Programming Languages (COP 4020/CIS 6930) [Fall 2010]

Assignment V
Objectives

1. To understand Church encodings.

2. To formalize static and dynamic semantics for a new programming language.

3. To practice proving properties of dynamic semantics.
Due Date: Tuesday, October 26, 2010 (at the beginning of class, 5:00pm).
Assignment Description
Do the following by yourself:

1. In class we talked about encoding boolean values in the lambda calculus (Church Booleans). Now let’s encode a ternary logic in the lambda calculus. The values are true, false, and unknown. Unknown might be used to indicate that a value is known to be a boolean, but its current setting is unknown. Here is a truth table showing how these ternary-logic values combine in conjunction and disjunction:

v1

v2

v1 ∧ v2

v1 ∨ v2

true

true

true

true
true

false

false

true
true

unknown
unknown
true
false

true

false

true
false

false

false

false
false

unknown
false

unknown
unknown
true

unknown
true
unknown
false

false

unknown
unknown
unknown
unknown
unknown

Consider the following (abstract syntax for) language L1.
 expressions e ::= true | false | unknown | not e | e1 ∧ e2 | e1 ∨ e2
Besides the true, false, and unknown values, L1 has three other sorts of expressions. First, there’s negation; let’s define not true to be false, not false to be true, and not unknown to be unknown. The other two sorts of expressions are for short-circuit conjunction and disjunction, which have a left-to-right evaluation order (i.e., they are left-associative operators).

Encode every one of L1’s expressions into a lambda calculus defined in the standard way (with left-to-right evaluation order and call-by-value evaluation strategy).
2. Consider a simple programming language L2 with lists, defined as follows:
types τ ::= int | τ list
expressions e ::= n | x | nil | e1::e2 |

 case e1 of (nil=>e2 | x::xs=>e3)

Notes:

· L2 has five sorts of expressions. The last vertical bar in the definition of expressions above is part of the syntax of a case expression.

· In the definition of expressions above, n refers to an integer and x a variable name.

· Cons and list-case expressions in L2 have the expected, ML-style semantics.

Define (a) free variables, (b) alpha-equivalence, (c) capture-avoiding substitution, (d) dynamic semantics, and (e) static semantics, for L2. For Part (e) you may assume that all expressions are implicitly alpha-converted, so you never have to consider contexts containing more than one entry for the same variable.
3. [Note: This problem is +20% extra credit for undergraduate students. Highly recommended!]

Assume a single-step relation () has been defined. Then consider the following deductive system:
e * e’

e e’ e’ * e’’

e * e

 e * e’’

e * e’

e * e’ e’  e’’

e * e

 e * e’’

Prove that for all e and e’ : ((e * e’)  (e * e’))
Submission Notes

· Turn in a hardcopy (handwritten or printed) version of your solutions. Please do not email solutions or upload them into Blackboard.

· Write the following pledge at the end of your submission: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Sign your name after the pledge. Not including this pledge will lower your grade 50%.

· You may submit solutions up to 2 days late (i.e., by 5pm on Thursday, October 28) with a 15% penalty.

· If you think there’s a chance you’ll be absent or late for class on the date this assignment is due, you are welcome to submit solutions early by giving them to me or a TA before or after class or during any of our office hours.
R2

T2

R1

T1

2

