Programming Languages [Fall 2010]

Test II
NAME: __
Instructions:

1) This test is 8 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short-answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated, and will not cheat, on this test.”

Signed: __

1. [8 points]

What are four high-level benefits of type systems? [1-2 sentences]

2. [5 points]
What does SOS stand for, as defined in class?
3. [10 points]
a) Provide an example of a 1-line ML program that violates the value restriction with a call to foldl.
b) Rewrite your example from Part (a) into an equivalent program that still calls foldl but does not violate the value restriction.

4. [14 points]
Consider a new function fold2r that works just like foldr but folds through two equal-length lists simultaneously.
For example:

- fold2r (fn(x,y,z)=>print(y^x)) () ["1","2","3"] ["4","5","6"];
635241val it = () : unit
- fold2r (fn(x,y,z)=>z+2) 0 ["1","2","3"] [(),(),()];
val it = 6 : int

When the lists passed to fold2r have unequal lengths, we do not care how fold2r behaves.
a) What is the type of fold2r?

b) Implement fold2r in ML, without using any built-in functions (e.g., foldr).
5. [18 points]

Let’s consider a simplified version of the ternary-logic language from Assignment V. The only expressions will be true, false, unknown, and conjunction. There are no requirements of the conjunction operator besides that it obeys the following truth table:

v1

v2

v1 ∧ v2

true

true

true

true

false

false

true

unknown
unknown

false

true

false

false

false

false

false

unknown
false

unknown
true

unknown

unknown
false

false

unknown
unknown
unknown
a) Mr. Peabody claims the following are correct encodings of this language into (UT.
true ((a.(b.(c.(d.c
false ((a.(b.(c.(d.a
unknown ((a.(b.(c.(d.d
e1 ∧ e2 (e1 e1 e2 e2 (e2 e2 e2 e1 e1)
Are Mr. Peabody’s encodings correct? Why, or why not?

b) Mr. Peabody has had second thoughts and would like to remove the parentheses in his encoding of conjunctions above. Now are his encodings correct? Why, or why not?

6. [20 points]

In class we defined a small-step dynamic semantics for several languages. One could alternatively define a big-step dynamic semantics, with the judgment form e(v. This judgment means that expression e evaluates to value v. For example, we could say 5(5, 5+10(15, and if 2<3 then true else false(true.
Define the e(v judgment for diML. Your inference rules should let us derive exactly the valid judgments for producing values from expressions.

Here is diML’s (first-order abstract) syntax:

e::= x | n | true | false | e1 + e2 | e1 < e2 | if e1 then e2 else e3 | e1 e2 | fun f(x:(1):(2=e

(::= int | bool | (1 ((2

e(v

7. [25 points]

Let’s reconsider the list language L2 from Assignment V. Here is the syntax:

 τ ::= int | τ list
 e ::= n | x | nil | e1::e2 | case e1 of (nil=>e2 | x::xs=>e3)
Here is the definition of capture-avoiding substitution:

[e/x]n = n

[e/x]x = e

[e/x]y = y (if x≠y)

[e/x]nil = nil

[e/x]e1::e2 = [e/x]e1::[e/x]e2
[e/x]case e1 of (nil=>e2 | y::ys=>e3) = case [e/x]e1 of (nil=>[e/x]e2 | y::ys=>e3)
 (if x=y or x=ys)

[e/x]case e1 of (nil=>e2 | y::ys=>e3) = case [e/x]e1 of (nil=>[e/x]e2 | y::ys=>[e/x]e3)

(if x≠y, x≠ys, y∉fv(e), and ys∉fv(e))

Here is the static semantics:

Γ
 INCLUDEPICTURE "http://upload.wikimedia.org/math/b/f/7/bf73c9341a48c47c84a48dad635ff940.png" * MERGEFORMATINET

e1:(Γ e2:(list
Γ [image: image2.png]

n:int
Γ∪{x:(} [image: image3.png]

x:(

Γ [image: image4.png]

nil: (list

Γ [image: image5.png]

e1::e2 : (list
Γ [image: image6.png]

e1:(list Γ [image: image7.png]

e2:(’ Γ∪{x:(, xs:(list} [image: image8.png]

e3:(’

Γ [image: image9.png]

case e1 of (nil=>e2 | x::xs=>e3):(’
On this page and/or the next, prove the T-I and T-L cases of the Substitution Lemma for L2. Recall the Substitution Lemma is (Γ∪{x:(} [image: image10.png]

 e’:(’ ∧ Γ [image: image11.png]

e:() ((Γ [image: image12.png]

 [e/x]e’:(’).
[Undergraduates stop here. The following question is only for graduate students.]
8. [12 points]
Continue your proof from Problem 7 by proving the T-V case of the Substitution Lemma.
T-I

T-N

T-V

T-C

T-L

PAGE
5

