Programming Languages (COP 4020/CIS 6930) [Fall 2012]

Assignment I

Objectives
1. To become acquainted with the SML/NJ compiler.
2. To understand basic ML constructs such as lists, functions, pattern matching, anonymous variables, and let-environments.
3. To gain experience defining recursive functions in a functional programming language.

Due Date: Sunday, September 9, 2012 (at 11:59pm).

Machine Details
Complete this assignment by yourself on the following CSEE network computers: c4lab01, c4lab02, ..., c4lab20. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4lab01.csee.usf.edu Login ID and Password: <your NetID username and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description

0) Read Sections 1-3.6.3 and 4.1-4.2 of the Elements of ML Programming textbook.

1) Let’s represent (finite) sets of integers as pairs in ML. The first part of the pair is an int indicating the set’s size; the second part of the pair is an int list containing all the set elements. Hence, our sets have type int * int list. For example, the value
(5, [1,3,5,7,9]) represents the set {1, 3, 5, 7, 9}. The order of integers in the int list is irrelevant, so (5, [3,7,1,9,5]) also represents the set {1, 3, 5, 7, 9}.

For this assignment, two data-structure invariants must be maintained. First, the size of a list must be correct; for example, (4, [1,3,5,7,9]) and (6, [1,3,5,7,9]) are invalid sets. Second, no element can appear more than once in the int list; for example, (5, [3,7,1,9,5,3]) and (6, [3,7,1,9,5,3]) are invalid sets.

Using this representation of sets, implement the following functions in a file named sets.sml:

(a) cardinality	
This function returns the size of a finite set of integers. For example, cardinality((3,[2,7,4])) returns 3.

(b) elementOf		
This function tests whether an integer is an element of a given set of integers. For example, elementOf(4, (3,[2,7,4])) returns true because 4 is an element of {2, 7, 4}, while elementOf(3, (3,[2,7,4])) returns false.

(c) subset
This function tests whether one set is a subset of another. For example, subset((3,[2,7,4]),(4,[7,9,4,2])) returns true because {2, 7, 4} is a subset of {7, 9, 4, 2}. Note that the empty set (0,[]) is a subset of every set.
(d) equals
This function tests whether two sets are equal. For example, equals((3,[2,7,4]), (3,[4,2,7])) returns true because {2, 7, 4} is the same as {4, 2, 7}.

(e) union
This function returns the union of two sets. For example, union((3,[2,7,4]), (2,[7,3])) may return (4,[4,2,3,7]) because {2, 7, 4} {7, 3} = {4, 2, 3, 7}.

(f) funion
This function returns the union of every set in a list (family) of sets. When passed an empty list, funion returns the empty set. For example, funion([(3,[2,7,4]), (2,[7,3]), (0,[])]) may return (4,[4,2,3,7]) because {2, 7, 4} {7, 3} = {4, 2, 3, 7}.

(g) intersection
This function returns the intersection of two sets. For example, intersection((3,[2,7,4]), (2,[7,3])) returns (1,[7]) because {2, 7, 4} {7, 3} = {7}.

(h) fintersection
This function returns the intersection of every set in a list (family) of sets. When passed an empty list, fintersection returns the empty set. For example, fintersection([(3,[2,7,4]), (2,[7,3]), (0,[])]) returns (0,[]) because {2, 7, 4}
{7, 3} = .

(i) powerset
This function takes a set of integers S and returns a list of the subsets of S. For example, powerset((3,[2,7,4])) may return [(0,[]),(1,[2]),(1,[7]),(1,[4]), (2,[2,7]),(2,[2,4]),(2,[7,4]),(3,[2,7,4])] because 2{2,7,4} = {, {2}, {7}, {4}, {2,7}, {2,4}, {7,4}, {2,7,4}}. The order of elements in lists returned by powerset is irrelevant.

(j) invpowerset
This function takes a list L of sets and tests whether there exists a set S such that powerset(S)=L. If such an S exists then invpowerset returns SOME S; otherwise invpowerset returns NONE. For example, invpowerset([(1,[3]),(1,[7]), (0,[]),(2,[7,3])]) may return SOME (2,[7,3]) because 2{7,3} = {{3}, {7}, , {7,3}}, while invpowerset([(1,[3]),(1,[7]),(2,[7,3])]) returns NONE.

(k) cartesian [Note: For undergraduates, this function is extra credit, worth up to +10%.]
This function takes a list of sets S1, S2, ..., Sn and returns a list of all the lists that contain an element of S1 in their first position, an element of S2 in their second position, etc. If one of S1..Sn is the empty set, then cartesian simply returns [], and if cartesian is called on an empty-list argument, then it returns [[]]. For example, cartesian([(3,[2,7,4]),(2,[7,3])]) may return [[2,7],[2,3],[7,7],[7,3], [4,7],[4,3]] because {2, 7, 4} x {7, 3} = {(2,7), (2,3), (7,7), (7,3), (4,7), (4,3)}. The order of lists returned by cartesian is irrelevant, so cartesian([(3,[2,7,4]), (2,[7,3])]) could alternatively return [[4,3],[4,7],[7,3],[7,7],[2,3], [2,7]], etc.

Sample Execution (please remember that the order of elements in sets is irrelevant)
> sml
Standard ML of New Jersey v110.74 [built: Thu Aug 16 11:25:45 2012]
- use "sets.sml";
[opening sets.sml]
val cardinality = fn : int * int list -> int
val elementOf = fn : int * (int * int list) -> bool
val subset = fn : (int * int list) * (int * int list) -> bool
val equals = fn : (int * int list) * (int * int list) -> bool
val union = fn : (int * int list) * (int * int list) -> int * int list
val funion = fn : (int * int list) list -> int * int list
val intersection = fn : (int * int list) * (int * int list) -> int * int list
val fintersection = fn : (int * int list) list -> int * int list
val powerset = fn : int * int list -> (int * int list) list
val invpowerset = fn : (int * int list) list -> (int * int list) option
val cartesian = fn : (int * int list) list -> int list list
val it = () : unit
- val E = (0,[]);
val E = (0,[]) : int * 'a list
- val S = (3,[2,7,4]);
val S = (3,[2,7,4]) : int * int list
- val T = (4,[7,9,4,2]);
val T = (4,[7,9,4,2]) : int * int list
- val S' = (3,[4,2,7]);
val S' = (3,[4,2,7]) : int * int list
- val U = (2,[7,3]);
val U = (2,[7,3]) : int * int list
- cardinality(S);
val it = 3 : int
- elementOf(4,S);
val it = true : bool
- elementOf(0,E);
val it = false : bool
- subset(S,T);
val it = true : bool
- subset(T,S);
val it = false : bool
- equals(S,S');
val it = true : bool
- equals(S,E);
val it = false : bool
- union(S,U);
val it = (4,[4,2,7,3]) : int * int list
- funion([S,T,S',U,E]);
val it = (5,[9,2,4,3,7]) : int * int list
- funion([]);
val it = (0,[]) : int * int list
- intersection(S,U);
val it = (1,[7]) : int * int list
- intersection(S,E);
val it = (0,[]) : int * int list
- fintersection([S,U]);
val it = (1,[7]) : int * int list
- fintersection([]);
val it = (0,[]) : int * int list
- powerset(E);
val it = [(0,[])] : (int * int list) list
- val P = powerset(S);
val P =
 [(0,[]),(1,[2]),(1,[7]),(2,[2,7]),(1,[4]),(2,[2,4]),(2,[7,4]),(3,[2,7,4])]
 : (int * int list) list
- invpowerset(P);
val it = SOME (3,[2,7,4]) : (int * int list) option
- invpowerset([E]);
val it = SOME (0,[]) : (int * int list) option
- invpowerset([(0,[]),(1,[2]),(1,[7])]);
val it = NONE : (int * int list) option
- cartesian([S,U]);
val it = [[2,7],[2,3],[7,7],[7,3],[4,7],[4,3]] : int list list
- cartesian([]);
val it = [[]] : int list list
- cartesian([S,U,E,T]);
val it = [] : int list list

Grading
For full credit, your implementation must:
· be commented and formatted appropriately (please use spaces instead of tabs for indentation).
· use anonymous variables, pattern matching, and let-environments when appropriate (e.g., define all helper functions in let-environments).
· compile on the C4 machines with no errors or warnings.
· not use any advanced ML features that cause side effects to occur (e.g., I/O or pointer use).
· not use any built-in (i.e., predefined or library) functions.
· not be significantly more complicated than is necessary.
· assume that incoming set arguments satisfy the data-structure invariants described on Page 1 (i.e., your functions should not try to enforce the validity of their set arguments).
· never pass as an argument a set that violates the data-structure invariants described on Page 1 (i.e., when invoking a function, your code may never pass an invalid set as an argument).
· never return from a function a set that violates the data-structure invariants described on
Page 1.

Please note that we will test submissions on inputs not shown in the sample execution above.

Hints
It took me 1-2 hours to implement and test my sets.sml, which is 46 lines of code (not counting whitespace/comments). If, after completely reading Sections 1-3.6.3 and 4.1-4.2 of the textbook, you find yourself spending a significant amount of time (e.g., more than 12 hours) on this assignment, please visit or email the teaching assistant to ask for help with whatever problems you are having.

Submission Notes
· Type the following pledge as an initial comment in your sets.sml file: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.
· Upload and submit your sets.sml file into the Blackboard folder for this assignment.
· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.
· For every day that your assignment is late (up to 3 days), your grade reduces 10%.

1
