

1

Programming Languages (COP 4020/CIS 6930) [Fall 2014]
Assignment IV

Objectives

 To become familiar with recursive data types in ML.

 To understand basic definitions related to variables in programming languages: free

variables, alpha conversion, and substitution of expressions for variables.

Due Date: Sunday, October 12, 2014 (at 11:59pm).

Machine Details: Complete this assignment by yourself on the following CSEE network

computers: c4lab01, c4lab02, ..., c4lab20. Do not use any server machines like grad, babbage,

sunblast, etc. You can connect to the C4 machines from home using SSH. You are responsible

for ensuring that your programs compile and execute properly on these machines.

Assignment Description
Let’s consider a new language called diML+P, which is diML with pattern matching. The

datatypes defining diML+P are:

(* diML+P types *)

datatype typ = Bool | Int | Arrow of typ*typ; (* i.e., Arrow(argType, returnType) *)

(* diML+P patterns *)

datatype pattern = IntPattern of int | TruePattern | FalsePattern

 | WildcardPattern | VarPattern of string;

(* diML+P expressions *)

datatype expr = VarExpr of string | TrueExpr | FalseExpr | IntExpr of int

 | PlusExpr of expr*expr | LessExpr of expr*expr | ApplyExpr of expr*expr

 | IfExpr of expr*expr*expr (* i.e.: IfExpr(condition, thenBranch, elseBranch) *)

 | FunExpr of string*typ*typ*((pattern*expr) list);

 (* i.e. FunExpr(functionName, parameterType, returnType, body) *)

 (* A function body is a list of (pattern,expr) pairs. *)

 (* Each such pair encodes one case of the function. *)

Create a new file called as4.sml, and begin that file with the diML+P datatypes given above.

Then implement the following values in as4.sml.

(a) fv : expr -> string list

This function returns a list of all the free variables in the given diML+P expression. The returned

list should not contain any duplicates.

(b) sub : (expr * string) list -> expr -> expr

This function takes a list of expression-string pairs (e1, x1), (e2, x2), …, (en, xn) and then an

expression e, and returns [e1/x1][e2/x2]…[en/xn]e, that is, [e1/x1] ([e2/x2] (… ([en/xn]e)...)), where

[e/x]e’ refers to the capture-avoiding substitution of e for free x in e’. Your implementation may

assume that expressions passed to this sub function have already been alpha-converted to ensure

that no variables will be captured.

(c) uniquifyVars : expr -> expr [Note: This function is +10% extra credit for undergrads.]

This function takes an expression e and returns an alpha-equivalent expression e’ that never

reuses a variable name (i.e., all variables in e’ must be uniquely named). Your implementation

may assume that no function named f in e has a parameter named f.

Hints: My fv is 23 lines, sub is 20 lines, and uniquifyVars is 35 lines, written in about 3 hrs total.

2

 Sample Executions:
- use "as4.sml";

...

- use "exprs.sml"; (* using http://www.cse.usf.edu/~ligatti/pl-14/as4/exprs.sml *)

...

- (fv e1, fv e2, fv e2bad, fv mult, fv e3);

val it = ([],[],["z"],[],[])

 : string list * string list * string list * string list * string list

- sub [(e3,"z")] e2bad;

val it =

 FunExpr

 ("f",Int,Arrow (Int,Arrow (Int,Int)),

 [(VarPattern "x",

 FunExpr

 ("f",Int,Arrow (Int,Int),

 [(VarPattern "y",

 PlusExpr

 (PlusExpr (VarExpr "x",VarExpr "y"),

 ApplyExpr

 (FunExpr

 ("factorial",Int,Int,

 [(IntPattern 0,IntExpr 1),

 (VarPattern "x",

 ApplyExpr

 (ApplyExpr

 (FunExpr

 ("mult",Int,Arrow (Int,Int),

 [(VarPattern "n",

 FunExpr

 ("multN",Int,Int,

 [(IntPattern 0,IntExpr 0),

 (VarPattern "m",

 PlusExpr

 (VarExpr "n",

 ApplyExpr

 (VarExpr "multN",

 PlusExpr (VarExpr "m",IntExpr ~1))))]))]),

 VarExpr "x"),

 ApplyExpr

 (VarExpr "factorial",

 PlusExpr (VarExpr "x",IntExpr ~1))))]),IntExpr 5)))]))])

 : expr

- sub [(IntExpr 5,"x"),(IntExpr 6,"y"),(IntExpr 7,"z"),(IntExpr 8,"f")] e2bad;

val it =

 FunExpr

 ("f",Int,Arrow (Int,Arrow (Int,Int)),

 [(VarPattern "x",

 FunExpr

 ("f",Int,Arrow (Int,Int),

 [(VarPattern "y",

 PlusExpr (PlusExpr (VarExpr "x",VarExpr "y"),IntExpr 7))]))])

 : expr

- (* no tests shown for uniquifyVars, to avoid leaking ideas for solutions *)

- (* as always, we will test your submissions on inputs not shown above *)

Grading and Submission Notes
For full credit, your implementation must obey the formatting, documentation, performance, and

complexity requirements of Assignment II. Your implementation must also (1) compile and

execute on the C4 machines with no errors/warnings, (2) contain no side effects, (3) not define

any top-level values beyond the functions described in this handout, and (4) not use any library

(i.e., built-in) functions other than foldr, foldl, and Int.toString. Unlike Assignment II, your

implementations for this assignment may (and should) be recursive.

The submission process and lateness penalties are the same as for Assignment II, except here you

will be submitting your as4.sml file in Canvas. Please remember to include the pledge as an

initial comment in your as4.sml file; not doing so will lower your grade 50%.

http://www.cse.usf.edu/~ligatti/pl-14/as4/exprs.sml

