Programming Languages [Fall 2010]

Practice Test I
NAME: __
Instructions:

1) This test is 4 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short-answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated, and will not cheat, on this test.”

Signed: __

1. [10 points]
What is a programming language? [1-2 sentences]
2. [25 points]

a) Implement a function filter that takes (in curried form) a function F and a list L of triples. Function F must take a triple and return a bool. Function filter returns a list containing only those triples in L for which F returns true. Use ML syntax in your implementation (including pattern matching, anonymous variables, and as-bindings when appropriate). Do not call any built-in higher-order functions (like map, foldl, or foldr) in your implementation.
b) What type does filter have?

3. [25 points]

Consider the following function F.

 fun F g s = foldl (fn(x,y)=>(g(x) andalso y)) true s;
a) What is the type of F?

b) Succinctly summarize what function F does.

c) What is the type of the expression F (fn x=>x<5) [2,4,~6,~8,~3,5,~6,~10]?

d) To what value does F (fn x=>x<5) [2,4,~6,~8,~3,5,~6,~10] evaluate?

e) What is the type of the expression F (fn x=>x)?

f) Implement the simplest possible function that is equivalent to F but that does not use a built-in function like foldl. Use ML syntax (including pattern matching, anonymous variables, and as-bindings when appropriate).

4. [10 points]
The following CFG is a well-known example of ambiguity. It exhibits what is called the dangling-else ambiguity.

expressions e ::= if e then e else e | if e then e | 0

Prove that this grammar is ambiguous.
5. [30 points]

For this problem you can assume that all uses of N refer to natural numbers (either zero or the successor of a natural number), so none of your solutions need to contain explicit judgments of the form N nat. Keep your solutions as simple as possible and do not use ellipses (...).
a) Define inference rules for doubling natural numbers. Use the following judgment form:
d(N1) = N2
b) Define inference rules for adding natural numbers. Use the following judgment form:
N1 + N2 = N3
c) Using your definitions of valid doubling and addition judgments from parts (a) and (b) above, prove that for all N1 and N2, if d(N1) = N2 then N1 + N1 = N2.

Your proof can make use of the following lemma (which you do not need to prove).

Commutativity Lemma: For all N1, N2, and N3, if N1 + N2 = N3 then N2 + N1 = N3.

PAGE
4

