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Abstract—Complex division is commonly used in various
applications in signal processing and control theory including
astronomy and nonlinear RF measurements. Nevertheless, unless
reliability and assurance are embedded into the architectures
of such structures, the sub-optimal (and thus erroneous) results
could undermine the objectives of such applications. As such,
in this paper, we present schemes to provide complex num-
ber division architectures based on Sweeney, Robertson, and
Tocher-division with error detection mechanisms. Different error
detection architectures are proposed in this paper which can
be tailored based on the eventual objectives of the designs
in terms of area and time requirements, among which we
pinpoint carefully the schemes based on recomputing with
shifted operands to be able to detect faults based on recom-
putations for different operands in addition to the unified
parity (simplified detecting code) and hardware redundancy
approach. The design also implements a minimized look up
table approach which favors in error detection based designs
and provides high fault coverage with relatively-low overhead.
Additionally, to benchmark the effectiveness of the proposed
schemes, extensive error detection assessments are performed
for the proposed designs through fault simulations and field-
programmable gate array (FPGA) implementations; the design
is implemented on Xilinx Spartan-6 and Xilinx Virtex-6 FPGA
families.

Index Terms—Concurrent error detection (CED), field-
programmable gate array (FPGA), recomputing with shifted
operands (RESO), Sweeney, Robertson, and Tocher (SRT)-
division.

I. INTRODUCTION

OMPLEX division is a critical mathematical operation

with applications in various fields such as signal
processing, control theory, microwave systems, quantum
mechanics, and the like. Control theory uses complex division
arithmetic to find the root locus [1], Nyquist plot [2], and
Nichols plot [3]. Microwave systems also use complex divi-
sion arithmetic to find the frequency response [4] and transfer
functions. Because of its complexity, the operation has been
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mainly implemented in software [5], [6]. This has been fur-
ther improved by using different algorithms [7], [8] to prevent
overflows and provide precise results. Other optimizations [9]
have been proposed to make use of the fused multiplyadd
instructions available on different processors to improve the
component-wise accuracy.

A technique for high radix complex division has been
proposed in [10]. This approach is based on operand prescal-
ing and digit recurrence. Such an algorithm has later been
implemented on FPGAs with different radices [11], [12].
Furthermore, a radix-16 combined complex divider/square
root module has also been presented in [13] based on the
same algorithm. Moreover, a complex divider has been pre-
sented in [14] which utilizes the standard formula for complex
division but uses an optimized architecture to reduce the
area and improve the operating frequency. Another complex
divider is implemented using the coordinate rotational digi-
tal computer-like algorithms [15]. There exist other complex
division techniques which are based on complex binary num-
ber system [16], where complex numbers are represented in
binary. Additionally, a division algorithm based on [16] has
been implemented in [17]. This design has drawback in terms
of accuracy as it is based on a new system and extensive
research is still needed to reach more accurate results. There
has also been a complex division scheme which uses dichoto-
mous coordinate descent algorithm to calculate the results
by converting the division operation to a system of linear
equations [18]. Implementing this technique is complicated
and area inefficient. It is noted that none of the aforemen-
tioned systems provides reliability and hardware assurance
for the underlying architectures. Indeed, in the presence of
defects in very-large-scale integration (VLSI) architectures of
such important computer arithmetic calculations, erroneous
outputs resulting from sub-optimal reliability assurance could
undermine the respective eventual objectives.

In digital systems, errors can happen through various
causes including alpha particles from package decay, cos-
mic rays creating energetic neutrons and protons, and
thermal neutrons. Counteracting natural faults has been a
subject for a number of hardware architectures in different
domains. In signal processing (see [19], [20]), and for
cryptographic architectures, many research works have been
carried out to achieve reliable and fault-immune structures
(see [21]-[33]). Moreover, concerning the finite field arith-
metic architectures, various concurrent error detection (CED)
multipliers for polynomial basis and normal basis of
GF(2™) have been proposed using parity codes [34], [35]
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and recomputing  with  shifted (RESO)
schemes [36].

Using redundancy techniques such as time redundancy [36]
and hardware redundancy [37] is one of the most efficient
methods to implement error detection in an existing design.
Hardware redundancy techniques in such architectures lead
to increase in hardware resources while making the design
highly fault immune, without considerable loss in the total
time. Indeed, such a reliability assurance method for error
detection is commonly used in systems where efficiency is
preferred over area. On the other hand, time redundancy
through encoded operands provides a more area effective way
of detecting faults. The technique involves two runs; in the
first run, the actual operands are used and during the second
run, the operands are encoded in such a way that the orig-
inal result can be obtained after the operation is complete.
The encoding is usually done by shifting through RESO,
rotating through recomputing with rotated operands, or other
reversible encoding schemes based on the application and
architecture.

Various real number division techniques for hardware
have been discussed in [38] and [39]. The proposed design
uses a slightly modified radix-4 Sweeney, Robertson, and
Tocher (SRT) division [38] to calculate the quotient and
the remainder of the complex dividend and divisor. The
contributions of this paper are summarized as follows.

1) We propose error detection approaches for the presented
slightly modified radix-4 SRT division considering the
reliability and performance metrics objectives. Unified
and combined error detection approaches are used in
conjunction with performance boost modifications to
achieve high throughput and frequency architectures
while maintaining high error coverage. Increasing the
precision leads to larger area due to the additional
logic used for error detection. As such, a reduced look
up table (LUT) approach is employed to the quotient
selection logic which favors in CED.

2) We implement the proposed fault immune archi-
tectures on Xilinx Spartan-6 and Xilinx Virtex-6
FPGA families. Our results show that the pro-
posed efficient error detection architectures can
be feasibly utilized for reliable architectures of
the presented complex division structures, mak-
ing them suitable for the required performance,
reliability, and implementation metrics for constrained
applications.

3) Finally, through simulations, we benchmark the error
detection capabilities of the proposed schemes. The
results of these simulations show acceptable error detec-
tion capabilities which ensures reliability and hardware
assurance for the proposed approaches.

This paper is organized as follows. Section II dis-
cusses the preliminaries regarding radix-4 SRT division.
Section III explains the presented radix-4 SRT division
scheme. Section IV describes the proposed error detec-
tion techniques. Section V provides the implementation results
followed by the simulation results in Section VI. Finally, the
conclusion is given in Section VII.

operands
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Fig. 1. New shifted remainder and old shifted remainder in radix-B
(Robertson diagram).

II. PRELIMINARIES

In what follows, we present the preliminaries for the SRT
division as well as Golub’s multiplication.

A. Radix-f SRT Division

The most critical part of the complex divider module is the
SRT divider which is applied to both the real and imaginary
parts in parallel. The presented design uses a radix-g8 division
algorithm which yields log, B quotient bits every iteration. To
achieve a 16, 32, or 64 bit precision, we require 16/log, 3,
32/log, B, or 64/log, B iterations, respectively. In order to
achieve higher precision with less iterations, higher radix-8
(B > 64) SRT dividers can be used at the expense of more
area on respective platforms.

The general iterative formula used in the SRT division for
radix-f is

R[j+1]=8x(R[j]—q[j] xD) (1)
where R[j] is the previous partial remainder after j itera-
tions, R[j + 1] is the next partial remainder at iteration j + 1,
and ¢[j] is the quotient obtained at iteration j. At the end
of iteration, the radix-f quotient is calculated based on the
first few bits of the divisor (D) and the partial remainder
(R[j]). The next partial remainder (R[j + 1]) is then calcu-
lated based on R[] and the product of g[ j] and the divisor D.
The quotient selection is done by referring to an LUT using
the bits in D and R(j). The selected quotient bit is in the set
{(—a,...,=3,-2,—-1,0,1,2,3,..., a}, which is sometimes
referred to as quotient selection set from which the value
of g[j] is fetched every iteration, where « is in the range
log; <= (B—D.

The Robertson diagram in Fig. 1 shows the relation
between the new shifted partial remainder and the old par-
tial remainder based on the quotient. From Fig. 1, it is
seen that the remainder is bounded by [—hd, hd). Generally,
h is a constant which is used to restrict the quotient
set {—o,...,—3,-2,—-1,0,1,2,3,...,a}. In most general
cases, h = 1 and quotient selection requires 2« + 1 compar-
isons and a worst case computation which requires g[j] x D
for the next partial remainder (¢g[j] = +a/—«a, for worst case).
The number of comparisons and the computation can be
reduced by setting the value of 4 < 1, i.e., scaling the par-
tial remainder by B to have [—f x hd, B x hd). Thus, any
value of & which satisfies the condition § X hd — o x d < hd
or h < a/(B — 1) can be used to reduce the quotient set,
where log, 8 < o < (B —1). It is noted that even though
a can be its minimum value, the precision decreases as the
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Fig. 2. Quotient selection scale.

number of comparisons decreases, requiring higher resolution
(more address bits). On the contrary, this eliminates the
need for the worst case ¢[;j] x D and because o« = log, B,
the multiplication can be implemented by a shifting
operation. Using this, the quotient selection digit set can
be adjusted and modeled based on the specific requirements
(precision versus speed).

The proposed design uses a radix-4 SRT division tech-
nique. Thus, from (1), the division scheme for radix-4 is
R[j+1] = 4 x (R[j] —q[j] x D) with two quotient sets;
{—3,-2,—-1,0, 1,2, 3} is called the maximally redundant set
and {—2,—1,0, 1,2} is referred to as the minimally redun-
dant set. The maximally redundant set requires less address
bits to determine the quotient; thus, it requires a smaller LUT
compared to the minimally redundant; nonetheless, it requires
the computation of 3x which leads to additional hardware
and delay [40]. We would like to emphasize that the quo-
tient ¢ [j] is obtained once every iteration; this is based on
the quotient digit set which is determined for a particular
radix based on the constant /4. In turn, 4 can also be used
to reduce the size of the quotient set ({—3, -2, —1,0, 1, 2, 3}
or {—2,—1,0,1,2}) based on the requirements (speed ver-
sus precision), this determines the precision and speed of the
implemented hardware.

In the <case of a maximally redundant set
{-3,-2,—1,0,1,2,3}, the overlap regions between the
quotient are much larger compared to the minimally redun-
dant set {—2, —1,0, 1, 2}. Thus, the former can operate on
less precision (less address bits) compared to the latter. This
leads to a smaller ROM table but it requires the computation
of 3x which requires a 3x multiplier (additional hardware).
In addition, this also leads to more delay due to carry
propagation in the multipliers adder tree.

The minimally redundant quotient set is designed using
h=2/3. At the start of each iteration, a quotient digit
is selected which will result in the next partial remainder
R [ Jj+ 1] within the bounds. The quotient selection logic for
the minimally redundant quotient set is shown in the following

Fig. 3.  Golub’s multiplication.

and detailed in Fig. 2, where the quotient selection scale is
illustrated based on:

-2 —$xD<R[j+1]<—-3xD

~1 —3xD<R[j+1]<-1ixD
g+ 1) =40 ——><D<R[j+l]<§><D 2)

1 IxD<R[j+1]<3xD

2 $xD<R[j+1]<8xD.

B. Golub’s Multiplication

Complex multiplications in DSP systems generally use a
more efficient indirect approach [41], referred to as the Golub’s
method. For two complex numbers with y = a + bj and
z=c + dj, one can reach

x=yxz=(—nB)+jx {1 —h—1n5)
Xreal = 2 — 13
Ximag =11 — 2 — I3

t1=@+b)x(c+d), h=axc, 3=bxd. (3)

The direct implementation of complex multiplication
requires four real multiplications and two additions. The indi-
rect implementation, on the other hand, requires three real
multiplications and five additions, as shown in Fig. 3. We
note that the latter is more area efficient because multiplication
requires more area compared to addition.

III. PRESENTED COMPLEX DIVISION
RADIX-4 SRT MODULE

The design of the complex divider consists of several
modules: 1) multiplication module; 2) normalizing module;
3) real and imaginary iteration module; 4) shared ROM for the
quotient selection; and 5) an on-the-fly converter. Fig. 4 shows
the high level block diagram of the complete design. In this
figure, the multiplication in the numerator is performed using
Golub’s multiplication method. The multiplication module
multiplies the complex conjugate of the denominator to the
numerator and denominator to rationalize the denomina-
tor to a real number, ie., ¢ + d?, as a +jb/c+jd =
((a+jb) x (¢ +j(=d)))/((c +jd) x (c +j(=d))) =
((@xc)+(bxd)/c* +d*) +j(bxc)—(axd)/c*+d°) =
(Nreal/c2 + dz) "’]-(Nimalg/c2 + dz) = Oreal +jQimag-

The normalization of numbers is performed by shifting the
numbers such that 1 < Nreal, Nimag, (C2 + d2) < 2. The real
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Fig. 4. Presented complex radix-4 SRT module.

and imaginary modules are essentially two radix-4 SRT blocks.
As seen in Fig. 4, a single dual-port ROM is shared between
the real and imaginary modules for quotient selection. The
normalized divisor ¢? 4 d? is saved in register D and the divi-
dend Nreal, Nimag is saved in U (sum), V (carry) in carry-save
form (for both real and imaginary sections), the registers are
shown in Fig. 4. Since the division process is a sequential
one, the division is performed by repeated subtractions. The
first quotient is fetched using the first few bits of D (4 bits)
and U, V (5 bits). Since the partial remainder is in carry save
form, an adder is used to generate the required address bits,
i.e., address = U (sum) + V (carry). The quotient is saved in
registers Qpos if the quotient is positive or in QOneg if it is
negative. The MUX in the figure selects the product g [ j] x D
which can be 0, D, —D, 2D, or —2D based on the quotient set
{—2,—1,0, 1, 2}. The output of the MUX is then subtracted
from the partial remainder and the result is stored in U (sum)
and V (carry) in carry save form. This process is repeated
until the desired number of quotient bits is reached for both
real and imaginary parts. The on-the-fly converter is essen-
tially an adder which subtracts the positive quotients from
the negative quotients and saves them in Qreal and Qimag,
respectively. Fig. 5 shows the selection relationship between
D, U, V,and ¢[j].

Our design was focused on a balance between area,
precision, and speed, and for this, the minimally redundant
set was the most ideal selection. The overlap regions for the
radix-4 with {—2, —1,0, 1,2} as the quotient set can be seen
from Fig. 5. When the selection for the partial remainder falls

within these ranges, the selected quotients can be one of the
two quotients within that range. In cases which use higher
radices, such as radix-8, the overlap regions in the quotient set
are large (span additional range of address bits). Accordingly,
the quotient can be selected based on how close it is to the
nonoverlap regions, this aids in precision of the final quo-
tient; this is usually done based on the last few bits of the
address and requires additional hardware. Since the overlap
region is very small for our particular case, it was an accept-
able trade-off between the additional hardware and precision.
The shared ROM used for quotient fetch is minimized to
save area; the minimized ROM structure is explained in the
following.

A. ROM

The ROM look-up consists of two steps: 1) rounding and
2) quotient fetch. The partial remainder from the carry save
adder (CSA) is rounded off to 5 bits, round (R [ j]) A combi-
nation of the partial remainder (5 bits) and the divisor (4 bits)
is used as the address to the ROM for the quotient fetch. The
ideal ROM table contains a total of 2° = 512 entries and each
entry is 3 bits wide as shown in Fig. 4.

The ROM is symmetrical between the positive and negative
quotients. When the round (R[j]) is positive, the positive quo-
tient is fetched and vice versa. The shared ROM used in the
design is condensed to just the positive section of the table
and a combinational circuit which generates the 2s comple-
ment of g[j] if R[] is negative. This can easily be determined
by verifying the MSB of R[;] which reduces the ROM size
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Fig. 5. Quotient selection logic.

to half of the original size, i.e., to 256 entries and 3 bits wide
for the total of 256 x 3.

The “quotient fetch” operation pertaining to the minimized
shared ROM architecture is presented below

round (Rg []) = rarprirg ' 1z 4)
round (R1 []]) = r%r}r,o.rl_lrl_2 (5)
rkrarg rgld’d=\d"2d =3 ifry =0
addrg = 10 ,~1.-2 0,172 7-3
not (rRrR.rR R )—|—1|d d='d =d— else
(6)
it 1% a2 itk =0
addry = 1,0 —1,-2 0, —1 72 13
not(r,r,.r, Ty >+1|dd d—“d else
@)
2.1.0 if 2 =0
ar ) = | R bR ®)
not (gxqrqp) + 1 else
210 f 2=0
g1 Gy = s ©)
not (g7q;q7) +1 else.

The first 4 bits of D and R (U + V) are concatenated to
form the ROM addresses. The first bit of R (U + V) is used
as a select line for the multiplexers to select the two inputs,
i.e., original or 2s complement. Similarly, in (8) and (9),
the same bit of R (U + V) is used to determine the output

q[j] or —q[J].

IV. PROPOSED ERROR DETECTION SCHEMES

Two important methods for error detection are time and
hardware redundancy schemes. General hardware redundancy,
though simple, is efficient in detecting faults. We do not
present a modular hardware redundant scheme separately, for
the sake of brevity, but its implementation has been carried
out to record results. Specifically, since the scheme is gen-
eral hardware duplication, all the registers in the data path are

duplicated and the content is compared with its duplicate in
real time. The main drawback of this scheme is that it results
in a 100% increase in area. The total number of addresses for
the ROM is 512 with each location containing 3 quotient bits.
Due to the symmetrical nature of the ROM, as explained in
the previous section, the total address locations can be reduced
to half, i.e., 256 address locations with each location contain-
ing 3 quotient bits. Thus, the total size of the reduced ROM
is 256 (address) x 3 (quotient). Register duplication is not
just limited to the registers in the data path but also in the
ROM leading to an increased ROM size of (256 x 3) x 2.
Other arithmetic blocks in the design are also duplicated and
checked in real time.

Another potential method for fault diagnosis involves using
multiplication to undo the division; the result is then com-
pared with the dividend. This method serves as a motivation
to our proposed approaches. This technique was implemented
for three different register types 16, 32, and 64 bits and the
results were drawn from it. Let us consider the first derivation
on the default register configuration, i.e., quotient represented
using 16 bits. Initially, it was found that the result from the
product of the quotient and the divisor was approximately
equal to the original result. To overcome this issue, the result
of the multiplication is compared with dividend within a set
threshold. In the aforementioned design, the result of the multi-
plication yields 24 bits (16-bit quotient and 8-bit divisor). The
threshold for this case is set by discarding 16 sub LSB bits
before comparison because the dividend is limited to 8 bits.
Discarding 16 bits (LSB) sets the required thresholds for this
operation. This restricts the detection range to be within a 8-bit
number (any error in the quotient which produces a product
beyond that will remain undetected). Although applicable, this
approach leads to an increase in undetected errors due to the
set threshold (the error coverage is roughly 40% for multi-
ple faults). Realistically, one cannot limit the derivations just
within the threshold range (and get high error coverage as a
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result) and thus a relatively low error coverage is obtained. The
area overhead in this case is roughly 31% based on our FPGA
implementations. The major drawback though is that such
method has very low and nearly unusable output precision.
Using a higher input number will essentially solve this but
it will definitely increase the hardware overhead. Increasing
the bit widths (for example 8 — 16) leads to a decreased
threshold range (increased detection range), but this will lead
to twice the area overhead (total output precision is 32 bits
compared to 16).

A variant of the scheme above is to reuse the multipliers in
the original architecture to perform the required 16 x 8 multi-
plication to undo the division with three added cycles. In this
case, the 16 bits are first split into the first 8 bits (MSBs)
and the second 8 bits (LSBs) and stored in different registers
and the LSBs are first multiplied with the 8 bits (one cycle).
In the second cycle, MSBs are multiplied and finally, in the
third cycle, the results are added and stored. The entire oper-
ation requires two 8-bit registers and two 24-bit registers
(with proper adjustment) and the result is stored in an 8-bit reg-
ister by discarding the bits. Our FPGA implementations show
that the area overhead is much lower compared to the scheme
above (roughly 2%); however, the throughput degradation is
approximately 43% which is relatively high for high-speed
applications. As mentioned above, the major drawback here
is that such method has very low and nearly unusable out-
put precision and the error coverage is low as well (less than
40%). One remedy is to use higher bit widths which leads to
roughly 100% area overhead (if we use the same technique
and normalize the initial operands, the operating ranges are
bigger than the 8-bit case, thus we have an advantage of a
higher operating range but at the expense of very high area
overhead).

Another technique is using error detecting codes, such as
parity, for error detection. The logic relation for parity is
simple to implement and is more area efficient compared to
duplication. The challenging part is incorporating the parity
checker in the proposed design. Error checks need not be per-
formed on all the sections of the design. It is sufficient to check
the parts which are capable of propagating errors. This reduces
the area by eliminating unnecessary logic in the design.

The second scheme incorporates time redundancy using
RESO. Using this technique, transient faults occurring dur-
ing one of the runs can be detected; moreover, it can detect
permanent faults. This provides RESO with an added advan-
tage compared to traditional time redundancy schemes. As
mentioned before RESO involves two runs, one uses the
actual operands and the other uses shifted operands. Since
this is a division operation there is an added advantage
in using RESO for error detection, the shifting performed
in RESO is a mere multiplication by 2 in the numera-
tor and the denominator which leads to the same final
result, i.e., ((a+jb) x2)/((c+jd) X 2) = Oreal + JQimag =
(a +jb)/(c + jd). This requires no additional decoding hard-
ware at the end of the operation to obtain the original
result. In order to incorporate all possible 2" combinations
of an n-bit register in RESO, an n 4 1 bit register design is
required.

In what follows, we present two error detection schemes,
where details for the error detection technique and implemen-
tation used in the design are presented.

A. Unified Parity Check and Hardware Redundancy

To implement an effective error detection approach, the
propagation of faults throughout the circuit needs to be
assessed. In the proposed complex divider architecture, the
occurrence of single or multiple faults may lead to random
error propagation through the circuit. Considering the oper-
ation’s iterative nature, faults may also propagate to circuit
locations which lay before the affected region. This leads to
the inclusion of parity registers throughout the circuit which
are prone to propagating faults. The error detection structure
is developed by comparing the actual parity and the predicted
parity [42], [43]. The error detection division architecture is
divided into five modules; each individual module has its own
parity or hardware redundancy schemes as described in the
following. Fig. 6 shows the high level fault detection design
of the unified scheme and hardware redundancy with shaded
error detection modules.

1) Golub’s Multiplier: As mentioned before, Golub’s tech-
nique of complex multiplication is the most efficient way to
multiply two complex numbers. For error detection in this
particular module, we use the checker 3 method mentioned
in [44]. This was found to be the most efficient in terms of area
compared to other error detection techniques for adders and
multipliers. Such an implementation slightly alters the design
of the multiplication module presented in Fig. 3 in order to
incorporate the error detection scheme. This separates the cal-
culation of real and imaginary parts and, in turn, prevents the
error propagation from a X ¢ + b X d t0 Xjmag as shown in
Fig. 3. The checker verifies the following formulas which are
obtained by rearranging (3):

Xreal + Ximag = 11 —2xbxd
xreal+ximag+2XbXd=tl-

(10)
(11)

2) Datapath Registers: The registers in the datapath are
vital to the operation and are also capable of randomizing
the error propagation in the design. Each register is incorpo-
rated with a parity bit and the contents are checked in real
time to detect faults. The collective output comparisons of
the actual and predicted parity are connected to an OR gate
which raises an error flag in case of a detection (mismatch).
The logic relation of a parity bit for a register of size m is
shown in the following equation and Fig. 7 shows registers
incorporated with parity bits and the logic relation which cal-
culates the parity of each register. Each register is equipped
with a parity bit and the parity bits are calculated when the
value is clocked in the register. The error indication flag at the
output indicates the faults in the register. These flags are tied
to an OR gate and this allows the system to trigger an error
in the case of a single register fault

R:R1R2R3Rﬂ

P=RI®R®R:3®---®R,. (12)
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Fig. 7. Registers incorporated with parity bits.

3) ROM (Quotient Selection Logic): The memory module
used in the design is critical to the operation and, thus, if it
is prone to faults, it can undermine the entire objective. The
width of the ROM is extended to one extra bit to incorpo-
rate parity. The arrangement is capable of detecting all single
stuck-at faults. During a quotient fetch operation, the quotient
corresponding to the address bits is checked for correctness
at the output of the ROM using the respective parity bits. In
the case of a bad memory location, the circuit raises an error
flag. The ROM with the parity prediction logic is depicted in
Fig. 8.

4) CSA: The proposed design uses a CSA to compute the
next partial remainder based on the previous partial remainder

Error_ROM

Q (real) P

Adder

\ Adder /

v

R[j+1](imag)

Error_imag

R[j+1] ROM |
0 (256 1
2! | t o
s coargs;men Entrles)§
Fig. 8. Minimized ROM with the proposed parity prediction logic.

R[] and the product of the quotient and divisor, i.e., g [ j] xD.
Since the design is aimed toward error detection, CSAs pro-
vide faster computation of the results as the carry is not
propagated but saved; this reduces the delay of the adder. In
addition to this, the CSAs provide easy incorporation of error
detection. The error detection scheme used in the CSA incor-
porates parity checks for individual full adders [45]. The parity
check equations used in the design are given below

a® b o cin® Sum
(aeb)® (a®b)e (cin® cout).

Sum,
Ce

13)
(14)

The parity check equations are used to check the correctness
of both “sum” and “carry.” In the case where one of them is
incorrect, the module raises an error flag.

B. Error Detection Through RESO

In this error detection model, we use RESO [36] to detect
faults in the design. The RESO method, as explained before,
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Fig. 9. Proposed divider with RESO for error detection.

uses the same hardware without any modification. This makes
it efficient in applications where low-area is a requirement.
Let us assume F' is the function to be performed on a par-
ticular operand x. Then, F(x) is the result of the functional
module. The initial result F(x) is stored in a register. The oper-
ation is repeated with a shifted version of the same operand
x, in this case x’. The operation is repeated with x" to obtain
F(x'), in such a way the original result F(x) can be restored
with a simple operation on F(x’). The division architecture for
the implemented RESO structure is shown in Fig. 9 with the
error detection modules shaded and the location of injections
shown by crosses. The figure shows a high level circuit model
and not an exact replica of the implemented FPGA design,
for such modules error injections are indicated by crosses
in parentheses (error injection techniques are described, in
details, in Section VI). The error detection operation in RESO
is illustrated using a simple register in Fig. 10. Let R be
a register containing a permanent stuck-at-one fault at bit
3 (shaded bit). Assume the register is supposed to hold the
value 000000111, (719) in the original run and the stuck-at
fault changes the value in the register to 0000011115 (151¢).
During the second run, the value in the register is shifted one
bit to the left which leads to 000011110, (301¢) instead of
000001110, (1410). Assuming the result of the simple oper-
ation F on x’ can be obtained by a decoding operation G on

Q (imag)

Q_RESO (imag)

error

A

[_F) ]

error

Fig. 10. RESO operation illustrative example.

F(x'), i.e., G(F(x")) = F(x) (under the error free condition). In
the case of an error bit, F(x') # F(x) because the operation
G cannot revert F(x) to F(x).

As shown in Fig. 9, the sizes of the registers are increased
to an extra bit to incorporate shifting of all 2% possible
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combinations. The applied RESO method in this case is
limited to one left shift, i.e., multiplication by 2. Multiple left
shifts are possible, but at the expense of increased register size
which leads to increased CSA, ROM, and address registers. In
accordance with the principle explained above, the initial com-
plex dividend and divisor are passed through the divider. The
quotient is stored in a register. In the second run, the initial
operands are shifted and passed through the divider. This new
result is compared with the previous quotient and in case of
a mismatch, an error flag is triggered. Time-redundancy tech-
niques tend to increase the number of cycles for a particular
operation. Hence, we have sub-pipelined the design in order
to alleviate the throughput. The addition of the pipeline regis-
ters does indeed increase the area slightly, but it is negligible
compared to hardware redundant or parity-based schemes.
Suppose one pipeline-register has been placed to
sub-pipeline the structures. The location for placing the
registers is chosen to break the timing path in to approxi-
mately equal halves. Let us denote the two halves of pipelined
stages by II; and IT,. The original input is first applied
to the architecture in the first cycle. In the second cycle,
while the second half of the circuit (ITp) executes this first
input, the rotated variant of the first input is fed to the
first half of the circuit (IT;). This process is consecutively
executed until the last rotated input is derived. We note that
for detecting the errors, the outputs of the runs with the
rotated-inputs are rotated back and compared against the
original inputs. Therefore, any mismatch indicates an error.
To finalize this section, we present a variant of the RESO
approach (a small tweak to RESO). In this technique, the
bits are right shifted and the last LSB is discarded instead
of left shifting and saving the MSB. This performs a divide
by 2 on the divisor and dividend instead of a multiplication.
Similar to the previous RESO method, no additional hardware
is required to decode the second run result (due to cancelation).
This enables us to incorporate RESO without any change to
the existing design and including additional hardware (adding
extra bit to entire design) as before. The problem with this
technique is that it does not provide complete 8-bit number
coverage, e.g., if only the LSB is 1 then the right shift leads
to a zero (discarded last bit). Noting the small area savings
for this approach, its application could be in the usage models
very sensitive to area overheads of fault detection schemes.

V. FPGA IMPLEMENTATIONS AND BENCHMARK

In this section, through FPGA implementations on two
diverse families, we present the overhead evaluation results,
i.e., area, delay, and throughput. The benchmarking has been
carried out for the original and the error detection structures
of the discussed complex division SRT module. The FPGA
implementations are done using integrated synthesis environ-
ment version 14.5 and synthesized for Spartan-6 xc6slx16-
2cgs324 and Virtex-6 xc6vIx75t-3ff484 devices [46]. Through
this analysis, the performance and implementation metrics of
the complex divider for both low-end and high-end FPGAs can
be observed with very-high-speed-integrated-circuit hardware
description language (VHDL) as the design entry.

TABLE I

FPGA IMPLEMENTATION RESULTS ON SPARTAN-6
FPGA DEVICE XC6S1X16

Arch. Area Throughput Power
[Slices] [Gbps] [mW]
Original 228 0.559 5.43
Scheme-I 304 0.413 7.12
(33.3%) (26.1%) (31.1%)
Scheme-II 269 0.484 5.94
(17.9%) (13.4%) (9.3%)
TABLE II
FPGA IMPLEMENTATION RESULTS ON VIRTEX-6
FPGA DEVICE XCO6VLX75T
Arch. Area Throughput Power
[Slices] [Gbps] [mW]
Original 248 1.074 7.04
Scheme-I 346 0.829 8.90
(39.5%) (22.8%) (26.4%)
Scheme-II 283 0.971 7.93
(14.1%) (9.5%) (12.6%)
The complex division architecture is structured

hierarchically. Specifically, it is divided into four func-
tional modules: 1) Golub’s multiplier; 2) normalizer; 3) SRT
divider (real and imaginary); and 4) ROM. Each of these parts
is implemented individually and port-mapped at the top level.
The error detection designs for individual modules are tested
to verify functionality. The original design (no error detection)
runs at a maximum frequency of 268.557 MHz (minimum
period of 3.724 ns) for the Virtex-6 and 140.928 MHz (mini-
mum period of 7.095 ns) for the Spartan-6, after performing
synthesis and place-and-route. Each iteration takes two clock
cycles; the operation requires a total of eight iterations. Based
on our FPGA implementations, the delay overheads for
Scheme-I (unified parity and hardware redundancy design)
are 29.5% (Virtex-6) and 36.4% (Spartan-6), this is due
to storing the result in carry save form rather than using
traditional CPAs, which may lead to higher delays. Scheme-II
employs the RESO architecture discussed in previous sections
and it leads to additional processing time since it requires
twice the original number of iterations, eight for the original
operands and eight for the shifted operands. As mentioned
before, the design in Scheme-II has been sub-pipelined to
relatively improve the throughput. The synthesis and place
and route are performed using the same settings, i.e., speed
optimization, minimum area, and no DSP blocks, for both
FPGA families.

The implementation results are tabulated in Tables I and II
and the area (slices), throughput, and power consumption
(at 140 MHz) for both designs are presented. The over-
heads are also denoted in the parentheses in both tables.
The maximum area overheads are 33.3% (Spartan-6) and
39.5% (Virtex-6) which correspond to Scheme-I and 17.9%
(Spartan-6) and 14.1% (Virtex-6) for Scheme-II, respectively.
We note that for Scheme-II, sub-pipelining the design leads
to higher frequencies at the expense of area. Since Scheme-II
is aimed toward area-efficient designs compared to Scheme-I,
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further sub-pipelining has not been implemented to maintain
the area within acceptable limits.

We finalize this section by presenting the performance
and implementation metrics of the RESO technique in which
one-bit shift to the right is performed. In this scheme, the
delay overhead is very close to that of the RESO method and
the areas are 267 slices (down from 269 slices in the origi-
nal RESO scheme) and 263 slices (down from 283 slices in
the original RESO scheme), and the power consumptions are
5.82 mW (down from 5.94 mW in the original RESO scheme)
and 7.80 mW (down from 7.93 mW in the original RESO
scheme) for Spartan-6 and Virtex-6, respectively. We note that
the small decrease of the overheads observed is at the expense
of degraded fault detection rate. Based on the objectives and
overhead tolerance, one can choose the scheme suitable for
specific applications.

VI. FAULT INJECTION SIMULATIONS

For the fault model in this paper, both single and multi-
ple stuck-at-fault are considered to cover natural failures and
counteract VLSI defects [47]. The applied fault model uses
linear-feedback shift registers (LFSRs) to generate fault pat-
terns. The outputs of the LFSRs are ORed or ANDed with
outputs of selective locations to emulate transient faults, both
stuck-at-one and stuck-at-zero faults. Due to hardware limita-
tions in the FPGAs, the LFSRs used are clocked to the same
speeds as the implemented designs. The error injection sys-
tem can also be configured to inject faults once in 8, 4, and
2 clock cycles which provides different test scenarios. The
different LFSRs used in the test system are as follows: 1) 16-
bit LFSRs for the registers; 2) 5-bit LFSRs for the adders;
and 3) 3-bit LFSRs for the ROM. The initial seeds to each of
the LFSRs are different in order to produce a pseudo-random
scenario. The LFSR block is made generic (this allows easy
port map in VHDL). The values of the initial seeds are pro-
vided during the beginning of the simulation. Permanent faults
are modeled by switching the LFSR to a constant pattern per
division. The faults are injected as follows: for the first case
(per eight clock cycles), one fault is injected into the 13 data
path registers, the ROM, and the 5-bit adders. This provides
a scenario where one fault (single or multiple) is injected to
all the previously-mentioned locations, for the duration of the
division process. Similarly, the second case injects two faults
per division process and the third case injects four faults per
division operation. For the combinational circuits, the fault
model is directly ANDed or ORed with the datapath within
the Golub’s multiplier and the adders. The second case and
the third case were primarily used for fault injection, because
they provide a more uniform distribution and allow us to test
for a greater faults/clock cycles. Double and multiple faults are
tested separately; this is done to test the parity bits extensively.
Double faults are injected using a different model; this is
achieved by ORing two 16-bit registers with one bit set in both
registers (not in the same bit location), different combinations
are achieved by shifting the bits in the register. In addition, the
fault testing for double and multiple faults are performed for
two different scenarios, faults injected throughout the design

and faults injected only in the parity equipped registers. The
reason for this modified test scenario is to analyze the parity
registers, because including the Golub’s multiplier results in
a very high detection rate due to its error detection scheme.
The faults are injected at different locations in the circuit and
checked for the error indication flags. This provides a more
real-world scenario, because naturally-occurring faults do not
affect a particular part of the circuit but the entire circuit
as a whole with a uniform distribution. Moreover, the alias-
ing cases are excluded from the error analysis, i.e., the cases
where the injected faults produce the same output as the orig-
inal. The same fault model is used for both the presented
error detection modules (parity and RESO). The model simu-
lates both single and multiple faults in the circuit by flipping
the bits from 0 to 1 and vice versa. Since we use a 16-bit
LESR, the probability of the bits flipping is 1/2'¢ and the
error stays for exactly one clock cycle. This perfectly sim-
ulates transient faults. The effect of permanent faults can be
observed by switching the locations probed using an LFSR to a
constant value.

The first proposed scheme uses a combination of signatures
and hardware redundancy and it can be analytically proven
that the detection rate for single-bit stuck-at-fault for par-
ity prediction blocks is 100%. The sketch of such a proof
is derived noting that the results of the formulas for the
parity predictions of the blocks in the architecture will be
different from the actual parities for any odd number of
errors due to the characteristics of the XOR operations and
these are super-sets of single errors which proves such an
error coverage. The simulations for single stuck-at-fault are
performed exhaustively in every bit and every operation to
confirm the theoretical results. We mainly concentrate on
the multiple stuck-at-fault scenarios, by performing extensive
analysis through simulations. For hardware redundant blocks,
it is highly unlikely for two transient faults or permanent
faults of the same nature to occur simultaneously. Hence, the
detection rate for these modules will achieve a high error
coverage close to 100% (there is a slight chance of having
identical undetected faults). As for parity prediction blocks
used in the design, the faults may or may not be detected,
based on the parity they generate. To counter this, different
parts of the circuit are equipped with parity blocks so that at
least one of them alarm the errors. The RESO module uses
two runs to detect faults, both permanent and transient ones.
Since the operands are shifted on the second run, a transient
fault leads to different results, because both the shifted and
original operands are supposed to generate the same result.
A similar condition occurs in the case of a permanent fault.
Consider a stuck-at-one fault at the LSB of a register in
the design. During the shifted second run, the fault at the
LSB, leads to different results due to the iterative nature of
the design.

The simulations have been performed by applying 1000 ran-
dom inputs and 917 504 faults combining the faults injected
at both registers and combinational circuits. The results of
the simulations show almost full error coverage (note that
this is for the case in which randomly-distributed multiple
errors occur at both registers and combinational circuits).
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The proposed error detection designs in Figs. 6 and 9 indicate
a high level design. The error injection locations in both the
designs common are indicated by a X in Fig. 9. Single stuck-at
faults are exhaustively checked at all the modules and bit
locations, i.e., for a 16-bit register, it is checked at 16 bits.
Multiple faults are injected using LFSRs at the outputs of the
Golub’s multiplier, CSA (including four registers and a com-
binational circuit), datapath registers, and the shared ROM. In
order to provide another scenario, we have disabled the fault
detection in the aforementioned modules to test the cover-
age in the parity registers (such errors are caused by different
means such as radiations). Scheme-I with only the parity reg-
isters enabled provides coverage of 100% for single faults. It
has lower coverage for multiple errors, and it is known that
double faults are not detected using single parities. A sin-
gle parity module is capable of detecting 50% of the errors
(for only the logic whose predicted parity is derived and not
for the previous logic levels). At a given point in time, due
to the pseudo-random nature of the LFSR (commonly-used to
model natural faults) and considering stuck-at-one or zero, the
output parity of a register may equate to an odd parity or an
even parity with a probability of half. If we have a number of
cycles, the detection probability is increased though, leading
to better error coverage. We would like to emphasize that if
only the detection of even number of faults is of concern, to
get a very high error coverage, RESO method or its variant
can be used. Scheme-II with RESO provides an error cover-
age of 100%. The error coverage for the right-shift variant of
RESO is 100% but does not provide full coverage in the cases
discussed in the previous section.

VII. CONCLUSION

In this paper, we have presented two complex divider
architectures capable of error detection. The division scheme
uses the SRT division algorithm to obtain the quotient and
remainder. We also propose a new ROM look-up technique
which reduces the number of ROM entries 50%, and, thus, sig-
nificantly reduces the area and power consumption. Scheme-I
utilizes signatures and hardware redundant blocks to incorpo-
rate error detection. Traditional error detection architectures
are limited to the use of either parity (less area but not com-
plete error coverage) or hardware redundancy (maximum error
coverage but impractical hardware complexity). Scheme-I uses
a combination of both the former and latter to achieve maxi-
mum error coverage using relatively less hardware complexity.
Scheme-II achieves its error detection by utilizing redundancy
in time. Due to the nature of the operation, no extra logic
is required to compare the results, apart from the pipeline
registers. Benchmark circuits were evaluated with both sin-
gle and multiple stuck-at-fault. The error coverage simulations
show results of more than 99.999% coverage for the pro-
posed designs. The proposed designs are extendable through
increasing the efficiency of the original design with fault
detection capability by moving to higher radices such as
radix-8 or radix-16. Moreover, they provide different options
to embed error detection in many complex time-efficient and
area-efficient arithmetic applications.
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