depends on the
medical condition of the patient.

Schemes that use on-sensor computation (anom-
aly-driven transmission and CS-based computation
and transmission) only transfer a small portion of
raw data containing important information about
the occurrence of the anomaly. However, if more
medical information is required to be transferred to
the base station, the designers should use the other
schemes or send more raw data (e.g., over an hour of
measurements) after detecting an anomaly.

3) Extensibility: This is a design consideration where the
implementation takes futuremodifications of the algo-
rithms into consideration. High extensibility implies
that applications of a biomedical sensor can be
extended in the future with a minimum level of effort.
Generally, schemes that rely on on-sensor computa-
tion are less extensible in comparison to schemes that
transfer raw data to the base station due to the fact that
they are designed to minimize the energy consump-
tion and the amount of required storage in certain
applications (e.g., arrhythmia detection). Therefore, if
a physician wants to change the computation algo-
rithm of the medical device, another device should be
designed and used, or at least the device’s firmware
should be updated each time.

Table 15 compares various schemes.
Potentially, different schemes can be used in the health

monitoring system for different sensors. Since the sensors
are located on different parts of the body, they cannot share
on-sensor resources (e.g., the battery). Thus, their battery
lifetimes are independent.

We can also use a combination of schemes even in just
one sensor. For example, we can combine one of the
schemes that uses on-sensor computation (anomaly-driven
or CS-based) with the sample aggregation scheme to reduce
total energy consumption even more. However, since in
anomaly-driven and CS-based schemes, the computation
energy is dominant and the transmission energy is only a
small fraction of total energy consumption, the addition of
the sample aggregation scheme will not provide a signifi-
cant energy reduction.

7.2 The Hardware Platform

An appropriate hardware platform can be chosen from vari-
ous general-purpose commercial products or else designed as
ASIC hardware. General-purpose commercial products
enable the designers to implement an algorithm or a proto-
type of a biomedical sensor quickly. However, they are not
optimized for the specific application. Anomaly-driven and
CS-based schemes use some algorithms to process the raw
data on the EEG or ECG sensor nodes before transmission.
An ASIC could be designed for these algorithms. In particu-
lar, in our computation schemes, the on-sensor computation
algorithm uses a support vector machine as a classifier to
detect anomalies (arrhythmia and seizure). Specialized pro-
cessors that enable efficient handling of data structures used
by the classifier could reduce computation energy even fur-
ther. Further energy reduction can be achieved through

supply voltage scaling. The total energy is determined pri-
marily by the sum of dynamic (active-switching) energy and
the static (leakage) energy. However, reduction in active-
switching energy due to supply voltage scaling is opposed by
an increase in leakage energy. Therefore, there is an optimal
supply voltage at which the circuit attains its minimum
energy consumption and still work reliably. This could be
addressed in an ASIC. However, such an ASIC may not be
desirable from a cost perspective and does not improve trans-
mission energy.

8 CONCLUSION

In this paper, we discussed a secure energy-efficient system
for long-term continuous health monitoring. We discussed
and evaluated various schemes with the help of eight bio-
medical sensors that would typically be part of a WBAN.
We also evaluated the storage requirements for long-term
analysis and storage.

Among the four schemes we evaluated (including the
baseline scheme), we showed that the CS-based scheme pro-
vides the most computational energy savings (e.g., up to
724	 for ECG sensors) because it needs to process much
fewer signal samples. For low-sample-rate sensors, we can
achieve significant energy savings by simply accumulating
the raw data before transmitting them to the base station.

In addition, the CS-based scheme also allows us to reduce
the storage requirements significantly. For example, for an
EEG sensor based seizure detection application, we achieve
total storage savings of up to 19,344	. The results indicate
that long-term continuous health monitoring is indeed feasi-
ble from both energy and storage points of view.

Finally, we compared all proposed schemes and dis-
cussed how a continuous long-term health monitoring sys-
tem should be configured based on patients’ needs and
physicians’ recommendations.
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