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Abstract Fault detection schemes for the Advanced
Encryption Standard are aimed at detecting the in-
ternal and malicious faults in its hardware imple-
mentations. In this paper, we present fault detection
structures of the S-boxes and the inverse S-boxes for
designing high performance architectures of the Ad-
vanced Encryption Standard. We avoid utilizing the
look-up tables for implementing the S-boxes and the
inverse S-boxes and their parity predictions. Instead,
logic gate implementations based on composite fields
are used. We modify these structures and suggest new
fault detection schemes for the S-boxes and the in-
verse S-boxes. Using the closed formulations for the
predicted parity bits, the proposed fault detection struc-
tures of the S-boxes and the inverse S-boxes are simu-
lated and it is shown that the proposed schemes detect
all single faults and almost all random multiple faults.
We have also synthesized the modified S-boxes, inverse
S-boxes, mixed S-box/inverse S-box structures, and the
whole AES encryption using the 0.18μ CMOS technol-
ogy and have obtained the area, delay, and power con-
sumption overheads for their fault detection schemes.
Furthermore, the fault coverage and the overheads
in terms of the space complexity and time delay are
compared to those of the previously reported ones.
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1 Introduction

The Advanced Encryption Standard (AES) is recently
approved by NIST (National Institute of Standards and
Technology) [10] as a replacement for the previous
standards because of its good characteristics in terms
of security, cost, and efficient implementations [10]. In
encryption, the AES accepts a 128-bit plain text input.
The key can be specified to be 128 (AES-128), 192 or
256 bits. In the AES-128, the cipher text is generated
after ten rounds, where, each round consists of four
transformations except for the final round which has
three transformations. The decryption algorithm trans-
forms the cipher text to the original plain text using the
reverse procedure [10].

Each transformation in every round of encryp-
tion/decryption acts on its 128-bit input which is consid-
ered as a four by four matrix, called state, whose entries
are eight bits. The transformations in each round of
encryption except for the last round are as follows:

– SubBytes: The first transformation in each round
is the bytes substitution, called SubBytes, which
is implemented by 16 S-boxes. These S-boxes are
nonlinear transformations which substitute the 128-
bit input state with a 128-bit output state.

– ShiftRows: ShiftRows is the second transformation
in which the four bytes of the rows of the input
state are cyclically shifted to the left. The number
of left shifts for each row is equal to the number
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of that row. Let us denote rows as rowi where, i,
0 ≤ i ≤ 3, is the row number. Then, for rowi, i shifts
are required.

– MixColumns: The third transformation is Mix-
Columns in which each entry in the output state is
constructed by the multiplication of a column in the
input state with a fixed polynomial over GF(28).

– AddRoundKey: The final transformation is Ad-
dRoundKey in which a 128-bit roundkey is added
modulo-2 to the input state.

Fault detection is an essential part of the AES
hardware implementation. This is mainly because nat-
ural faults may cause erroneous output in the encryp-
tion/decryption and more importantly an attacker may
inject faults during the AES computation and analyze
the results in order to retrieve the secret key [4, 15, 17].
For fault detection of the encryption or decryption one
may use redundant units [16]. Also, a multiplication
approach for fault detection of the multiplicative inver-
sion of the S-box and its inverse is presented in [15],
where, the result of the multiplication of the input and
the output of the multiplicative inversion is compared
with the actual result. Another approach is the use of
error detecting codes [2, 3, 5, 33, 34], for which, several
parity prediction schemes are proposed. The output
parity bits of each transformation in every round are
used as inputs to the next transformation.

Parity prediction of the S-box used in [3] is based
on the look-up table implementation in which memory
cells are utilized to generate the predicted parity bit
as well as the 8-bit output. The S-box and the inverse
S-box as well as their parity predictions are nonlinear
operations and are preferred to be implemented us-
ing look-up tables. The Look-up table-based S-boxes
have 256 elements which are computed in advance and
stored in the memory [5, 33]. However, for applications
which require high performance AES implementations,
one needs to implement the S-box and the inverse S-
box in hardware using logic gates [7], especially when
the high latency of the implementations is not an issue.
The usage of arithmetic in the composite fields re-
duces the space complexity of the S-box and the inverse
S-box and allows us to pipeline them which reduces the
delay [14].

Instead of predicting the parity of the S-box, one
may use an alternate implementation of the S-box
and compare two outputs to obtain a fault detection
scheme. Although using this method detects all errors
at the output of the S-box, the area overhead, consider-
ing the alternate implementation and the comparison
circuit, is more than 100% which is quite high for

area-constrained applications. Another fault detection
scheme may be based on comparing a number of output
bits of the S-box, say n bits, with those of the alternate
one using n two-input XOR gates. Then, using an n-
input OR gate, the error indication flag is obtained. Us-
ing this scheme, only the faults that occur in the portion
of circuit that generates the above mentioned n bits of
the output in the original circuit may be detected. This
means a non-uniform fault detection scheme which is
dependent on the locations of the faults. However, this
is not the case for the presented fault detection scheme
based on the prediction of the parity bits of the output.

In this paper, we propose a general scheme for
reaching fault detection structures of the AES S-boxes
and inverse S-boxes. This scheme can be used for
any hardware implementation of the S-boxes and the
inverse S-boxes based on composite fields. Moreover,
we implement fault detection AES structures using
two commonly-used composite fields using polynomial
basis [32, 35]. We utilize the logic gates implementation
for the modified S-boxes and inverse S-boxes as well
as their parity-based schemes. The contributions of this
paper are summarized as follows:

– We have analyzed the error propagations due to
all the single stuck-at faults in the structures of the
S-boxes and the inverse S-boxes in two commonly
used composite fields.

– After dividing the structures of the S-box and the
inverse S-box into five blocks, we have proposed
a general scheme to obtain modified structures of
these blocks in any composite field realization of
the S-boxes and the inverse S-boxes. Using these
structures, single faults lead to either zero or odd
number of erroneous output bits of the block in
which the fault has occurred. Therefore, all the
single faults are detected using the fault detection
scheme.

– We have simulated the structures of the modified
S-boxes and inverse S-boxes in two composite fields
after injecting stuck-at faults. Our simulations using
Quartus� II show that the fault detection schemes
for the modified structures are capable of detecting
all single faults. It is also shown that the fault detec-
tion schemes using modified structures can detect
most of the random multiple faults.

– Finally, the ASIC synthesis results using the 0.18μ

CMOS technology for the S-boxes, the inverse S-
boxes, mixed S-boxes/inverse S-boxes and the AES
encryption are presented. We have also synthesized
the modified structures and then their areas, delays
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and power consumptions are obtained. Further-
more, the complexities of the modified S-boxes and
inverse S-boxes and their fault detection circuits are
compared with the previous schemes.

The organization of this paper is as follows: In
Section 2, preliminaries regarding the logic gate im-
plementations of the S-boxes and the inverse S-boxes
using composite fields GF(((22)2)2) and GF((24)2) are
explained. Also, their predicted parities are presented
and the fault model used throughout this paper is in-
troduced. In Section 3, error propagations due to single
faults in the S-boxes and the inverse S-boxes in these
composite fields are discussed. Fault detection struc-
tures of the modified S-boxes and inverse S-boxes for
two above-mentioned composite fields are presented
in Sections 4 and 5, respectively. Then, in Section 6,
using the formulations of the parity predictions, parity-
based fault detection schemes for those structures are
simulated after injecting all single stuck and many
random multiple faults. Moreover, the complexities of
the proposed structures are analyzed in this section.
In Section 7, the ASIC experimental results using the
0.18μ CMOS technology for the modified S-boxes and
inverse S-boxes, mixed S-boxes/inverse S-boxes, and
their fault detection schemes are presented. Also, we
have implemented the structures of the entire AES
encryption and their fault detection schemes using two
composite fields. Their experimental results are also
given in Section 7. Finally, conclusions are made in
Section 8.

2 Preliminaries

The AES uses the irreducible polynomial of p(z) =
z8 + z4 + z3 + z + 1 to construct the binary field
GF(28). For obtaining low complexity implementa-
tions, composite fields are used [24]. In this section,
we introduce two commonly used composite fields, i.e.,
GF(((22)2)2) and GF((24)2), for implementation of the
S-box and the inverse S-box. It is noted that although
our presented scheme for obtaining the fault detection
structures is applicable to any composite field, we have
considered these fields since they have received much
attention in the literature, see for example [26, 27, 29,
35] for GF(((22)2)2) and [14, 18, 19, 25, 30, 32] for
GF((24)2). Also, we introduce the parity predictions
of the S-boxes and the inverse S-boxes using these
composite fields and the fault model we use throughout
this paper.

2.1 S-box and Inverse S-box in GF(((22)2)2)

The S-box structure which uses composite field arith-
metics in GF(((22)2)2) is shown in Fig. 1a [27]. As seen
in this figure, for the composite field presented in [35],
the transformation matrix δ in Eq. 1, which is imple-
mented by the first part of Block 1, transforms X =
(x7, x6, x5, x4, x3, x2, x1, x0) ∈ GF(28) to η = ηhz + ηl ∈
GF(((22)2)2) using:

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
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⎛
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1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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x4

x5
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where, ηh = (η7, η6, η5, η4), ηl = (η3, η2, η1, η0) ∈
GF((22)2), and the polynomial z2 + z + λ, λ = (1100)2,
is used to construct the composite field GF(((22)2)2)

over GF((22)2).
The output of Block 4 generates the multiplica-

tive inversion of η, i.e., σ = σhz + σl = η−1, where,
σh = (σ7, σ6, σ5, σ4) = ηhθ , σl = (σ3, σ2, σ1, σ0) = (ηh +
ηl)θ , and θ = (η2

hλ + ηhηl + η2
l )

−1 are elements in the
sub-field GF((22)2). It is noted that the fields GF((22)2)

and GF(22) are generated by z2 + z + φ and z2 + z + 1,
respectively, where φ = (10)2. Block 5 in Fig. 1a imple-
ments the inverse transformation matrix, δ−1, followed
by an affine transformation which results in the output
of the S-box, i.e., Y = (y7, y6, y5, y4, y3, y2, y1, y0) ∈
GF(28), as follows:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 1
1 0 1 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

It is noted that all of the arithmetic operations
including multiplications, inversion and squaring in
Fig. 1a are in GF((22)2). Also, each addition is imple-
mented by four two-input XOR gates (shown in Fig. 1a
by shaded circles surrounding a plus).

As seen in Fig. 2a, the inverse S-box is implemented
using the same multiplicative inversion as in the S-
box, i.e., Blocks 2, 3 and 4 in Fig. 2a are the same as
the corresponding blocks in Fig. 1a. However, Block 5
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Fig. 1 Different blocks in the
S-box using the composite
field: a GF(((22)2)2) [35] and
b GF((24)2) [32] Transformation
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consists of the inverse transformation matrix, δ−1

as shown in Eq. 3. As seen in Fig. 2a, δ−1 trans-
forms η = ηhz + ηl ∈ GF(((22)2)2) to X = (x7, x6, x5,

x4, x3, x2, x1, x0) ∈ GF(28) using:

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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= δ−1η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 0
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0 1 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 0 0 0 1 1 0
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Moreover, as shown in Fig. 2a, the inverse affine
transformation precedes the transformation matrix δ

and these merged transformations generate output σ of
Block 1 from input Y as follows:

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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0 0 1 0 0 0 1 1
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0 0 0 0 0 1 0 1
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Fig. 2 Different blocks
in the inverse S-box using
the composite field:
a GF(((22)2)2) [35] and
b GF((24)2) [32]
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2.2 S-box and Inverse S-box Using GF((24)2)

The implementation of the S-box in GF((24)2) is ex-
plained in [32] and is shown in Fig. 1b. Similar to the
previous field, here, the transformation matrix δ′, which
is presented in Eq. 5, transforms the input of the S-box,
i.e., X ∈ GF(28), to its representation η′ = η′

hz + η′
l ∈

GF((24)2) as follows:

η′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= δ′x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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x5
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x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where, similar to the previous composite field, η′
h =

(η′
7, η

′
6, η

′
5, η

′
4) and η′

l = (η′
3, η

′
2, η

′
1, η

′
0) are sub-field rep-

resentations of η′ over GF(24) which are represented
with prime notations to distinguish them from the
representations of elements in the composite field
GF(((22)2)2).

The irreducible polynomial of z2 + 1z + e with co-
efficients in GF(24) is used for constructing GF((24)2)

over GF(24). Also, z4 + z + 1 is the irreducible poly-
nomial for operations over GF(24) [32]. As shown in
Fig. 1b, Block 5 implements the inverse transformation
matrix δ′−1 followed by an affine transformation. This
results in the output of the S-box, i.e., Y, as:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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1 0 1 0 1 1 0 1
1 1 1 1 1 1 0 1
1 0 0 1 1 1 0 0
1 0 1 0 1 0 1 1
1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1
0 0 0 0 1 0 1 1
0 1 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

As shown in Fig. 1b, the multiplicative inversion of
this S-box consists of three multiplications in GF(24)

(shown by a cross surrounded by a shaded circle), an
inversion in GF(24), squaring and a constant multipli-
cation. As seen in Fig. 2b, this multiplicative inversion,
i.e., Blocks 2, 3 and 4, is also used for the inverse
S-box. Similar to the previous field, here, δ′−1 in the

inverse S-box transforms η′ = η′
hz + η′

l ∈ GF((24)2) to
X = (x7, x6, x5, x4, x3, x2, x1, x0) ∈ GF(28):

x =
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
0 1 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 1 0 1 1 1 0 1
0 0 1 0 1 1 0 0
0 1 1 1 1 0 0 1
0 0 1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Also, from Fig. 2b, Block 1 in the inverse S-box
consists of the inverse affine transformation preceding
the transformation matrix δ′ in Eq. 5 to generate the
output σ ′ from the input Y:

σ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎛
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0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1
0 0 1 1 0 0 1 0
0 0 0 0 0 1 0 1
1 0 1 1 0 1 1 0
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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. (8)

2.3 Parity Predictions of S-boxes and Inverse S-boxes

In the fault detection schemes, the parity of each of 5
blocks in Fig. 1a, b (Fig. 2a, b) for the S-boxes (the
inverse S-boxes) is predicted and it is compared with
the actual parity. This method has been utilized in the
literature to develop a fault detection scheme for dif-
ferent applications, see for example [3, 8, 9, 11, 23]. The
comparison between the actual and predicted parities
is implemented by XOR gates as shown in Fig. 3. As
seen in this figure, depending on the number of input
bits (either 4 or 8 in this paper), the actual parity is

4 or 8 1BUT

(Block under test)

unit

4 or 8

1

Error indication flag

or

Actual parity 

Parity prediction
1

Predicted parity

Fig. 3 Error indication for each block used in the fault detection
scheme
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obtained using the tree of XORs (shown in Fig. 3 by an
XOR gate surrounded by a rectangle). Then, the pre-
dicted and actual parities of each block are compared to
obtain the error indication flag. The predicted parities
of the S-boxes and the inverse S-boxes for composite
fields GF(((22)2)2) and GF((24)2) presented before, are
proved in [21]. These are presented below:

Theorem 1 [21] The parity predictions of Blocks 1 to
5 of the S-box using GF(((22)2)2) shown in Fig. 1a are
obtained as follows:

P̂N = P̂η = x5 + x4 + x2 + x0, (9)

P̂γ = η4 + η3(Pηh + η5) + η2(Pηh + η6)

+ η1(η6 + η4) + η0 Pηh , (10)

P̂θ = (γ 2 ∨ γ1)γ0 + (γ1 + γ0)γ3, (11)

P̂σ = η3(Pθ + θ1) + η2(Pθ + θ2) + η1(θ2 + θ0) + η0 Pθ ,

(12)

P̂Y = σ6 + σ4 + σ2 + σ1 + σ0. (13)

where ∨ represents the OR operation, Pηh = η7 + η6 +
η5 + η4, and Pθ = (θ3 + θ2 + θ1 + θ0) is the actual parity
of Block 3 in Fig. 1a.

For the inverse S-box, the predicted parities of Blocks
2, 3 and 4 of the S-box in Fig. 1a are used to obtain the
parity predictions of Blocks 2, 3 and 4 in Fig. 2a. Also,
the parity predictions of Blocks 1 and 5 are obtained as
follows:

P̂σ = y7 + y6 + y5 + y3, (14)

P̂X = η6 + η4 + η2 + η1 + η0. (15)

Theorem 2 [21] The parity predictions of five blocks of
the S-box using GF((24)2) shown in Fig. 1b are obtained
as follows:

P̂N′ = P̂η′ = x6 + x3 + x2 + x1 + x0, (16)

P̂γ ′ = η′
3η

′
4 + η′

2(η
′
5 + η′

4) + η′
1(Pη′

h
+ η′

7) + η′
0 Pη′

h
+ Pη′

h
,

(17)

P̂θ ′ = γ ′
3γ

′
2γ

′
0 + γ ′

0(γ
′
1 ∨ (γ ′

2 + γ ′
3)), (18)

P̂σ ′ = η′
3θ

′
0 + η′

2(θ
′
1 + θ ′

0) + η′
1(Pθ ′ + θ ′

3) + η′
0 Pθ ′ , (19)

P̂Y = σ ′
7 + σ ′

6 + σ ′
2 + σ ′

0. (20)

where, Pη′
h
= η′

7 + η′
6 + η′

5 + η′
4, and Pθ ′ = (θ ′

3 + θ ′
2 +

θ ′
1 + θ ′

0) is the actual parity of Block 3 in Fig. 1b.
Similarly, P̂γ ′ , P̂θ ′ and P̂σ ′ in the S-box of Fig. 1b are

used to obtain the parity predictions of Blocks 2, 3 and 4
in Fig. 2b. Moreover, the parity predictions of Blocks 1
and 5 are:

P̂σ ′ = y4 + y2 + y1 + y0, (21)

P̂X = η′
7 + η′

6 + η′
2 + η′

0. (22)

It is noted that the correctness of the above formu-
lations is also verified by simulations for all 256 input
combinations [21].

2.4 Fault Model

In this paper, we use stuck-at faults model at the logic
level. This type of fault forces one node (for single
stuck-at fault model) or multiple nodes (for multiple
stuck-at fault model) to be stuck at logic one (for stuck-
at one) or zero (for stuck-at zero) independent of the
fault-free logic values, see for example [20] and [28].
We have considered both single and multiple faults in
this paper. For the single faults, only one node at a time
becomes faulty, whereas, for the multiple faults, ran-
dom multiple faults are injected where, the numbers,
locations and types of the faults are randomly chosen.
It is noted that in this paper we inject the faults at
any node of the circuit, i.e., inputs, outputs and fan-out
branches of the logic circuits. This type of fault injection
has been used vastly, see for example [1].

In the fault attacks, the single faults injection is the
ideal case through which the attackers gain more infor-
mation. In this regard, we modify the structures of the
S-box and its inverse so that all the single stuck-at faults
are detected. However, because of not having precise
attack tools due to technological constraints, a more
realistic fault model is to inject multiple faults [6, 13].
Therefore, for covering both natural faults and fault at-
tacks, in addition to single faults, multiple faults need to
be considered [6]. Although the modified structures are
presented to reach the fault coverage of close to 100%
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for single faults, they are also capable of detecting most
of the multiple faults.

The presented fault detection scheme in this paper
is independent of the life time of the faults. Thus,
both permanent and transient stuck-at faults lead to the
same fault coverage utilizing the proposed scheme.

3 Error Propagation in S-boxes and Inverse S-boxes

The error propagation study is important for proposing
fault detection schemes. In this section, we evaluate
the error propagation in the S-boxes and the inverse
S-boxes considering the single faults for the above-
mentioned composite fields.

3.1 Error Propagation

As a result of a single fault, the output of the S-box (and
the inverse S-box) may become erroneous. Because of
the non-linear structure of the S-box (and the inverse
S-box), the propagation of errors is random. To investi-
gate the error propagation, we simulate the S-boxes and
the inverse S-boxes presented in the previous section.
We use single stuck-at fault model in which the input
and output nodes of each logic gate, i.e., every node and
branch in the circuit, is fixed by either zero or one and
it is independent of the actual value of that node.

There are 159 gates in the original S-box and in-
verse S-box in GF(((22)2)2), i.e., Figs. 1a and 2a, re-
spectively. Also, the S-box and the inverse S-box in
GF((24)2) shown in Figs. 1b and 2b have 180 and
174 gates, respectively. We have injected both single
stuck-at 0 and 1 faults in the inputs and output of
each gate for each and all combinations of the 8-bit
inputs. Considering the use of two-input gates only,
our search space is (159 × 3) × 2 × 256 − 8 × 2 × 256 =

240, 128 for the former and (180 × 3) × 2 × 256 − 8 ×
2 × 256 = 272, 384 for the S-box and (174 × 3) × 2 ×
256 − 8 × 2 × 256 = 263, 168 for the inverse S-box of
the latter, where, the total number of nodes are shown
in parentheses, 2 is for both stuck-at zero and stuck-at
one faults, and 256 indicates all combinations of 8-bit
inputs. Note that we exclude 8 × 2 × 256 = 4, 096 cases
for the eight output nodes of the S-boxes and the in-
verse S-boxes. Our exhaustive search simulation results
are shown in Table 1. As seen from the table, for the S-
box and the inverse S-box in GF1 = GF(((22)2)2), out
of 240, 128 search space, 240, 128 − 128, 659 = 111, 469
and 240, 128 − 130, 777 = 109, 351 cases become erro-
neous, respectively. Also, for the S-box and the inverse
S-box in GF2 = GF((24)2), out of their correspond-
ing search spaces, 272, 384 − 179, 422 = 92, 962 and
263, 168 − 181, 152 = 82, 016 cases become erroneous,
respectively. The details of the error propagation for
these cases in terms of the number (and percentage) of
erroneous output bits are also shown in Table 1. This
table shows the importance of having fault detection
schemes for the implementation of the S-boxes and the
inverse S-boxes using the composite fields. The table
shows the fact that by injecting single faults to the gates
of the S-box and the inverse S-box, the number of erro-
neous output bits is random because of the non-linear
structures of the S-box and the inverse S-box. As seen
from the column for zero-erroneous bits in the table,
the S-box and the inverse S-box using composite field
GF2 = GF((24)2) have better responses due to injected
single faults as compared with their counterparts using
GF1 = GF(((22)2)2).

Some single faults may lead to even number of
erroneous bits in the output of the blocks in the S-
box/inverse S-box. Then, the parity-based fault detec-
tion scheme will not be able to detect such faults if one
uses the predicted parity of the corresponding block.

Table 1 Number of cases and their percentages due to exhaustive search of single faults in terms of number of erroneous output bits
of the S-box (SB) and the inverse S-box (ISB) in composite fields GF1 = GF(((22)2)2) and GF2 = GF((24)2)

Field Search # of cases in terms of number of erroneous output bits
space 0 1 2 3 4 5 6 7 8

GF1 240,128 128,659 12,974 22,568 28,217 17,437 20,766 7,848 1,398 261
(SB) (100%) (53.6%) (5.4%) (9.4%) (11.8%) (7.3%) (8.6%) (3.3%) (0.6%) (0.1%)
GF1 240,128 130,777 12,165 16,123 22,160 23,796 23,457 9,993 1,407 250
(ISB) (100%) (54.5%) (5.1%) (6.7%) (9.2%) (9.8%) (9.7%) (4.2%) (0.6%) (0.1%)
GF2 272,384 179,422 5,756 7,793 15,568 29,679 26,455 6,020 1,211 480
(SB) (100%) (65.9%) (2.1%) (2.9%) (5.7%) (10.8%) (9.7%) (2.2%) (0.4%) (0.2%)
GF2 263,168 181,152 12,658 10,065 17,529 18,229 17,145 4,374 1,294 725
(ISB) (100%) (68.8%) (4.7%) (3.9%) (6.7%) (6.9%) (6.5%) (1.6%) (0.5%) (0.3%)
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Detecting the single faults in the S-box and the inverse
S-box using the parity-based fault detection scheme de-
pends on how these structures are implemented. Logic
gate implementations of these structures can be done so
that all the single faults are detected. We denote fault
detection structures of the S-box and the inverse S-box
as the ones that make our proposed parity prediction
scheme capable of detecting all single faults. We state
the following lemma to derive a rule for designing fault
detection structures for the S-boxes and the inverse S-
boxes. It is noted that this lemma is general and can
be applied to any composite fields. As a result, fault
detection structures can be obtained for the composite
field S-boxes and inverse S-boxes to detect all single
stuck-at faults.

Lemma 1 Consider a circuit which only consists of
XOR (and XNOR) or NOT gates and the number of
paths from each node in the circuit to the output bits is
odd. Then, considering the stuck-at fault model we intro-
duced in the previous section, the number of erroneous
bits will be zero or odd for each single fault occurring in
each node of the circuit.

Proof Consider a block consisting of XOR (and
XNOR) gates. Let O ∈ {0, 1} be a node value in the
circuit in the fault free situation. For an injected fault
in node O, we have one of the following two cases:

(a) The fault does not change the original value of the
node in which the fault is injected, i.e., O is error
free. Then, the output of the block is correct and
there is no erroneous bit.

(b) The injected fault changes the value of node
O to O ⊕ 1. Because inverting the input of an
XOR (XNOR) gate inverts its output, we have
erroneous outputs in each gate in the path that
connects node O to the output of the block. This
is because node O (whether it is in the stem or the
branch) is the input of another gate and a change
in O to O ⊕ 1 causes the output of that gate to
be inverted and thus the error propagates to the
output of the block. If the number of the paths to
the output of the block is odd then the output bits
have odd number of errors. Therefore, the parity
prediction scheme will be able to detect the fault.
This discussion is true when we have NOT gates
in the circuit, because NOT gates are XOR gates
with one input always one.

��

In the next two sections, the fault detection struc-
tures for the S-box and the inverse S-box in composite

fields GF(((22)2)2) and GF((24)2) are explained. We
use Lemma 1 for blocks 1 and 5 of the S-box and the
inverse S-box. It is noted that a specific case of Lemma
1 is the case where no subexpression sharing is used. In
other words, each output bit is implemented using logic
gates which are not shared for deriving the other output
bits. In such a case, which is used for blocks 2, 3 and 4,
the number of paths from each node in the circuit to the
output bits of the corresponding block is one.

4 Modified S-box and Inverse S-box Using
GF(((22)2)2)

To comply with Lemma 1, we obtain fault detection
structures of different blocks of the S-box and the
inverse S-box in the two composite fields.

4.1 Transformation Matrix in Block 1 of the S-box

The transformation matrix δ can be implemented us-
ing 12 XOR gates [35]. To achieve a low complex-
ity implementation, one needs to reuse subexpressions
and one of the possible implementations is shown in
Fig. 4a which implements the following formulations
from Eq. 1:

η7 =x5+x7, η6 =[x2+x7]+[x1+x6]
+ x4+x3,

η5 =[x3+x5]+[x2+x7], η4 =[x3+x5]+[x2+x7]+x1,

η3 =[x2+x7]+[x1+x6], η2 =[x2+x7]+[x1+x6]
+ x4+x3+x6,

η1 =[x1+x6]+x4, η0 =[x1+x6]+x0,

(23)

where, subexpressions, which are shown in brackets,
are reused in Fig. 4a.

In terms of fault detection capability, a single stuck-
at fault may change even number of output bits in
Fig. 4a. Therefore, although the output is erroneous,
the parity-based scheme cannot detect the fault. For
example, if a fault occurs in the output of the XOR
gate shown by × in Fig. 4a, two outputs, i.e., η4 and
η5, are affected. This will mask the output parity and
thus the fault is not detected. Based on Lemma 1, we
modify Fig. 4a so that the number of paths from each
node in the circuit to the output is odd. The proposed
fault detection structure for transformation matrix δ is
shown in Fig. 4b.
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Fig. 4 Transformation matrix δ in Fig. 1a: a low complexity
structure and b fault detection structure

The structure realizes the following formulations
which are obtained from Eq. 23 as follows:

η7 = ((x2 + x7) + (x5 + x3)) η6 = ((x1 + x4) + x6

+ (x2 + x3), + (x2 + x7) + x3),

η5 = ((x2 + x7) + (x5 + x3)), η4 = ((x2 + x7)

+ (x5 + x3) + x1),

η3 = ((x2 + x7) + (x1 + x6)), η2 = ((x1 + x4)

+ (x2 + x7) + x3),

η1 = ((x1 + x6) + x4), η0 = ((x1 + x6) + x0).

(24)

Using the fault detection structure of Fig. 4b, any
single fault in Block 1 leads to zero or odd number of
erroneous bits in the output of block 1 in Fig. 1a and it
will be detected by error indication flag of Block 1. It is
noted that a single stuck-at fault at any node or branch
in the modified structures can also be detected. As an
example, a fault in the node n1 in Fig. 4b causes three

outputs, i.e., η2, η3 and η6, to be affected and the error
indication flag will detect it. Also, any single fault in
branches b 1 to b 3 affects one output bit and this would
be detected by the detection flag as well. As seen in
Fig. 4b, the number of XOR gates is increased to 18.
However, the propagation delay remains the same, i.e.,
4TX , where TX is the delay of an XOR gate.

4.2 Squarer-Lambda in the S-box and Inverse S-box

Similarly, some single faults injected in multiplication
by λ and squarer in the circuit presented in [27] cannot
be detected by the error indication flags. The squarer
and λ units can be merged in order to modify them to
be a fault detection structure. The merged unit shown
in Fig. 1a is called Squarer-Lambda and has fewer gates
than two separate units as presented in [27].

For the input of ηh = (η7, η6, η5, η4) in GF((22)2), the
result of this unit is

ηh
2λ = (η6 + (η5 + η4), η7 + η4, η7, η7 + η6) (25)

and the corresponding circuit can be implemented from
Eq. 25 using four XOR gates with 2TX of the critical
path delay. One can verify that this circuit satisfies
Lemma 1 in which any single fault results in at most
one error in the output of Eq. 25.

4.3 Multiplier in Blocks 2 and 4 of Figs. 1a and 2a

In order to have a compact design, one can utilize the
formulations used for the multiplication in GF((22)2)

presented in [27]. By adding extra gates (hardware re-
dundancy) this multiplier is modified so that any single
stuck-at fault is detected. Let U = (u3, u2, u1, u0) and
V = (v3, v2, v1, v0) be the inputs of the multiplier. Then,
the formulations for the fault detection multiplier are
presented in Eq. 29 of Appendix 1 and the correspond-
ing circuit is shown in Fig. 5. This circuit consists of
AND gates in between arrays of XOR gates. One can
see from this figure that the coordinates of output Z =
(z3, z2, z1, z0) are implemented so that single faults
occurring in the circuit may only affect one coordinate.
For example, consider a single fault occurring in the
output of the XOR gate shown by × in Fig. 5. This
fault may cause an error in the output bit z3 depending
on the values of inputs u2 and u3. If u2 = u3 = 1 or
u2 = u3 = 0, the fault does not affect z3 and the output
is error free. Otherwise, z3 will be an erroneous value
and because only one bit is affected, the fault detection
scheme detects it. It is noted that 21 XOR gates and
16 AND gates are needed in Fig. 5. Furthermore, the
critical path delay is 4TX + TA, where, TX and TA are
delays for XOR and AND gates, respectively.
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Fig. 5 Fault detection structure for multiplication in GF((22)2)

in Blocks 2 and 4 of Figs. 1a and 2a

4.4 Block 3: Inversion in GF((22)2)

We use the compact formulations proposed in [35] to
obtain fault detection structure for the inversion in
GF((22)2). Such formulations are presented in Eq. 30 of
Appendix 1 and the corresponding circuit for inversion
in GF((22)2) is shown in Fig. 6.

In this figure, an adder with a bar, i.e., ⊕̄, is used
to represent an XNOR gate. Since any fault in the
nodes of Fig. 6 affects only one output, the number of
erroneous output bits due to single faults is at most
one. From Fig. 6, one can see that the inversion in
GF((22)2) requires 6 XORs, 2 XNORs, 11 ANDs, 5
NOTs and 5 ORs. Moreover, the critical path delay is
2TX + TX N + TA, where TX N is the delay of an XNOR
gate.

4.5 Block 5: Merged Inverse and Affine
Transformations of S-box

According to Lemma 1 and considering Eq. 2, the
merged inverse and affine matrices, i.e., Block 5 in

Fig. 6 Fault detection structure for Block 3 of Figs. 1a and 2a

Fig. 1a, can be implemented so that this merged unit
becomes a fault detection structure. The formulations
for this fault detection structure using Eq. 2 are as
follows:

y7 = (σ2,7 + σ3), y6 = ((σ4 + σ5) + (σ6 + σ7)),

y5 = σ2,7, y4 = (σ0,1 + (σ4 + σ7)),

y3 = (σ0,1 + σ2), y2 = (((σ3 + σ4) + (σ5 + σ6))

+ (σ0 + σ2)),

y1 = (σ0 + σ7), y0 = (σ2,7 + σ0,1 + σ6),

(26)

where, σ2,7 = σ2 + σ7 and σ0,1 = σ0 + σ1.
One can implement the circuit corresponding to

Eq. 26 using 17 XOR gates and four NOT gates with
the critical path of 3TX + TN . It is noted that the output
of the XOR gates σ2,7 and σ0,1 are used three times
in Eq. 26. Therefore, a fault that causes an error at
the output of each of these two gates generates three
erroneous output bits, whereas, the fault in other gate
outputs causes at most one error in the output of this
block. As a result, all single faults can be detected by
the parity-based fault detection scheme.

4.6 Inverse S-box: Blocks 1 and 5

It is noted that Blocks 2, 3 and 4 in the inverse S-box
are the same as Blocks 2, 3 and 4 in the S-box. Thus
for the inverse S-box, we only need to obtain the fault
detection structures for Blocks 1 and 5. According to
Lemma 1 and considering Eqs. 3 and 4, Blocks 1 and
5 of the inverse S-box in Fig. 2a can be implemented
so that these units become fault detection structures.
The formulations for these two fault detection units
are presented in Eqs. 31 and 32 of Appendix 1 and
the circuits for blocks 1 and 5 of the inverse S-box are
shown in Fig. 7a, b, respectively. As shown in Fig. 7a,
the implementation of the merged inverse affine and
transformation matrices (Block 1) needs 18 XOR gates
and four NOT gates with the critical path delay of
3TX . Moreover, realizing the inverse transformation in
GF(((22)2)2), as shown in Fig. 7b, needs 19 XOR gates
with 4TX critical path delay.

5 Modified S-box and Inverse S-box Using GF((24)2)

The fault detection structures of the S-box and its
inverse in GF((24)2) are obtained in this section to
comply with Lemma 1.

5.1 Transformation Matrix in Block 1 of the S-box

According to Lemma 1 and Eq. 5, we modify the low
complexity transformation matrix presented in [32] so
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Fig. 7 Fault detection structures for two remaining blocks of
the inverse S-box in Fig. 2a: a block 1: merged transformation
and inverse affine transformation matrices and b block 5: inverse
transformation

that the number of paths from each node to the output
is odd and then propose a fault detection structure for
the transformation matrix.

The formulations for the transformation matrix are
presented in Eq. 33 of Appendix 2. The realization of
Eq. 33 needs 13 XOR gates with the critical path delay
of 3TX . This can be compared with 18 XOR gates with
4TX in the critical path, needed for the transformation
matrix in GF(((22)2)2). Therefore, the realization of
this structure needs less area and delay as compared
with the one using GF(((22)2)2).

5.2 Squarer-(e) in S-box and Inverse S-box

The squarer presented in [32] is a fault detection struc-
ture. Instead of applying squarer and constant multi-

plication by (e), we merge them and implement the
merged unit so that it becomes a fault detection struc-
ture. The merged unit is called Squarer-(e) and has
fewer gates than two separate units presented in [32].
For the input of η′

h = (η′
7, η

′
6, η

′
5, η

′
4) in GF(24) the result

of this unit is

η′
h

2
(e) = (η′

6 + η′
5, η

′
4, (η

′
7 + η′

5) + η′
4, η

′
5 + η′

4), (27)

which needs four XOR gates for realization with 2TX

of critical path delay. These are the same as the area
and the critical path delay of the Squarer-Lambda in
the S-box and the inverse S-box in GF(((22)2)2).

5.3 Multiplication and Inversion in S-box and Inverse
S-box

The compact multiplication and inversion in GF(24)

presented in [32] are similarly modified so that
they become fault detection structures. Let U ′ =
(u′

3, u′
2, u′

1, u′
0) and V ′ = (v′

3, v
′
2, v

′
1, v

′
0) be the inputs of

the multiplier. Then, the coordinates of the output of
the multiplier are obtained according to Eqs. 34 and
35 of Appendix 2, respectively. Using Eqs. 34 and
35, the corresponding circuits are shown in Fig. 8a, b,
respectively. The circuit shown in Fig. 8a needs 18 XOR
gates and 16 AND gates with the critical path delay of
3TX + TA. This is three XOR gates less in area and
one TX less in delay in comparison with the multiplier
in GF((22)2) presented in [35]. Furthermore, as seen in
Fig. 8b, the inversion in GF(24) needs 12 XORs, 5ORs,
9ANDs and one NOT gate with the critical path delay
of TN + 3TX + TA.

5.4 Merged Inverse and Affine Transformations
(Block 5) of S-box

According to Eq. 6, the inverse and affine transfor-
mations in the S-box presented in [32] can be merged
and modified so that the merged block becomes a fault
detection structure. The formulations for the merged
inverse and affine transformations (Block 5) of the
S-box in Fig. 1b are not presented for the sake of
simplicity. However, the circuit is shown in Fig. 9. As
seen in the figure, 20 XOR gates and two NOT gates
are needed for realizing the merged inverse and affine
transformations block. Also, the critical path delay is
4TX . This needs three XOR gates more and two NOT
gates less for implementations in comparison with the
same block in GF(((22)2)2).

It is interesting to note that overall, the area and
delay of the fault detection S-box in GF((24)2) are
less than the ones in GF(((22)2)2). These are presented
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Fig. 8 Fault detection
structures for:
a Multiplication in Blocks 2
and 4 of Figs. 1b and 2b and
b Block 3 of Figs. 1b and 2b

Fig. 9 Fault detection
structure for Block 5 in
Fig. 1b
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Fig. 10 Fault detection
structures for two remaining
blocks of the inverse S-box in
Fig. 2b: a Block 1: Merged
inverse affine and
transformation matrices and
b Block 5: Inverse
transformation matrix

in details in Section 7 using the results of the ASIC
experimental analysis.

5.5 Inverse S-box: Blocks 1 and 5

According to Eq. 7, the inverse affine transformation
and the transformation matrix in the inverse S-box
presented in [32] have been merged and modified so
that the merged block becomes a fault detection struc-
ture. According to Eq. 8 and to comply with Lemma
1, the proposed implementation of inverse transforma-
tion is also modified to be a fault detection structure.
The circuits for these two are shown in Fig. 10a, b,
respectively. As seen in Fig. 10a, the inverse affine
transformation and the transformation matrices need
21 XOR gates and two NOT gates with four XOR
gates in the critical path. This needs two NOT gates less
and three XOR gates more for implementations and
one TX more for delay in comparison with the same
block in GF(((22)2)2). For the inverse transformation
in Fig. 10b, 16 XOR gates are required with three XOR
gates in the critical path. This is three XOR gates less
in area and one TX less in the critical path delay com-
paring to the inverse transformation in GF(((22)2)2).

Overall, the space complexity and the critical path
delay of the fault detection inverse S-box in GF((24)2)

is less than the one in GF(((22)2)2). This is obtained
in Section 7 utilizing the ASIC syntheses for these
structures.

6 Parity-Based Fault Detection Schemes

In the fault detection schemes, the predicted parity of
each block in the S-boxes (and the inverse S-boxes)

is compared with its actual parity in order to obtain
the error indication flag of the corresponding block.
By ORing five indication flags of five blocks, the error
indication of the entire S-boxes (and the inverse S-
boxes) are obtained. We assume that this five-input OR
gate is fault tolerant and one can easily implement it
using logic gates resistant to natural and injected faults
or utilizing triple modular redundancy [31]. This as-
sumption increases the reliability of the fault detection
implementations. However, if one does not consider
this assumption and this OR gate becomes faulty, the
error indication flag may generate an erroneous output
bit. If the erroneous output bit of this OR gate is “0”,
i.e., in the fault free situation it generates “1”, it does
not indicate the occurrence of faults. On the other
hand, if the erroneous output bit of this gate is “1”,
i.e., the fault free output of “0”, this error indicator
generates a false alarm. As a result, not considering
the OR gate as a fault tolerant gate, decreases the fault
coverage and increases the false alarms.

We have simulated the proposed modified S-boxes
and inverse S-boxes for two composite fields by inject-
ing single and multiple faults to all gates (except for
the last five-input OR gate) for all combinations of 256
inputs and the simulation results are presented in this
section.

6.1 Simulation Results Due to Single Faults

As discussed earlier, single faults occurring in the
structures of the S-box (and the inverse S-box) which
cause even number of erroneous output bits will not
be detected if one compares the predicted parity of
the corresponding block with its actual parity. Thus, in
order to detect all single faults in each block using the
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Table 2 Error propagation in
the S-box (SB) and the
inverse S-box (ISB) blocks in
composite fields
GF1 = GF(((22)2)2) and
GF2 = GF((24)2) due to
single faults

Field Structure Number of Block number

erroneous bits One Two Three Four Five

GF1 Original [35] Even 3,072 10,854 3,046 12,072 6,540
(SB) Odd 6,144 15,226 10,186 18,671 9,984

Presented Even 0 0 0 0 0
Odd 9,216 28,608 10,959 49,872 13,824

GF1 Original [35] Even 4,536 10,854 3,046 12,072 5,230
(ISB) Odd 9,480 15,226 10,186 18,671 9,192

Presented Even 0 0 0 0 0
Odd 16,896 28,608 10,959 49,872 14,592

GF2 Original [32] Even 512 2,016 3,808 3,867 7,200
(SB) Odd 1,982 25,776 16,284 30,570 18,432

Presented Even 0 0 0 0 0
Odd 13,068 36,000 34,212 57,823 12,321

GF2 Original [32] Even 4,992 2,016 3,808 3,867 1,536
(ISB) Odd 13,056 25,776 16,284 30,570 9,180

Presented Even 0 0 0 0 0
Odd 14,700 36,000 34,212 57,823 10,872

parity prediction scheme, we use modified blocks for
the S-boxes and their inverses so that all single faults
lead to zero or odd number of errors in the output
of blocks. We have simulated the original S-boxes and
inverse S-boxes and the modified ones proposed in this
paper by injecting single faults for all combinations of
256 inputs.

The results of this simulation are depicted in Table 2.
As seen in this table, the number of cases that result in
even and odd number of erroneous output bits of each
block is shown for both the original S-boxes/inverse S-
boxes and the modified ones proposed here. As seen
Table 2, the error indicator of the proposed fault de-
tection scheme based on the modified S-boxes (inverse
S-boxes) in two composite fields are able to detect all
single faults. However, one can see from this table that
this is not the case for the fault detection scheme based
on the original S-boxes (inverse S-boxes) presented in
[35] and [32].

6.2 Simulation Results Due to Multiple Faults

In the previous section, we have simulated the modified
structures of the S-box and the inverse S-box and it is
shown that all the single stuck-at faults can be detected.
However, as stated before, due to the technological
constraints, single stuck-at faults may not be applicable
for an attacker. Therefore, in addition to single faults,
multiple faults need to be considered in practice for
covering both natural faults and fault attacks [6]. This
is considered in this section. The presented schemes are
capable of detecting a number of the multiple faults. It
is noted that for our fault detection structures in the

modified S-box and inverse S-box, multiple fault injec-
tion in the whole S-box and inverse S-box is considered.
We have simulated our proposed S-boxes and inverse
S-boxes implemented in both composite fields by inject-
ing 256,000 random multiple faults in their structures.
It is interesting to note that our simulations show that
this number of injected faults is sufficient for reaching
the actual results with a very good approximation. As a
matter of fact, after injecting 2,560,000 faults (10 times
as many as our selected number for fault injection) the
obtained results are almost the same.

For random fault injection, linear feedback shift
registers (LFSRs) within Quartus� II are utilized to
distribute multiple faults randomly. In this regard, max-
imum sequence length polynomial for the feedback is
selected according to the maximum sequence length
taps (Altera: http://altera.com), [12]. Using the LFSR
is an efficient method of generating pseudo random
sequences (Altera: http://altera.com). It is also noted
that as presented in this section, not only the simulation
results comply with the theory but they are the same by
increasing the number of injected faults from 256,000
to 2,560,000. This verifies the efficiency of the LFSRs
used for random faults injection. We inject random
faults in the sense that the locations, the number of
gates that faults are injected in, and the types of faults
either stuck-at zero or one are random. For each of
the 256 possible inputs, one thousand random multiple
faults (256,000 in total) are injected in the structures of
five blocks of the modified S-boxes and inverse S-boxes
and their parity prediction units as well as the actual
parities. The distribution of the random faults in the
blocks of the S-box and the inverse S-box is shown in
Table 3. It is interesting to note that this distribution

http://altera.com
http://altera.com
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Table 3 Multiple fault injection distribution in five blocks of
the modified S-box (SB) and inverse S-box (ISB) in GF1 =
GF(((22)2)2) and GF2 = GF((24)2) due to injecting 256,000 ran-
dom multiple faults

Composite Operation Block Block Block Block Block
field 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

GF1 SB 12 24 14 39 11
ISB 13 23 15 38 11

GF2 SB 10 24 15 39 12
ISB 15 23 15 38 9

is dependent on the number of gates in these blocks.
As seen in this table, for the S-box and inverse S-box,
the distribution of the faults are shown. Moreover, for
this distribution, the results of our simulations for such
a distribution are shown in Table 4. In this table, N1 is
the number of cases whose errors are not detected by
the error indication flag. Also, N2 is the total number
of cases where the final output is the same as the
fault free output but the error indication flag detects
an erroneous output. This is due to the faults in the
parity prediction circuit or the faults that are masked in
the output of the S-box/inverse S-box, i.e., false alarms.
Moreover, N3 is the number of detected errors, i.e., the
faults that are detected using error indicator flags, and
N4 is the number of cases where faults do not result in
any error. The fault coverage for the random multiple
faults is obtained as fault coverage = 100 × N3+N2

N1+N2+N3
%

and is shown in Table 4.
The results of fault coverage for each S-box (inverse

S-box) agree with the expression

100 ×
(

1 −
(

1

2

)5
)

%. (28)

It is noted that the probability of detecting (or not
detecting) random multiple faults by the error indica-
tion flag of each block is 1

2 and it is independent of those
of other blocks. Thus, in Eq. 28, ( 1

2 )5 is the probability
that none of 5 blocks detects the injected faults, which
results in the fault coverage as given in Eq. 28. In other
words, five indicator flags are zeros while the output is
erroneous.

As seen in Table 4, for each S-box (inverse S-box),
97% of the random faults are detected. According to

[3], the detected errors at the output matrix state of
SubBytes transformation consist of those that any of
the fault detection circuits of the S-boxes can detect.
In other words, for randomly distributed faults in the
SubBytes, if at least one of the error indication flags
of 16 S-boxes signals an error, the fault is detected.
This is because the error indication flags of the S-boxes
are ORed to obtain the error indication flag of the
SubBytes.

Considering random faults occurring in 16 S-boxes
(inverse S-boxes) in the SubBytes (inverse SubBytes)
transformation, we present the following for the fault
coverage of SubBytes (inverse SubBytes) transforma-
tion in the AES encryption (decryption).

Remark 1 Considering the fault coverage for one S-
box/inverse S-box as 97% as presented in Table 4, the
percentage of not detecting the randomly distributed
faults in the SubBytes (inverse SubBytes) is 100 ×
( 3

100 )
16

% = (4.3 × 10−23)%. This is negligible and can
be considered zero with a very good approximation.

False Alarms

Our simulations show that the false alarms are a frac-
tion of N2. This fraction consists of the faults that do
not cause erroneous output or erroneous parity bits but
are falsely alarmed by the fault detection scheme. The
false alarms is at most 0.14%, which can be neglected
with a very good approximation for the total number
of 256,000 injected faults. The details of the number of
false alarms (out of 256,000) are obtained and tabulated
in Table 4.

6.3 Complexity Analysis

The complexity analysis of the proposed modified
S-boxes and inverse S-boxes using two composite
fields GF(((22)2)2) and GF((22)4) are presented in the
following.

The overhead cost consists of the extra area and
delay due to the parity-based fault detection schemes.
Table 5 shows the area and the critical path delay of
different sections of the modified S-boxes and inverse

Table 4 Fault Coverage (FC) and false alarms in the modified S-box (SB) and inverse S-box (ISB) in GF1 = GF(((22)2)2) and GF2 =
GF((24)2) due to injecting 256,000 random multiple faults in the whole structures

Composite field Operation N1 N2 N3 N4 False alarms FC (%)

GF1 SB 8,280 1,314 246,379 27 297 (0.12%) ≈ 97
ISB 7,559 1,221 247,154 66 29 (0.13%) ≈ 97

GF2 SB 8,612 1,532 245,832 24 347 (0.14%) ≈ 97
ISB 8,241 1,293 246,387 79 281 (0.11%) ≈ 97
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Table 5 Area and critical
path delay of fault detection
sections in the modified S-box
(SB) and inverse S-box (ISB)
in composite fields
GF1 = GF(((22)2)2) and
GF2 = GF((24)2)

X = X OR, A =
AND, X N = X NOR, N =
NOT, O = OR
TX = Delay of an XOR,
TA = Delay of an AND,
TX N = Delay of an
XNOR, TN = Delay of a
NOT, TO = Delay of an OR

Composite field Section Area Delay

GF1 δ (SB) 18X 4TX

Squarer-Lambda 4X 2TX

Multiplication in GF((22)2) 21X + 16A 4TX + TA

Inversion in GF((22)2) 6X + 2X N + 5N + 5O + 11A 2TX + TX N + TA

δ−1+affine (SB) 17X + 4N 3TX + TN

δ−1 (ISB) 19X 4TX

δ+inverse affine (ISB) 18X + 4N 3TX

GF2 δ′ (SB) 13X 3TX

Squarer+(e) 4X 2TX

Multiplication in GF(24) 18X + 16A 3TX + TA

Inversion in GF(24) 12X + 5O + 9A + 1N 3TX + TA + TN

δ′−1+affine (SB) 20X + 2N 4TX

δ′−1 (ISB) 16X 3TX

δ′+inverse affine (ISB) 21X + 2N 4TX

S-boxes for two composite fields. In this table, the
area is presented in terms of the number of gates.
The total overhead area cost of our parity-based fault
detection schemes include the overhead of the modi-
fied S-boxes/inverse S-boxes, parity predictions, actual
parity calculations and comparison circuits to generate
error indication flags. For deriving the area overhead
of the presented fault detection scheme, we assume
that two-input AND and OR gates require 6 transistors
each using the full CMOS technology. Also, two-input
XOR and XNOR gates can be implemented using 10
transistors each [36] and a NOT gate can be realized
using two transistors assuming that PMOS and NMOS
need the same chip area. Table 6 shows the number of
transistors needed for the original operations in [21],
the modified structures based on the results in Table 5,
and the actual and predicted parities and comparisons.
As seen in this table, the area overhead for the fault
detection S-box and inverse S-box over GF(((22)2)2)

are about 46% and 48%, respectively. This is because
we need 1,582 and 1,602 transistors for implementing S-
box and inverse S-box, respectively. Considering 1446
transistors for the original S-box and inverse S-box, 292
transistors for parity predictions and 240 transistors for
the actual parities and comparison for both of them
[21], one can reach the area overhead for this composite
field. Also, the area overhead over GF((24)2) for the

S-box and inverse S-box can be calculated similarly as
34% and 40%, respectively. As seen from the table,
the modified structures over GF((24)2) have lower area
overhead.

The delay overhead regarding the proposed schemes
can overlap with the time required for the computations
of other transformations after the S-boxes and inverse
S-boxes. One can also take advantage of pipelining to
minimize the delay overhead as follows. The parity
predictions can take place in the current clock cycle
and the actual parity calculation and comparison in the
next clock cycle. Therefore, using pipelining, the delay
of the fault detection scheme is one clock cycle, i.e.,
calculating the actual parity and error indication flag of
Block 5 needs one extra clock cycle. In the pipelined
AES, the encryption/decryption can continue to the
next transformation while the parity prediction of the
last block takes place.

7 ASIC Experimental Results

In this section, we explain the results of the syntheses
we performed in two composite fields. We have used
the 0.18μ CMOS technology for the syntheses of the S-
boxes, inverse S-boxes, mixed S-boxes/inverse S-boxes
and the whole fault detection structures of the AES.

Table 6 Area cost of the fault detection structures in terms of number of transistors in GF1 = GF(((22)2)2) and GF2 = GF((24)2) for
the S-box (SB) and inverse S-box (ISB)

Composite Operation # for # for # for parity # for actual parities Total area
field original modified predictions and comparison overhead (%)

GF1 SB 1,446 1,582 292 240 ≈ 46
ISB 1,446 1,602 292 240 ≈ 48

GF2 SB 1,544 1,548 280 240 ≈ 34
ISB 1,500 1,588 270 240 ≈ 40
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These structures have been coded in VHDL as the
design entry to the Synopsys Design Analyzer™. We
have selected the medium effort for the optimizations
and obtained the timing, area and power reports. The
syntheses details of the structures are explained in the
following.

The original S-boxes and inverse S-boxes presented
in [35] and [32] have been synthesized and their areas,
delays and power consumptions are obtained. Then,
these metrics are obtained considering the modified
structures and the parity-based fault detection scheme.
The results for two composite fields are shown in
Table 7. As seen in the table, the area (μm2), critical
path delay (ns) and dynamic and leakage power con-
sumptions (μW) are tabulated. It is noted that we have
not used sub-pipelining for the above-mentioned struc-
tures and these syntheses are only intended to show the
overheads of the presented schemes in this paper. In
our syntheses the target frequency is 66 MHz (delay
of 15 ns). As the table shows, for the fault detection
architectures utilizing the modified S-boxes and inverse
S-boxes, the delays are lower in most of the cases in
comparison with the original structures. This is be-
cause in the modified structures, we have avoided using
subexpression sharing which reduces the capacitor of
the nodes that are reused. As a result, the actual delay
of the fault detection structure is lower than the original
ones.

We now compare the proposed fault detection
schemes with the scheme for the original operations
presented in [21], the redundant units in [16, 34], the
multiplication approach in [15] and the parity-based
scheme in [3] in terms of the fault coverage, the area
and delay overheads. In [16] and [34], the S-box (the
inverse S-box) is followed by its inverse and the original
input is compared with the result of these consecutive
operations to obtain the error indication flag. In the
multiplication approach [15], the input and the output
of the multiplicative inversion unit are multiplied and
the result is compared to the predicted result. In [3],
the parity-based fault detection scheme is based on the
look-up table implementations in which 512 × 9 mem-
ory cells are used to generate the predicted parity bit as
well as the 8-bit output. Table 8 shows the comparisons,
where the results of Table 7 are used for the proposed
fault detection schemes. As seen in Table 8, the single
fault detection of the scheme for the original S-boxes
and inverse S-boxes in [21] is around 80%. Also, it
is noted that the simulations in [15] for n = 2 show
that with the hardware overhead of 28.5%, the fault
coverage is about 75%. Furthermore, for the redundant
units approach the area and delay overhead are both

around 100% which is quite high for high performance
applications. Also, our ASIC experimental results for
the scheme presented in [3] has been shown in this
table. As seen in the table, the proposed fault detection
structures are able to detect all the single faults and
almost all multiple faults. It is interesting to note that,
the working frequencies for the fault detection schemes
using the modified S-boxes and inverse S-boxes are
higher than those of the original operations, except
for the S-box in GF2, which is slightly lower than the
original one (see the negative numbers for the criti-
cal path delay). As compared with the delays shown
for the scheme for the original operations, the pro-
posed fault detection structures have lower critical path
delay.

Also, we have synthesized the original mixed S-
boxes/inverse S-boxes presented in [35] and [32] which
utilizes a common multiplicative inversion as well as
the corresponding fault detection schemes. The struc-
ture uses multiplexers for selecting the operations and
its corresponding fault detection circuits. The results
for two composite fields are presented in Table 9. In
the syntheses of the original mixed S-boxes/inverse
S-boxes, we have considered two different structures
presented in [35] and [32]. Then, we have used the
modified S-boxes and inverse S-boxes as well as the
fault detection circuit. Their results are shown in
the last row of Table 9.

To obtain the overheads for the fault detection AES
scheme, we have synthesized the original AES encryp-
tion [32, 35] and the fault detection AES encryption
schemes using the modified S-boxes in the SubBytes
transformation. For other encryption transformations,
i.e., ShiftRows, MixColumns and AddRoundKey, the
fault detection scheme presented in [3] is used. It is
noted that we have not utilized sub-pipelining in these
syntheses. However, registers are placed after each
round of the AES encryption to increase the operat-
ing frequency. It is noted that the target frequency is
66 MHz (delay of 15 ns). The results of the synthe-
ses for two composite fields are depicted in Table 10.
As seen in the table, the area overhead of the fault
detection scheme for two composite fields GF1 and
GF2 are 34.3% and 32.6%, respectively. This overhead
consists of the overheads for the modified structures
for the S-box and the inverse S-box, fault detection
circuits for these operations and for other transforma-
tions in the AES encryption. Furthermore, as seen in
the table, the delay overhead for the AES encryption
using modified S-box in GF1 is negative which corre-
sponds to higher maximum operating frequency of this
structure.
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Table 7 Comparing area,
critical path delay, and power
consumption of the proposed
schemes for S-box (SB) and
inverse S-box (ISB) in two
composite fields

Structure Area (μm2) Delay (ns) Dynamic, leakage
power consumption (μW)

Original SB 5415.4, 5423.5 13.5, 11.3 Dynamic: 493.2, 496.3
GF1 [35], GF2 [32] Leakage: 0.244, 0.244

Fault detection 7318.1, 7224.6 11.4, 11.4 Dynamic: 624.1, 606.9
using modified SB Leakage: 0.352, 0.352
GF1, GF2

Original ISB 5382.9, 5321.9 12.4, 12.0 Dynamic: 482.3, 471.2
GF1 [35], GF2 [32] Leakage: 0.246, 0.236

Fault detection 7212.4, 6907.1 12.1, 10.5 Dynamic: 619.3, 564.3
using modified ISB Leakage: 0.343, 0.340
GF1, GF2

Table 8 Comparing area,
critical path delay, and fault
coverage of the fault
detection schemes using the
modified S-box (SB) and
inverse S-box (ISB) with
other fault detection schemes

aAssuming that the five-input
OR gate used for deriving the
final error indication flag is
fault tolerant

Area Critical path Fault
overhead delay overhead coverage

Proposed fault 35.1%, 33.2% (SB) −15.5%, 0.8% (SB) 100% singlea

detection schemes 34.1%, 29.8% (ISB) −2.4%, −12.5% (ISB) ≈ 97% multiple
GF1, GF2 (for one SB/ISB)

Scheme for the 26.3%, 23.5%(SB) 3.9%, 4.1% (SB) ≈ 73%, 87% (SB) single
original operations 26.4%, 23.4%(ISB) 3.5%, 3.9% (ISB) ≈ 74%, 88% (ISB) single
[21] GF1, GF2 ≈ 97% multiple

Redundant units [16], ≈ 100% ≈ 100% 100%
United S-box [34]

Multiplication ≈ 28.5% (SB) Not mentioned ≈ 75%
approach [15]

Parity-based ≈ 123% (SB) ≈ 7.3% ≈ 50%(random faults
scheme in [3] in one SB) (512 × 9 LUT)

Table 9 Comparing area,
critical path delay, and power
consumption of the proposed
schemes using the mixed
S-box (SB) and inverse S-box
(ISB) in two composite fields

Structure Area Delay Area and delay Power Dynamic, leakage
(μm2) (ns) overhead consumption (μW) power overhead

Mixed structures 6,879.3, 14.1, Area: 0%, 0% Dynamic: 701.2, 719.8 0%, 0%
using SB & ISB 7,033.4 13.5 Delay: 0%, 0% Leakage: 0.329, 0.319 0%, 0%
GF1 [35], GF2 [32]

Fault detection 8,952.1, 12.0, Area: Dynamic: 889.2, 876.4 26.8%, 21.9%
mixed structure 8,928.0 14.0 30.1%, 27.0% Leakage: 0.432, 0.421 31.3%, 32.0%
using modified Delay:
SB & ISB GF1, GF2 −14.8%, 3.3%

Table 10 Comparing area,
delay, and power
consumption of the proposed
schemes for the AES
encryption

Structure Area Delay Area and delay Power Dynamic, leakage
(μm2) (ns) overhead consumption (μW) power overhead

AES encryption 974,351, 14.8, Area: 0%, 0% Dynamic: 85,952, 87,612 0%, 0%
using SB 976,800 13.5 Delay: 0%, 0% Leakage: 44.7, 44.7 0%, 0%
GF1 [35],GF2 [32]

Fault detection 1,308,172, 13.3, Area: Dynamic: 112,553, 111,014 30.9%, 26.7%
AES encryption 1,295,243 13.6 34.3%, 32.6% Leakage: 64.5, 66.1 44.3%, 47.9%

using modified SB Delay:
GF1, GF2 −10.1%, 0.7%
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8 Conclusions

In this paper, we have considered parity-based fault
detection schemes of the composite field realizations of
the S-box and the inverse S-box for the advanced en-
cryption standard. Our simulations show that using the
parity-based fault detection schemes and the proposed
modified S-box and inverse S-box structures, all single
faults have been detected. We have also injected a large
number of random multiple faults and our simulations
show that the proposed scheme is able to detect almost
all of the them with a low number of false alarms.

We have also synthesized the S-boxes, the inverse
S-boxes and mixed S-boxes/inverse S-boxes for both
original and modified structures as well as the AES
encryption for the original and fault detection struc-
tures using the modified S-boxes and inverse S-boxes.
The results of our ASIC syntheses show that the total
area cost of the proposed fault detection schemes is less
than that of the redundant units [16] and the united
S-box [34] which have almost the same fault coverage
as the presented schemes. Also, the fault coverage of
our fault detection scheme is higher than the schemes
presented in [3, 15] and the one in [21] for the original
operations. It is interesting to note that in most of
the cases, the working frequencies of the presented
fault detection structures are higher than those for the
original operations.
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Appendix 1

Formulations for Modified S-box and Inverse S-box in
GF(((22)2)2)

Multiplier in Blocks 2 and 4 of Figs. 1a and 2a

Adding extra gates (hardware redundancy) the
fault detection multiplier in GF((22)2), presented in
Section 4, can be realized as follows:

z3 = (u3((v3 + v1) + (v2 + v0)) + u2(v3 + v1))

+(u1(v3 + v2) + u0v3),

z2 = (u3(v3 + v1) + u0v2) + (u2(v2 + v0) + u1v3),

z1 = (u3v2 + u0v1) + u2(v3 + v2) + u1(v1 + v0), (29)

z0 = (u3(v3 + v2) + u2v3) + (u1v1 + u0v0),

where, U = (u3, u2, u1, u0) and V = (v3, v2, v1, v0) are
the inputs and Z = (z3, z2, z1, z0) is the output of the
multiplier.

Block 3: Inversion in GF((22)2)

The modified inversion in GF((22)2), presented in
Section 4, can be implemented using the following
formulations:

θ3 = γ2(γ1γ3) + γ 0γ3,

θ2 = γ 1γ2 ∨ γ3(γ0 ∨ γ2),

θ1 = (γ 0γ2 + γ1) + γ3(γ 1 ∨ γ0+γ2), (30)

θ0 = ((γ0γ3 ∨ γ2) + (γ1γ2 ∨ γ0)) + (γ1 + (γ0+γ2)(γ1γ3)),

where, + denotes an XNOR gate.

Inverse S-box

The merged inverse affine and transformation and the
inverse transformation matrix are realized using the
following formulations, respectively:

σ7 =(y1+y7)+(y2+y6), σ6 =((y1+y7)+(y2+y6)

+(y3+y0)),

σ5 =(y4+y5)+(y0+y6), σ4 =(y3+(y4+y5)),

σ3 =(y7+y5), σ2 =(y1+y7)+(y2+y6)+y5,

σ1 =((y1+y3)+y5), σ0 =((y1+y7)+(y2+y6)+y1).

(31)

x7 =(η1+η5)+(η7+η6), x6 =(η2+η6),

x5 =(η1+η5)+η6, x4 =(η4+η5)+(η2+η6)+η1,

x3 =(η4+η5)+(η2+η6) x2 =(η1+η2)+(η3+η4)+η7,

+η6+(η1+η3),

x1 =(η4+η5), x0 =(η4+η5)+(η2+η6)+η0.

(32)

It is noted that blocks 2, 3 and 4 of the inverse S-box are
realized using those of the S-box presented in Section 4.
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Appendix 2

Formulations for Modified S-box and Inverse S-box in
GF((24)2)

Transformation Matrix in Block 1 of the S-box

The formulations for the transformation matrix in
GF((24)2) corresponding to the one presented in
Section 5 is as follows:

η′
7 = [x5 + x7], η′

6 = (x2 + x3) + {x5 + x7},
η′

5 = x4,6 + {x1 + x7}, η′
4 = (x4,6 + x5), (33)

η′
3 = (x2 + x4), η′

2 = [x1 + x7],
η′

1 = (x1 + x2), η′
0 = x4,6 + (x0 + x5),

where, x4,6 = x4 + x6 which has been used 3 times.
Therefore, a fault at the output of this gate may result
in zero or three erroneous output bits which will be
detected using the fault detection scheme. Moreover,
similar expressions denoted by {} and [ ] are not reused
and are implemented using two different XOR gates.

Multiplication and Inversion in S-box and Inverse
S-box

For the 4-bit inputs of U ′ and V ′, the coordinates of the
4-bit output Z ′ of the modified multiplier in GF((24)

introduced in Section 5 are obtained as follows:

z′
3 = (u′

2v
′
1 + u′

3v
′
0) + (v′

2u′
1 + v′

3(u
′
0 + u′

3)),

z′
2 = (u′

2v
′
0 + u′

1v
′
1) + (v′

2(u
′
0 + u′

3) + v′
3(u

′
2 + u′

3)),

z′
1 = (u′

0v
′
1 + v′

1(u
′
3+u′

0))+(v′
2(u

′
2+u′

3) + v′
3(u

′
1+u′

2)),

z′
0 = (u′

0v
′
0 + u′

3v
′
1) + (u′

2v
′
2 + u′

1v
′
3).

(34)

Let Y ′ = (y′
3, y′

2, y′
1, y′

0) be the input of the inverter in
GF(24). Then, the coordinates of the output of inverter
are

θ ′
3 = (γ ′

1γ
′
3 ∨ γ ′

2) + γ ′
3(γ

′
0 + γ ′

2) + γ ′
1,

θ ′
2 = (γ ′

0γ
′
3 ∨ γ ′

2) + γ ′
0(γ

′
1 + γ ′

2) + γ ′
3,

θ ′
1 = (γ ′

0γ
′
1 ∨ γ ′

3) + γ ′
1(γ

′
2 + γ ′

3) + γ ′
0γ

′
2, (35)

θ ′
0 = (γ ′

0γ
′
2 ∨ γ ′

1) + (γ ′
1γ

′
2 ∨ γ ′

3) + (γ ′
0 + γ ′

2).
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