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Abstract—High performance implementation of single expo-
nentiation in finite field is crucial for cryptographic applications
such as those used in embedded systems and industrial networks.
In this paper, we propose a new architecture for perform-
ing single exponentiations in binary finite fields. For the first
time, we employ a digit-level hybrid-double multiplier pro-
posed by Azarderakhsh and Reyhani-Masoleh for computing
exponentiations based on square-and-multiply scheme. In our
structure, the computations for squaring and multiplication
are uniform and independent of the Hamming weight of the
exponent; considered to have built-in resistance against sim-
ple power analysis attacks. The presented structure reduces
the latency of exponentiation in binary finite field consid-
erably and thus can be utilized in applications exhibiting
high-performance computations including sensitive and con-
strained ones in embedded systems used in industrial setups and
networks.

Index Terms—Cryptography, double-hybrid multiplier,
exponentiation, Gaussian normal basis (GNB), high-performance,
security.

I. INTRODUCTION

INFORMATION security in constrained applications such
as embedded systems, industrial networks, and sensi-

tive automation structures needs cryptographic measures
implemented efficiently [2]–[6]. It is often desired to per-
form these computations in dedicated hardware platforms
in order to achieve the required levels of performance.
Exponentiation in finite fields is of much importance
and is widely used in many sensitive applications such
as the public key cryptography and the Reed–Solomon
codes [7]. Consequently, many research works have been
focused on low-complexity and high-performance designs
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of the arithmetic units for cryptosystems [8]–[17]. Single
exponentiation is a computation of the form AK , where
A is a field element and K is a positive integer. There
are several schemes for computing single exponentiations
including the square-and-multiply method, the M-ary method,
the sliding window method, the fixed-base comb method,
and methods using precomputations (see [7], [18]–[23]). The
square-and-multiply method is widely used in embedded
devices as it is simple and has low memory requirements.
However, this method has known weaknesses against side-
channel attacks [e.g., simple power analysis (SPA)] and,
hence, its modified versions, e.g., square-and-multiply-always
method and Montgomery’s powering ladder, are preferred
instead [24], [25]. The original concept of power analysis
attacks against exponentiations involved the consideration of
distinguishable operations for multiplication and squaring [24].
The sequences of these operations depend on the bits of the
exponents and an attacker can easily obtain the exponent by
performing a SPA.

In this paper, we propose a new scheme to compute
single exponentiations using a digit-level hybrid-double mul-
tiplier proposed in [1]. In [1], a hybrid-double multiplier
is presented which has been employed for the computa-
tion of double-exponentiation. In this paper, we employed
hybrid-double multiplier architecture and proposed a hard-
ware architecture for the computation of single-exponentiation.
We first decompose the exponent into two parts and per-
form a double exponentiation. Then, using the hybrid-
double multiplier we perform multiplications concurrently
and reduce the latency of computing single exponentia-
tion considerably. We also analyze the resistivity of the
architecture against side-channel attacks. As a result of
this analysis, we conclude that the presented structure
offers excellent protection against common side-channel
attacks.

The remaining part of this paper is organized as follows.
In Section II, we provide preliminaries of the multiplication
over Gaussian normal basis (GNB) and revisit hybrid-double
multipliers. In Section III, we propose a new architecture
for computing single exponentiations by using hybrid-double
multipliers. In Section IV, we investigate the resistivity of
the presented structure against side-channel analysis attacks.
Section V presents the results of our application-specific inte-
grated circuit (ASIC) syntheses. Finally, we conclude this
paper in Section VI.
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II. PRELIMINARIES

In this section, we present the GNB. Moreover,
hybrid-double digit-level GNB multiplier and exponentiation
are discussed.

A. GNB

The GNB is a special class of normal basis which
provides low-complexity multiplication matrix whenever
m �= 0 mod 8.

Let us assume that m (field sizes) and T be positive inte-
gers such that p = mT + 1 is prime and gcd(Tm/k, m) = 1,

in which, we denote the multiplication order of 2 modulo
p as k. Let α be a primitive mT + 1th root of unity in
GF(2Tm). Then, for any primitive Tth root of unity τ in Zp,
β = ∑T−1

i=0 ατ i
generates a normal basis of GF(2m) over

GF(2) given by N = {β, β2, . . . , β2m−1}, which is called a
GNB of type T [26]. Then, one can represent an element
A = (a0, a1, . . . , am−1) ∈ GF(2m), as A = ∑m−1

i=0 aiβ
2i

with
ai ∈ {0, 1}. In GNB, squaring is right cyclic shift as β2m = β.
It is noted that implementation of squaring is very efficient in
hardware.

Consider A and B as two field elements which are repre-
sented by GNB over GF(2m). Then, addition is obtained by
XORing field elements A and B as A+B = ∑m−1

i=0 (ai ⊕bi)β
2i

.
The multiplication C = A × B, is a bit complex over GNB
which is based on a multiplication matrix R(m−1)×T .

Definition 1: Let p: = Tm + 1. Then, every k ∈ GF(p)\ {0}
can be written uniquely as

k = 2iu j mod p

where u is a primitive Tth root of unity, and 1 ≤ i < m−1, 1 ≤
j < T . Assume F to be the map such that F(k) = F(2iu j) = i
for all k ∈ GF(p)\ {0}. Then, we can obtain the first coordinate
of C as

c0 = a0b1 +
m−1∑

i=1

ai

⎛

⎝
T∑

j=1

bR(i,j)

⎞

⎠ (1)

where R(i, j), 0 ≤ R(i, j) ≤ m−1, 1 ≤ i ≤ m−1, and 1 ≤ j ≤ T
denotes the (i, j)th element of R(m−1)×T matrix. Then, one
needs to shift the input operands A and B to obtain the other
coordinates of C. The identity element of addition, i.e., 0,
is (0, 0, . . . , 0, 0) and the identity element of multiplication,
i.e., 1, is (1, 1, . . . , 1, 1) as 1 = β + β2 + β22 + · · · + β2m−1

.

B. Hybrid Double Digit Level GNB Multiplier

In [1], a new digit-level interleaving method for computing
double multiplication (to perform A×B×D on GF(2m) to get
the result E) is presented over GNB. Based on this method, the
hybrid-double multiplier performs two normal multiplications
simultaneously with two interleaved digit-serial multipliers.
The result of the double multiplication is computed after
M = �m/d� + 1 clock cycles (in parallel) assuming that one
clock cycle is required to load the output of the first multi-
plier to the input of the second multiplier. The architecture
for this multiplier is shown in Fig. 1. As shown it is com-
posed of a digit-level parallel-input and serial-out multiplier

Fig. 1. Architecture of the hybrid-double multiplier [1].

and a digit-level serial-input and parallel-output multiplier.
For the operation presented hybrid-double multiplier, regis-
ters 〈X〉, 〈Y〉, and 〈F〉 required to be preloaded with operands
A, B, and D, respectively, and the register 〈Z〉 should be cleared
to zero, 0 ∈ GF(2m). Then, the product of double multiplica-
tion E is available after M clock cycles in the register 〈Z〉.
The area and time complexities of the presented structure
for hybrid double multiplier are as given in the following
proposition.

Proposition 1: The architecture of hybrid double multiplier
of [1] requires ≤ 2vs(T −1)+2dm−d XOR gates (vs = d(m−
1) − (d(d − 1)/2)), 2dm AND gates, four registers (m-bit),
and a d-bit register. Also, the critical path delay (CPD)
for this multiplier structure is tCP = TAND + (�log2 T� +
�log2 m�)TXOR.

Then, one can obtain the time of multiplication of
double multiplication based on the above proposition as
T = tCP × M [1]. For details about the operation of this
multiplier, one can refer to [1].

C. Single Exponentiation

Assume P is an m-bit positive integer with binary expansion
representation given as P = (1Pm−2 · · · P1P0)2 = 2m−1 +∑m−2

i=0 2iPi. Let A ∈ GF(2m), then the computation of AP is

called single exponentiation which can be computed as

AP = A

(

2m−1+
m−2∑

i=0
2iPi

)

= A2m−1 ·
m−2∏

i=0

A2i
Pi. (2)

The most well-known scheme for computing (2) is called
the square-and-multiply method (also called the binary
method). It scans the bits of the exponent P one-by-one either
from the left to the right (most significant bit (MSB)-first
method) or from the right to the left [least significant bit
(LSB)-first method] based on Horner’s rule. Both schemes
require m − 1 iterations. On each iteration, only squaring
is computed if the bit is zero and both squaring and mul-
tiplication are computed if the bit is one. Therefore, the
square-and-multiply method requires m − 1 squarings and
H(P) − 1 field multiplications, where H(P) is the Hamming
weight of the binary representation of the exponent P.

Because the square-and-multiply method performs differ-
ent operations depending on the values of the exponent
bits, it is possible to extract the exponent by mounting
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a SPA attack that determines which operations take place
during the computation. A simple method to fix this
issue is to always compute multiplications but to save
the results only if the bits are ones. This solution, called
square-and-multiply-always, is costly and offers only limited
protection because the attacker can reveal the exponent if
he/she is able to distinguish when the result is saved and
when not [7], [24]. Square-and-multiply-always is also unsafe
against fault attacks. Faults during multiplications differenti-
ate real multiplications from dummy multiplications because
only faults in real multiplications corrupt the result of the
single exponentiation. More sophisticated algorithms, such as
Montgomery’s ladder [25], solve the security issues but still
come with a significant performance penalty.

D. Double Exponentiation

Assume that A and B are two finite field elements of
binary characteristic field, GF(2m), and K = (Km−1 · · · K1K0)2
and Q = (Qm−1 · · · Q1Q0)2 represent two arbitrary positive
integers. Then, the double exponentiation is the computation of
AKBQ. It is a crucial operation for many applications in cryp-
tography and coding (such as various methods for signature
verifications) [25]. Computing double exponentiations based
on traditional schemes, i.e., by computing two single exponen-
tiations and multiplying their results, is not efficient. In [1],
computing double exponentiations by using hybrid-double
multipliers was presented for the first time. In the following,
we employ double exponentiations along with hybrid-double
multipliers in order to accelerate the computation of single
exponentiations.

III. NEW ARCHITECTURE FOR COMPUTING

SINGLE EXPONENTIATION USING

HYBRID-DOUBLE MULTIPLIER

In this section, we propose an architecture for computing
single exponentiations by using double exponentiations with a
hybrid-double multiplier. Let A be a field element in GF(2m)

over an even type-T GNB and let P be a positive m-bit integer
and P = (p0, p1, . . . , pm−1)2 its binary representation. Assume

that B is represented by B = A2�m/2�
and P is represented by

P = p020 + p121 + · · · + pm−12m−1 = K + 2�m
2 �Q (3)

where

K = k0 + k12 + · · · + k�m
2 �−12�m

2 �−1

Q = q0 + q12 + · · · + q�m
2 �−12�m

2 �−1

ki = pi

qi = p�m
2 �+i.

The exponents K and Q are obtained by simply splitting
P into two equally long halves which does not require any
computation and, hence, does not result in extra latency com-
pared to the straightforward exponentiation schemes, such as
the square-and-multiply method. If m is an odd integer, the
coefficient q�m/2�−1 is appended by zeros at its most signif-
icant bit end. Thus, computing the single exponentiation of

Algorithm 1 Proposed Single-Exponentiation Algorithm

Inputs:A ∈ GF(2m) and P = (p0, p1, . . . , pm−1), P > 1.
Output: C = AP.

1: initializeB = A2�m
2 �

and
1.1: K = k0 + k12 + · · · + k�m

2 �−12�m
2 �−1, where ki = pi

1.2: Q = q0 + q12 + · · · + q�m
2 �−12�m

2 �−1,
where qi = p�m

2 �+i

1.3: if (k0q0 = 00) C0 = 1
1.4: if (k0q0 = 01) C0 = B
1.5: if (k0q0 = 10) C0 = A
1.6: if (k0q0 = 11) C0 = AB
2: for i from1 to

⌈m
2

⌉− 1 do
2.1: if (kiqi = 00) Ri = 1, Ri+1 = 1

2.2: if (kiqi = 01) Ri = B2i
, Ri+1 = B2i+1

2.3: if (kiqi = 10) Ri = A2i
, Ri+1 = A2i+1

2.4: if (kiqi = 11) Ri = (AB)2i+1
, Ri+1 = (AB)2i+1

endfor
3: forj from1 to(

⌈m
2

⌉− 1)/2 do
3.1: Cj = Cj−1 × Ri × Ri+1
endfor
3.2: C = Cj

4: return C = AP

the form AP yields the computation of the following double
exponentiation:

AP = AK+2�m
2 �Q = AKBQ

=
(

Ak0 Bq0
)20 (

Ak1 Bq1
)21

· · ·
(

A
k�m

2 �−1 B
q�m

2 �−1
)2�m

2 �−1

(4)

where the bit-lengths of K and Q are half of the bit-length of
P. In Algorithm 1, we propose a new algorithm to compute
single exponentiation based on the split exponent employ-
ing a hybrid-double multiplier. The computation of double
multiplication (Step 3.1 of Algorithm 1) needs to be per-
formed efficiently using a hybrid-double multiplier. In Fig. 2,
we propose an architecture for computing (4) based on the
Algorithm 1. It is composed of three 4-to-1 and one 2-to-1
multiplexers, a hybrid-double multiplier, and successive squar-
ing circuits. The successive squarers are only rewirings as
the field elements are represented in normal basis. The com-
putation of B = A2�m/2�

is a simple rewiring that performs
the right cyclic shift by B = (A � �m/2�) as shown in
Fig. 2. The architecture starts from the LSB end of the inte-
gers K and Q, i.e., k0 and q0, respectively (Steps 1.3–1.6).
Then, every consecutive two bits of both integers (kiqi and
ki+1qi+1) are fed into the two 4-to-1 multiplexers on the top
in Fig. 2 in order to select appropriate inputs for the digit-
level hybrid-double multiplier. These inputs select the inputs
of the hybrid-double multiplier (after performing successive
squarings) to be 1, A, B, or AB. We note that if one would
simply rotate the registers holding A, B, and AB, by i, then the
successive squarers would, indeed, be only fixed rewirings.
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Fig. 2. Presented structure for computing single exponentiation using a hybrid-double multiplier.

TABLE I
CONTENTS OF THE REGISTER FOR COMPUTING A104 853 SINGLE EXPONENTIATION OVER GF(217)

GIVEN IN EXAMPLE 1, WHERE K = 405 = (110010101)2 AND Q = 204 = (011001100)2

We provide the following example in order to better illus-
trate the operation of the presented structure.

Example 1: Let the element A ∈ GF(217) and P =
p020 + p121 + · · · + p16216 be a positive 17-bit integer. Since
�17/2� = 9, we set B = A29

, K = k020 + k121 + · · · + k828

and Q = q020 + q121 + · · · + q828, where ki = pi for
0 ≤ i ≤ 8, qi = pi+9 for 0 ≤ i ≤ 7, and we zero-pad
q8 = 0. The exponentiation C = AP can be represented as
C = AP = AK+29Q = AKBQ. Assume that we want to com-
pute A104 853. We select P = K + 29Q = 104 853, where
K = 405 = (110010101)2 and Q = 204 = (011001100)2.
Therefore, the computation of the single exponentiation is
divided into computing a double exponentiation of the form
AP = AKBQ = A11001100110010101 = A110010101B011001100.
In Table I, we provide the contents of the register 〈Z〉 in
each iteration. First, we start from the LSB of the integers
K and Q, i.e., k0 = 1 and q0 = 0, which select A to be
the left input of the hybrid-double multiplier. Then, q1 = 0
and k1 = 0 are entered to the control input of the top mul-
tiplexer (left one) which select 1 ∈ GF(2m) = (11, . . . , 1) to
be the input of the hybrid double multiplier. Next, k2 = 1
and q2 = 1 are fed to the control inputs of the multiplexer
(top-right) to select AB to be shifted (as AB � 2) and fed
into the third input of the hybrid-double multiplier. The hybrid
double multiplier performs a double multiplication and the
content of the register 〈Z〉 becomes A × 1 × (AB)4 = A5B4

as illustrated in Table I. The process continues until it has
processed the MSB of the elements K and Q. The result
of the exponentiation becomes available after four iterations

in the register 〈Z〉 = A405B204 = A104 853. In total, the pro-
posed method requires �9 − 1/2� = 4 iterations to process
9 bits of the exponents K and Q, concurrently. This is pos-
sible due to the digit-level hybrid-double multiplier which
performs two multiplications in each iteration with the latency
of only one multiplication. Therefore, the presented struc-
ture performs only four double multiplications in computing
a single exponentiation. The latency of the entire single
exponentiation is approximately the same as the latency of
four normal multiplications. Using the binary exponentiation
method would yield a latency of eight normal multiplications.

A. Complexity Comparison and Discussion

The presented structure computes an exponentiation with
the latency of �m − 1/4� double multiplications. We empha-
size that the latency of double multiplication is the same as
the one for single multiplication as described in Section II-B.
In Table II, we compare our presented structure in terms
of the latency and the required multipliers for comput-
ing single exponentiation to the leading ones available
in [7], [24], [27], and [29]. As one can see in Table II, the
latency of the presented structure is considerably less than
those of the counterparts [7], [24], [27], [29]. Since the pre-
sented structure is scalable using the digit-size, one can also
reduce the space complexity of the presented structure in com-
parison to the counterparts and perform a trade-off between
the time and space complexities. The presented structure is
approximately twice as fast with approximately twice the area
which is a decent trade-off that is not possible with the current
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TABLE II
COMPARISON OF VARIOUS SINGLE EXPONENTIATIONS ARCHITECTURES OVER GF(2m)

schemes available in the literature once digit-sizes get large
enough. Moreover, because the proposed scheme can employ
smaller digit sizes in order to get the same latency, the actual
implementation results are likely to be even better.

We are not aware of any implementations of binary field
exponentiations over normal basis that would use the Chinese
remainder theorem or nonadjacent form (NAF) and, hence,
these comparisons are not possible. Using NAF is not an
advantageous strategy for finite field exponentiations. NAF
with signed bits is a good strategy, for instance, for elliptic
curve cryptography because both addition (if the bit is +1)
and subtraction (if the bit is −1) are equally fast in the addi-
tive group formed by the points on an elliptic curve. In the
multiplicative groups of exponentiations, we need to compute
a multiplication if the bit is +1 and a division if the bit is −1.
Because division is significantly more expensive than multi-
plication, NAF is not directly applicable. This problem can be
partly avoided with precomputations: for computing xe, one
precomputes 1/x and uses that in a left-to-right exponentia-
tion algorithm whenever the bit is −1. Even this inversion is
typically so expensive that it overweighs the benefits obtained
from NAF. If x is fixed, then 1/x could be hardwired in the
design and, then, NAF would be a good option. However, in
this paper, we consider cases where x varies which rules out
the NAF approach. Also, for the applications based on expo-
nents of up to 200 bits and with free inversions in the group
a typical choice is either the NAF or the signed sliding win-
dow method for a single exponentiation [31]. We should note
that our presented method of computing single exponentiation
has no restrictions in terms of the length of the exponent.
Note that the Euclidean algorithms are in general slower
than the square-and-multiply algorithms [31] as they require
inversions.

It is worth mentioning that for embedded systems (often
battery operated) there is an architectural advantage with the
proposed method of computing single exponentiation here.
The main objective of the proposed architecture is achieving
high performance structures through reducing the latencies of
computations. Our savings in the time of computations would
make it possible to target high performance applications.

IV. SIDE-CHANNEL ANALYSIS OF THE PROPOSED

ARCHITECTURE FOR SINGLE EXPONENTIATION

In side-channel attacks, an attacker analyzes, e.g., the
power dissipation, electromagnetic radiation, or operation
times of a cryptographic device in order to reveal secret

parameters. The original concept of side-channel attacks
against exponentiations involved the consideration of certain
physical phenomena which allow differentiation between mul-
tiplication and squaring operations. The two most known
attacks are the SPA and the differential power analy-
sis (DPA) [32].

In this section, we survey the applicability of certain side-
channel attacks against the presented structure. First, we focus
on SPA which uses a single power trace in order to figure out
the sequence of multiplications and squarings. Typically, it is
assumed that the attacker is able to distinguish when multipli-
cations and squarings are computed but that he/she cannot say
anything about the values of the operands or results of these
operations. Hence, the attacker can learn information about
the value of the secret exponent only from the sequence of
multiplications and squarings. The standard version of the pro-
posed exponentiation algorithm computes a fixed number of
squarings on each iteration. One hybrid-double multiplication
is computed on each iteration expect when all bits processed
during the iteration are zeros. This means that the attacker will
not learn the values of the key bits if any of them is one, but
if all of them are zeros, then a hybrid-double multiplication is
not computed which is visible in a power trace and this imme-
diately reveals the values of the processed key bits (all zeros)
to an attacker. Hence, we point out that, in order to improve
protection against these attacks, a hybrid-double multiplication
must be computed also in the case where all bits processed in
an iteration are zeros: ki = ki+1 = qi = qi+1 = 0. As a result
of this dummy multiplication 〈X〉 × 1 × 1, a hybrid-double
multiplication is computed on each iteration of the algorithm
regardless of the values of the key bits and the sequence
of operations is constant. Consequently, when this counter-
measure is implemented, the architecture is fully protected
against traditional SPA which can distinguish multiplications
and squarings from a power trace. The computation latency
is also constant and, consequently, the architecture is fully
protected against timing attacks. This countermeasure has neg-
ligible effect on performance because on average only 1/16
of iterations require this dummy operation. This countermea-
sure comes without an area penalty because it does not require
dummy registers or additional logic.

As pointed out above, the architecture offers excellent pro-
tection against basic side-channel attacks because the sequence
of operations computed during an exponentiation is always
the same regardless of the value of the secret exponent, i.e.,
�(m − 1)/4� double multiplications. Next, we discuss certain
more elaborated side-channel attacks and show that, although
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there are certain pitfalls which may leak information about
the secret exponent to an attacker who can launch DPA
attacks or highly accurate SPA attacks, the level of protection
against these attacks is also very high. In many cryptosystems,
e.g., digital signature algorithm (DSA) [33], exponentiations
are computed using an ephemeral key which changes for each
execution of the algorithm. This nullifies DPA attacks against
exponentiations because the attacker can obtain only a single
power trace. Even if DPA attacks are viable, known counter-
measures, such as randomization of inputs (see [34]), apply
without any changes also in this case, which thwarts DPA.
Hence, in the following, we discuss only the resistivity against
highly accurate SPA.

The potential weaknesses against highly accurate SPA stem
from the fact that the inputs to the multiplexers remain
constant throughout an exponentiation. If an attacker is
able to exploit this feature and distinguish which input,
1, A, B, or A × B, is used, then the attacker can find out
information about the key bits. We make the widely-used
assumption that a value x can be distinguished based on
its Hamming weight H(x). Because B is a rotation of A,
H(A) = H(B) which makes distinguishing between these two
values very hard and it is safe to assume that it cannot be
done via SPA. If A is a randomly selected element of GF(2m),
then H(A) ≈ H(A × B) ≈ m/2 with high probability and
it will also be hard to distinguish these values from each
other. Consequently, potential problems concentrate on the
distinguishability of the value 1 = (111 · · · 111)2, for which
H(1) = m. Although we anticipate that even this value will be
hard to distinguish via SPA, we make the pessimistic assump-
tion that it is, indeed, possible and the attacker can distinguish
these cases with 100% accuracy. We survey the consequences
of this assumption next.

We divide this analysis in two cases: 1) the attacker is able to
distinguish when a hybrid-double multiplication 〈X〉×1×1 is
computed and 2) the attacker is able to distinguish when either
〈X〉×〈Y〉×1 or 〈X〉×1×〈F〉 are computed. The attacker imme-
diately learns four bits of P (all zeros) when he/she encounters
the case 1). On average, the attacker encounters the case 1) on
every 1/16 iterations. The case 2) divides into two sub-cases:
2a) where the attacker can distinguish which of the operands is
1 and 2b) where he/she can only say that one of the operands
is 1 but does not know which one. The case 2a) immedi-
ately reveals two bits (both zeros) but leaves three options
for the remaining two: (01), (10), and (11). The case 2b)
does not directly reveal any bits but leaves only six options
for the four bits: (0001), (0010), (0011), (0100), (1000), and
(1100). On average, the attacker encounters the case 2) on
every 3/8 iterations.

As a result, we get the following effects on the security
offered by one iteration. If the attacker can distinguish only
the case 1), then the security per iteration is reduced from
4 bits to log2(1/16 + 15/16 × 16) ≈ 3.91 bits. If the attacker
can distinguish the cases 1) and 2a), then the security is
reduced to log2(1/16 + 3/8 × 3 + 9/16 × 16) ≈ 3.35 bits.
If the case is 2b) instead of 2a), then the reduction is slightly
smaller: log2(1/16 + 3/8 × 6 + 9/16 × 16) ≈ 3.50 bits.
As a result of this analysis, we conclude that even in the

worst case, the complexity is reduced only by approximately
23.35−4 − 1 ≈ −36% and, hence, we are confident that the
presented structure offers excellent protection against common
passive side-channel attacks.

We do not anticipate active side-channel attacks to pose a
much more serious risk for the architecture. Inducing a fault
at any point of the computation including dummy multipli-
cations always corrupts the entire result and, hence, does not
give any additional information to an attacker. If the attacker
can freely choose the value of A, he/she could select A so
that H(1) = m, H(A) = H(B), and H(A × B) differ enough
from each other which, consequently, would allow him/her
to differentiate 1, A or B, and A × B from a power trace. If
ha/she is able to do this with 100% accuracy, then it will have
more serious effects on the security provided by each itera-
tion: log2(1/4 + 1/2 × 2 + 1/4 × 4) ≈ 1.17 bits which is an
approximately 21.17−4 − 1 ≈ −86% reduction. However, we
foresee that this attack would be difficult to mount in prac-
tice because differentiation accuracy would be considerably
smaller than 100% (e.g., only some percents at best). It is
also notable that even if the attacker is able to launch this very
sophisticated active side-channel attack with 100% accuracy,
it offers less information about the secret exponent than the
traditional SPA against typical implementations using square-
and-multiply. Consequently, the architecture offers very good
protection against side-channel attacks.

V. IMPLEMENTATIONS RESULTS AND DISCUSSIONS

In a number of applications which require sensitive embed-
ded architectures, e.g., for mobile ad hoc networks (MANETs)
in industrial setups, one needs to tailor the structures to
exhibit the required security mechanisms. Secure MANETs
are becoming more and more widely implemented in the
industry [35]. Nevertheless, the open medium and remote dis-
tribution of MANETs make it prone to different types of
attacks (intrusion detection mechanisms may be needed). As
such, any security breach could result in loss of assets and
needs to be avoided. The proposed architectures in this paper
can be used in a number of security mechanisms such as DSA
and key agreement through Diffie–Hellman protocol.

In order to validate the feasibility of the proposed architec-
tures in embedded hardware (ASIC-based embedded architec-
tures which can be used in networks in many applications such
as industrial networks), we have synthesized our proposed
architectures. We note that we have chosen the ASIC platform
based on the resources available to us; because our pre-
sented schemes are not dependent on the hardware platform,
similar overheads are expected for field-programmable gate
array (FPGA) designs. Through the performed ASIC syn-
thesis process, the performance and synthesis metrics in
terms of hardware and timing are derived. We have used
the STM 65-nm standard-cell library in the Synopsys Design
Compiler [36]. We have used typical corner case for
synthesis.

We have presented the results of our syntheses for three sin-
gle exponentiation architectures for m = 571 for different digit
sizes in Table III. In this table, the areas (in terms of μm2),
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TABLE III
ASIC SYNTHESIS RESULTS FOR THE PRESENTED SINGLE EXPONENTIATION ARCHITECTURES

FOR m = 571 FOR DIFFERENT DIGIT SIZES USING 65-NM CMOS STANDARD TECHNOLOGY

the maximum working frequencies represented by CPD in
terms of ns, the total number of clock cycles needed for a
complete process, i.e., latencies, the total times (product of
total latency and CPD in terms of ms), the product of time
and area, i.e., time × area (in terms of μsm2), and the ener-
gies (μJ) have been depicted. In order to make the area results
transferable when switching technologies, we have provided
the NAND-gate equivalency (in terms of kilo gate equiva-
lent, denoted as kGE). This is performed using the area of
a NAND gate in the utilized library which is 2.08 μm2. We
note that the presented results are for d = 13, 22, 26 and
q = 44, 26, 22 and the total latencies (L) are derived through
L = (q+1)×�m − 1/4�, where m is the field size (m = 571).

As seen in Table III, the latencies for d = 13, 22, 26 are
6435, 3861, and 3289, respectively, which implies that as we
increase the digit sizes, we need lower number of clock cycles
to finish the operations. However, this comes at the expense of
higher CPD for these three architectures, i.e., 1.88 ns, 2.13 ns,
and 2.57 ns, respectively. These result in the total times of
12.1 ms, 8.91 ms, and 8.45 ms for the aforementioned digit
sizes (the total times are decreased as digit sizes go up).

As seen in this table, the areas in terms of μm2 (kGE)
for d = 13, 22, 26 are 619 248 μm2 (298 kGE),
1 015 358 μm2 (507 kGE), and 1 192 370 μm2 (596 kGE),
respectively. In other words, increasing the digit sizes results
in higher hardware complexity. Finally, the time × area (in
terms of μsm2) is increased if the digit sizes are increased,
i.e., 7492.9 μsm2, 9046.8 μsm2, and 10075.5 μsm2 for
the three architectures, respectively. We would like to point
out that based on the requirements and constraints imposed,
the performance/implementation metrics to achieve, and the
resources available (overheads tolerated) one can tailor the pre-
sented architectures to be used in different embedded systems
deployed in a variety of applications including industrial usage
models.

Finally, one should note that the cost of implementing a dig-
ital signature scheme depends on various aspects but common
to them is that the cost is dominated by the exponentiation
operation (or scalar point multiplication in the case of sys-
tems based on elliptic curves). Because we do not target any
specific signature scheme but rather provide a general solu-
tion that can be used in a multitude of systems that use
exponentiations in binary fields over normal basis, we can-
not provide any specific timings for a signature scheme. It is
noted that the other costs of signature schemes usually com-
prise computing a hash of a message and its timing depends
significantly on the length of the message being signed and

some arithmetic that combines the results of suboperations (for
instance, the results of the exponentiation with the hash and
secret key). The costs of these operations are independent of
the cost of the exponentiation which we focused on this paper.
For instance, in [37], a comparison of implementing DSAs
is done between binary fields and prime fields. It has been
shown that binary fields outperform prime fields in terms of
both time and energy consumptions (occupying similar silicon
area). Therefore, our proposed method of computing exponen-
tiation on binary finite field is a step forward to accelerate
the computation of digital signature on binary fields targeting
high performance applications. We will explore the imple-
mentation of a complete cryptosystem based on our proposed
method in our future work. We will also explore fault analysis
attack defense mechanisms in our future work building on our
previous work on reliability in crypto-systems (see [38]–[43]).

VI. CONCLUSION

In this paper, we presented a new scheme for computing sin-
gle exponentiations employing a hybrid-double multiplier over
GNB. The presented structure reduces the latency of comput-
ing single exponentiations significantly in comparison to the
previously known works available in the literature which are
suitable for security mechanisms in embedded systems and
industrial networks. The presented structure has applications
in high performance computations of single exponentiations
for coding and cryptography. Moreover, we investigated the
applicability of side-channel attacks and we concluded that
the presented structure offers excellent protection against com-
mon side-channel attacks. The presented structure could also
be used for the case where the field elements are represented
using polynomial basis and this would result in a similar
acceleration for the computation of single exponentiations.
For future work, we believe that it would be interesting to
perform a comparative power analysis of the proposed expo-
nentiation scheme, a step-forward toward providing security
for industrial/personal setups.
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