IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014

89

Fault-Resilient Lightweight Cryptographic Block
Ciphers for Secure Embedded Systems

Mehran Mozaffari-Kermani, Member, IEEE, Kai Tian, Reza Azarderakhsh, Member, IEEE, and
Siavash Bayat-Sarmadi, Member, IEEE

Abstract—The development of extremely-constrained embedded
systems having sensitive nodes such as RFID tags and nanosen-
sors necessitates the use of lightweight block ciphers. Neverthe-
less, providing the required security properties does not guarantee
their reliability and hardware assurance when the architectures
are prone to natural and malicious faults. In this letter, error de-
tection schemes for lightweight block ciphers are proposed with
the case study of XTEA (eXtended TEA). Lightweight block ci-
phers such as XTEA, PRESENT, SIMON, and the like might be
better suited for low-resource deeply-embedded systems compared
to the Advanced Encryption Standard. Three different error de-
tection approaches are presented and according to our fault-in-
jection simulations, high error coverage is achieved. Finally, field-
programmable gate array (FPGA) implementations of these pro-
posed error detection structures are presented to assess their effi-
ciency and overhead. The schemes presented can also be applied
to lightweight hash functions with similar structures, making the
presented schemes suitable for providing reliability to their light-
weight security-constrained hardware implementations.

Index Terms—Cryptography, error detection, security.

I. INTRODUCTION

NE defining trend of this century’s IT landscape is the

extensive deployment of tiny computing devices such
as radio frequency identification (RFID) devices and wireless
nanosensor nodes. The sensitivity of such applications makes
the algorithms such as the advanced encryption standard (AES)
[1] and lightweight cryptography essential to reach acceptable
confidentiality. For instance, for the tiny encryption algorithm
(TEA), anew extended variant, XTEA, was developed [2]. This
algorithm is notable for its simplicity (making it very suitable
for hardware implementations) and is used widely in providing
lightweight security.

Manuscript received September 16, 2014; accepted October 22, 2014. Date
of publication October 24, 2014; date of current version November 20, 2014.
This work was supported in part by Texas Instruments Faculty Award, granted
to M. Mozaffari-Kermani and R. Azarderakhsh (K. Tian is their joint graduate
student under this award). This manuscript was recommended for publication
by T. Eisenbarth.

M. Mozaffari-Kermani and K. Tian are with the Department of Electrical and
Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY
14623 USA (e-mail: m.mozaffari@rit.edu; txk1844@rit.edu).

R. Azarderakhsh is with the Department of Computer Engineering, Rochester
Institute of Technology, Rochester, NY 14623 USA (e-mail: rxacec@rit.edu).

S. Bayat-Sarmadi is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran (e-mail: sbayat@sharif.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2014.2365099

An important reason leading to natural faults in the
very-large-scale integration (VLSI) implementations is hard-
ware failures. In cryptographic hardware and embedded
systems, the adverse effects of such faults are amplified con-
sidering not only the sensitivity of such structures but the
possibility of mounting active side-channel analysis attacks,
commonly referred to as fault attacks. For cryptographic ar-
chitectures such as the AES, much research has been carried
out to achieve various concurrent error detection (CED) struc-
tures, see, for instance, [3]-[10] (also, refer to [11] for reliable
architectures for lightweight cryptography).

To date, many research works have analyzed lightweight
block ciphers such as the recent one on SIMON [12]. As one
of the fastest and most efficient block ciphers in existence,
XTEA 1is used for some real-life cryptographic applications.
This block cipher only uses simple addition, XOR, and shift
functions, and has a very small code size. This makes XTEA an
excellent candidate to provide confidentiality for nodes having
limited memory and computational power.

In this letter, using this algorithm as the case study, the re-
liability and fault resilience of lightweight crypto-architectures
are assessed. We note that this choice does not confine the pro-
posed methods for other lightweight cryptographic algorithms
(such as SIMON). The high error coverage of the presented
schemes would meaningfully increase the difficulty for poten-
tial fault attackers. We use signature-based and recomputing
with rotated operands (RERO) approaches based on the objec-
tives of protection, reliability requirements, and overheads to
be tolerated. Through error simulations, it is shown that with
high error coverage, reliable architectures are devised. Further-
more, through field-programmable gate array (FPGA) imple-
mentations on Virtex-5 FPGA devices, the overheads of the pre-
sented architectures are shown to be acceptable for resource-
constrained applications.

II. PRELIMINARIES

The lightweight block cipher XTEA accepts a cryptographic
key of 128 bits and a 64-bit block size. The input block is sep-
arated into two halves X and Y. These are applied to a Feistel
network for NV cycles and N is normally 32.

Algorithm 1 shows the process through which this algorithm
derives the ciphertext. Within XTEA, all additions and subtrac-
tions are modulo 2%, Logical left shifts by 4 bits are denoted as
< 4 and logical right shift by 5 bits are denoted as >> 5. The
XOR function is denoted as “©* in this algorithm. The first part
of the algorithm is a permutation function and the second part is
a subkey generation function. The 128-bit user key can be split

1943-0663 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

90

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014

sum
32

Key

f2s

sube] s

Delta
ADD

subkeys

IV V1
|32 a2
>55 ADD
Va2 ADD
==l —
N P T
ADD
r = ,LIT;DD]

Ci-1
’ Carry Generation Circuit - | S
Ff et [@ff Jaff 1 ai pi [o pi
bi d c
N N @ Gi | » S
PS PB Slice 32 Slice 2 Slice 1 £ET
} 58
3 Cco R 3
PA 532+ L Is2 B Is1 .
PC 31 | @ c1 -
F1 f -) &
F2 | 2-rail checker ‘ \ G

Fig. 1. Carry checking/parity prediction adder avoiding duplication of the carry generation block.

into four blocks. Each block is a 32-bit subkey. The function
key[surmn] chooses one block out of the four subkey depending
on 1st and Oth bits (12th and 11th bits in the second half cycle)
of sum. The XOR function is applied to the result of the per-
mutation function and the subkey generation function and, then,
this result is applied to = and y by addition when encrypting or
subtraction when decrypting. A whole cycle can be split into
two half cycles. In each half cycle, a new value for vy and vy
is computed. Between the first and the second half cycle, a new
value for sumn is computed. surn increases by a constant Delta,
which equals to the integral part (/5 — 1) x 23! in hexadecimal
form. This addition can be included in the first half cycle.

Algorithm 1 The XTEA encryption algorithm.

Inputs: 64-bit data: v[0]-v[1], 128-bit key: key[0]-key[3].
Initialize (encryption): vg = v[0], v1 = w[l], sum = 0,
delta = 009E3779B9, n: number of rounds.

. fori =0ton —1do

. Vo — Vo + (((’Ul < 4:) @ (’Ul >

) 4 v1) ® (sum + key[sumé&3]).

. swm +— sum + delta.

) v — o1 + (((vo € 4) & (vg >

)+ vo) B (sum + key[sum > 11&3]).

1
2
5
3
4
5
5. end for.

III. PROPOSED ERROR DETECTION SCHEMES

In this section, two different error detection approaches
are proposed with the case study of XTEA. We would like to
emphasize that although we use this case study, the proposed
methods are applicable with slight modifications to similar

lightweight block ciphers (such as SIMON) and hash functions.
For the sake of brevity, only the schemes for the encryption
process are presented.

A. Signature-Based Diagnosis

For the XOR and shift functions, the parity prediction func-
tion (P is used for predicted parities) is straightforward. For in-
stance for XOR Pg = Z;L:‘Ol(a.,:@bi) = Z?:—ol a/'i,EBZ;L:—OI bi =
P4 & Pg, assuming two inputs are A and B (with bits a; and
b;) and the actual parities for inputs are P4 and Pg.

Assuming the two inputs are A and B, then, the output bit
s; is equal to a; B b; P ¢;_1. Considering modulo-2 addition,
the output parity is given by the following expression Py =
S (@i ®b B) = e B b i =
PyaPpa Z::Ul ¢; 1, where ¢; 1 is the carry input of the ith
bit.

In a system using parity encoded data, the parities P4 and
Pgp are already available. Thus, only Po = Zi";ol ¢;—1 has to
be computed to predict the parity code.

An advanced architecture of carry checking/parity prediction
adders is through removing the parity generator, avoiding du-
plication of complex carry generation blocks, and using partial
carry duplication [13]. Fig. 1 shows the carry checking/parity
prediction adder avoiding duplication of the carry generation
block and the architecture of adder bit slice using partial carry
duplication.

F1 and F2 in Fig. 1 are two outputs of the double-rail checker
(these are used for codeword verifications). Because of the prop-
erty of double-rail checkers that they have a one-to-one corre-
spondence with the parity trees, they can be viewed as parity
generators with double-rail inputs and outputs. The inputs to the
double-rail checker are C; and C;, so the output F1 is Px. Pg

MOZAFFARI-KERMANI et al.: FAULT-RESILIENT LIGHTWEIGHT CRYPTOGRAPHIC BLOCK CIPHERS FOR SECURE EMBEDDED SYSTEMS 91

can be obtained by making P4, Pg, Pc, and Cj going through
an XOR gate.

To avoid duplication of the carry generation block, the struc-
ture of slice in adder should be changed as shown in Fig. 1. The
following solutions were used to solve this problem: using the
same carry generation logic in the ripple-carry adder to guar-
antee low hardware cost and using the carry inputs from the
normal carry generation logic rather than the previous slice of
the check carries to guarantee high speed.

The entire parity prediction schemes for XTEA can be
reached by combining these three parity prediction approaches.

B. Recomputing with Rotated Operands (RERO)

Error detection schemes based on time redundancy often
suffer from the inability to detect permanent faults. However,
RERO is capable of detecting not only the transient faults
which are common in fault attacks but also the permanent
faults affecting logic gates in the cryptographic hardware and
embedded systems. Suppose 1 and v ! are n-bit rotations (or
cyclic shifts) toward the least and most significant bits of a
binary operand, respectively. Moreover, let # be the input to
an arithmetic function g, and g() be its output in such a way
that v 1(g(+(7))) = g(x). To apply the RERO method, we
need to store the result of the first computation (first run) and
compare it against the result of the second computation (second
run). If the results are different, it indicates an error is alerted
by the error indication flag.

The most involved part for RERO is the one for addition. The
correctness of carry-in for logic ¢+ + 1th bit and carry-out from
logic nn — 1th bit should be guaranteed. As such, one extra bit is
added as the most significant bit (using an n + 1 adder) and the
logic pattern before rotation becomes

Qn—-1n—-2...4+17...210

where @ is the added bit which is stuck-at zero. The logic pat-
tern after rotation becomes

i...2100n —In—2.. i+ 1,

The values of@is always set to “0” even if it is not actually
derived as “0”. Thus, logic n — 1th bit is not able to affect logic
Oth bit in the rotated operation as well as the normal one.

Moreover, one needs to link the carry-out from the most sig-
nificant bit to the carry-in of the Oth bit. Due to the fact that the
values of the extra bit are always “0”, the carry-out from the
most significant bit is “0” in the first computation and it will not
affect Oth bit. During the second computation, the most signif-
icant bit contains logic #th bit. The carry-out from logic #th bit
is applied to the carry-in of logic # + 1th bit.

Throughput and Efficiency Considerations: Time redun-
dancy techniques suffer from degradations in performance.
However, it is possible to increase the frequency of compu-
tations (and thus to increase the efficiency and throughput)
through subpipelining. Suppose one pipeline-register has been
placed to subpipeline the structures. Let us denote the two
halves of pipelined stages by II; and II». The original input is
first applied to the architecture in the first cycle. In the second

cycle, while the second half of the circuit (Ils) executes this
first input, the rotated variant of the first input is fed to the first
half of the circuit (IIy). This trend is consecutively executed
until the last rotated input is derived. As such, we can take
advantage of multilevel subpipelining to reduce the throughput
degradation of the proposed scheme. Although the added
subpipelining registers slightly increase the induced hardware
overhead, it is more preferable to use the time-redundancy
schemes which introduce much more overall design overhead.

IV. ERROR SIMULATIONS AND FPGA IMPLEMENTATIONS

To evaluate the error detection capability of the proposed
structures, fault-injection simulations have been performed. The
fault model used is elaborated in the following.

A. Fault Model

Throughout this letter, both single and multiple stuck-at faults
have been considered (note that these could be transient or per-
manent). These two models cover both malicious fault attacks
and natural faults. Indeed, single stuck-at faults model the nat-
ural failures (such as single event upsets) and are the ideal cases
for the attackers. However, due to technological constraints,
single stuck-at fault injections become more difficult for an at-
tacker to gain information (it is still a possibility due to larger
components such as bus-lines). Thus, multiple bits will actually
be flipped, and, thus, multiple stuck-at faults are also considered
in this letter.

B. Simulation and Implementation Results

If exactly only one bit error appears, the coverage is 100%,
thus, no simulation is needed. Most internal faults can be mod-
eled by transient random faults. These could be localized faults
with 50% detection rate if they affect just one parity unit or
very high if randomly-distributed faults occur. We note that each
parity cannot detect with more than 50% rate but the combina-
tion of parity bits if the fault model is multiple, randomly-dis-
tributed faults (permanent or transient) can detect with higher
rate. One side-note is that through testing, permanent faults can
be detected as well but transient faults (in case they are ran-
domly-distributed) can be detected with high ratio using the
proposed methods. We note that, however, even a half-round
has a number of parities so theoretically, the detection rate is
much higher even for half-round localized faults affecting the
blocks covered by the respective parities. 10 000 faults are in-
jected using eight different test cases and validated for error
coverage and assessed through a linear-feedback shift register
(LFSR)-based simulation environment. It is noted that we use
Fibonacci implementation LFSRs with the required output taps
for injecting random multiple errors, where the numbers, loca-
tions, and types of the errors are randomly chosen.

For each injection, error indication flags are monitored, and
the detected errors are counted. The results of the performed
simulations show very high error coverage (all the cases have
at least 9 996 faults detected out of 10 000 samples, i.e., 99.96%
detection rate for this case). For the signature-based scheme,
multiple parities for multiple detection points (shown in Fig. 1)
are used to achieve such high coverage as single parities are in-
effective even for single errors. It is noted that the implemented

92

TABLE I
PERFORMANCE DEGRADATION COMPARISON

[Structure | Delay (ns) | Overhead [| Throu. (Mbps) | Deg. |

Original 3.833 - 39.57 -
RERO! 2.891 N/A 26.42 33.2%

1 One stage subpipelined architecture.

architecture utilizes the RERO method for one computation of
a round to have a practical scheme.

If an attacker is capable of injecting faults in the parity cir-
cuitry, the following cases can happen: 1). the injected single or
multiple stuck-at faults (if not masked) in only the parity pre-
diction circuitry are detected; 2). for multiple stuck-at faults,
in both the original and prediction circuits (which are not ideal
cases for attacks), such dual injections can make the respective
parity prediction blocks ineffective (if not masked). However,
it is emphasized that multiple stuck-at faults are not preferable
and even if they occur, it will make just the respective parity
blocks ineffective and might not have large effects on final error
coverage. Nevertheless, the presented RERO scheme is not vul-
nerable to such injections and its comparison unit is assumed to
be fault tolerant.

In this section, we also present the results of the overhead
assessments using the FPGA hardware platforms. The analysis
has been performed for the original and the error detection struc-
tures of the encryption process of the XTEA. Vivado version
2013.2 and Kintex FPGA device xc7k70tlfbg676-2L have been
utilized for the FPGA implementations. VHDL has been used
as the design entry for the original and the error detection struc-
tures.

To benchmark the performance of the proposed schemes, we
have done implementations for the original and fault diagnosis
scheme using RERO as seen in Table I (this scheme is chosen
for implementations as it is suitable for low-area embedded ar-
chitectures). Moreover, based on the subpipelining approach we
presented in this letter, one can alleviate the inherent perfor-
mance degradations of the RERO method. Specifically, with
the expense of adding registers for deep subpipelining (for in-
stance, one stage subpipelining in Table I), higher frequencies
are achieved for the RERO scheme which make the degrada-
tions in throughput less intense.

In Table II, the area and power consumptions for the original
and the error detection structures of the XTEA are presented
(working frequency of 100 MHz). We have performed imple-
mentations for the hardware redundancy scheme and with 333
slices used (area overhead of 88.1%), this scheme is not prefer-
able for low-complexity architectures. As seen in Table II, the
area and power consumption overheads of the RERO structure
are shown (we get around 5% increase in power consumption).
Based on the simulation results, these overheads are added for
the error coverage of very close to 100%. The proposed fault di-
agnosis approaches provide high error coverage at the expense
of the acceptable overheads on the FPGA hardware platforms,
making the hardware architectures of the XTEA more reliable.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014

TABLE 11
AREA AND POWER CONSUMPTION OVERHEADS COMPARISON

[Structure | Area (#slices) [Overhead [| Power (mW) | Overhead |

Original 177 - 87
RERO 228 28.8% 91

4.6%

V. CONCLUSION

In this letter, two fault diagnosis approaches for the light-
weight block cipher XTEA have been proposed. These include
parity-based structure and RERO structure. The results of
the simulations show very high error coverage (very close
to 100%) for the presented error detection structures for the
injected faults. Moreover, the FPGA implementation analysis
results show acceptable overheads for the XTEA when the pre-
sented schemes are utilized. The proposed schemes can be used
to protect the extremely-sensitive and resource-constrained
applications.

REFERENCES

[1] National Institute of Standards, and Technologies, “Announcing the
advanced encryption standard (AES),” in Proc. Federal Inf. Processing
Standards Pub., Nov. 2001, no. 197.

[2] D. Wheeler and R. Needham, “TEA extensions,” in Technical report.
Cambridge, U.K.: Cambridge Univ. Press, Oct. 1997.

[3] C. H. Yen and B. F. Wu, “Simple error detection methods for hard-
ware implementation of advanced encryption standard,” IEEE Trans.
Comput., vol. 55, no. 6, pp. 720-731, Jun. 2006.

[4] T.G. Malkin, F. X. Standaert, and M. Yung, “A comparative cost/secu-
rity analysis of fault attack countermeasures,” in Proc. Int. Workshop
FDTC, Oct. 2006, pp. 159-172.

[5] M. Mozaffari Kermani and A. Reyhani-Masoleh, “Concurrent struc-
ture-independent fault detection schemes for the advanced encryption
standard,” /EEE Trans. Comput., vol. 59, no. 5, pp. 608—622, May
2010.

[6] A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-performance
concurrent error detection scheme for AES hardware,” in Proc. Int.
Workshop Cryptographic Hardware Embed. Syst., Aug. 2008, pp.
100-112.

[7] P. Maistri and R. Leveugle, “Double-data-rate computation as a coun-
termeasure against fault analysis,” JEEE Trans. Comput., vol. 57, no.
11, pp. 1528-1539, Nov. 2008.

[8] G. Xiaofei and R. Karri, “Recomputing with permuted operands: A
concurrent error detection approach,” [EEE Trans. Comput.-Aided
Des., vol. 32, no. 10, pp. 1595-1608, Oct. 2013.

[9] M. Mozaffari Kermani and A. Reyhani-Masoleh, “Reliable hardware
architectures for the third-round SHA-3 finalist grostl benchmarked on
FPGA platform,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst. (DFT), Oct. 2011, pp. 325-331.

[10] M. Mozaffari Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the advanced encryption stan-
dard using composite fields,” IEEE Trans. Very-Large Scale Integr.
(VLSI) Sys., vol. 19, no. 1, pp. 85-91, 2011.

[11] M. Mozaffari Kermani and R. Azarderakhsh, “Efficient fault diagnosis
schemes for reliable lightweight cryptographic ISO/IEC standard
CLEFIA benchmarked on ASIC and FPGA,” IEEE Trans. Ind. Elec-
tron., vol. 60, no. 12, pp. 5925-5932, Dec. 2013.

[12] A. Aysu, E. Gulcan, and P. Schaumont, “SIMON says: Break area
records of block ciphers on FPGAs,” IEEE Embed. Syst. Lett., vol. 6,
no. 2, pp. 3740, Jun. 2014.

[13] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very-Large Scale Integr. (VLSI) Sys., vol. 11, no. 1, pp.
121-128, 2003.

