Programming Languages (COP 4020/CIS 6930) [Fall 2012]
Assignment VIII
Objectives

1. To demonstrate an understanding of language constructs related to aggregate data types: tuples, sums, and iso-recursive types.
2. To implement a type checker and interpreter for a language that has all these data types.
Due Date: Sunday, December 2, 2012, at 11:59pm.

Machine Details: Complete this assignment by yourself on the following CSEE network computers: c4lab01, c4lab02, ..., c4lab20. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4lab01.csee.usf.edu Login ID and Password: <your NetID username and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.
Assignment Description
First, make sure you have a good solution to Assignment VI by fixing any mistakes in your as6.sml file. If you need help getting your Assignment VI solution working, please contact TA Donald Ray (dray3@cse.usf.edu); Donald will be happy to provide as much help as possible without supplying low-level code solutions.

Once you have a working solution for Assignment VI, rename the code file to as8.sml and rearrange your code so that the only top-level functions implemented are typeCheck and eval (you will have to copy your sub function from as4.sml into as8.sml as a helper function of eval).
Now, let’s consider a new language called STERLING-Ag (pronounced “sterling silver”; the Ag indicates that the language has aggregate data types). STERLING-Ag extends STERLING by adding (1) n-ary tuple, (2) n-ary sum, and (3) iso-recursive types.
Download the sterling-ag.sml file at http://www.cse.usf.edu/~ligatti/pl-12/as8/sterling-ag.sml and replace the use “as4.sml”; command at the top of your as8.sml with use “sterling-ag.sml”;.
Undergraduate and graduate students: Extend your typeCheck and eval functions in as8.sml to handle STERLING-Ag’s new types and expressions related to (1) tuples and (2) sums. That is, extend typeCheck and eval to handle all of STERLING-Ag except for the constructs related to recursive data types.
Graduate students (and undergraduates who want up to +50% extra credit): Also extend typeCheck and eval to handle the constructs related to (3) recursive data types.
Throughout this assignment, you may assume that all value-variable names in expressions being type checked and evaluated are unique. However, when handling recursive types, you may not assume that type-variable names are unique.
Hints: My as8.sml is 206 lines of code, not counting comments and whitespace. It took me about 8 hours to implement and test this file. Much of the complexity stems from iso-recursive types.
The file at http://www.cse.usf.edu/~ligatti/pl-12/as8/exprs8.sml defines 9 STERLING-Ag expressions, which may help you test your typeCheck and eval functions. The first three expressions in exprs8.sml can be used to test nonrecursive aggregate data types.
Sample Executions
> sml
Standard ML of New Jersey v110.74 [built: Thu Aug 16 11:25:45 2012]

- use "as8.sml";

[opening as8.sml]

[opening sterling-ag.sml]

datatype typ

 = ...
datatype expr

 = ...
val it = () : unit

val typeCheck = fn : expr -> typ option

exception stuck

val eval = fn : expr -> expr

val it = () : unit
- use "exprs8.sml";
[opening exprs8.sml]
...

- typeCheck e1; (* First test handling of non-recursive-type expressions *)
val it = SOME (Arrow (Sum [Int,Prod [Int,Int]],Sum [Prod [Int,Int],Int]))

 : typ option

- typeCheck e2;

val it = SOME (Sum [Int,Prod [Int,Int]]) : typ option

- typeCheck e3;

val it = SOME Int : typ option

- eval e3;

val it = IntExpr 4 : expr
- typeCheck e4; (* Now test handling of recursive-type expressions *)
val it =

 SOME

 (Arrow

 (Rec ("t",Sum [Int,Prod [Int,Var "t"]]),

 Rec ("t",Sum [Int,Prod [Int,Var "t"]]))) : typ option

- typeCheck e5;
val it = SOME (Rec ("t'",Sum [Int,Prod [Int,Var "t'"]])) : typ option

- typeCheck e6;

val it = SOME (Rec ("t",Sum [Int,Prod [Int,Var "t"]])) : typ option

- typeCheck e7;
val it = SOME (Rec ("t",Int)) : typ option

- typeCheck e8;

val it = NONE : typ option

- typeCheck e9; (* challenging test *)
val it =

 SOME

 (Rec

 ("t'''",Sum [Int,Rec ("t",Sum [Var "t'''",Prod [Var "t",Var "t'''"]])]))

 : typ option

- eval e5; (* this is the STERLING-Ag representation of list 2::3::4::nil *)
val it =

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 2,

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 3,

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 4,

 RollExpr

 (SumExpr

 (1,IntExpr 0,

 [Int,

 Prod

 [Int,

 Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,

 Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]])) : expr
- eval e6; (* this should reverse e5, to produce the list 4::3::2::nil *)
val it =

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 4,

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 3,

 RollExpr

 (SumExpr

 (2,

 TupleExpr

 [IntExpr 2,

 RollExpr

 (SumExpr

 (1,IntExpr 0,

 [Int,

 Prod

 [Int,

 Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,

 Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]]))],

 [Int,Prod [Int,Rec ("t",Sum [Int,Prod [Int,Var "t"]])]])) : expr

Grading

For full credit, your implementation must:

· be commented and formatted appropriately.
· use ML features like pattern matching when appropriate.

· compile on the C4 machines with no errors or warnings.

· not use any ML features that cause side effects to occur (e.g., I/O or references/pointers).
· not use built-in/library functions, besides the ones we’ve discussed in class (so you’re free to use map, foldr, etc).

· not define extra top-level values.
· not be significantly more complicated than is necessary.

Please note that we will test submissions on inputs not shown in the sample executions above.

Submission Notes

· Type the following pledge as an initial comment in your as8.sml file: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your as8.sml file in Blackboard.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.

· For every day that your assignment is late (up to 3 days), your grade reduces 10%.
3

