Programming Languages [Fall 2008]
Test III
NAME: __
Instructions:

1) This test is 9 pages in length.
2) You have 2 hours to complete and turn in this test.
3) Short-answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following:
“I pledge my Honor that I have not cheated, and will not cheat, on this test.”

Signed: __

1. [3 points]

What is a programming language? [1-2 sentences]
2. [3 points]
What is a thunk? [1 sentence]
3. [10 points]

One-paragraph essay question: Compare and contrast pairs, binary sums, tuples, general sums, records, and variants. (That is, what are they, and how are they related?)
4. [6 points]

Implement the standard map function in ML. Your solution must (1) be only one line of code, (2) use ML syntax, (3) use one of SML/NJ’s built-in fold functions (but use no other built-in functions), and (4) begin as follows:
fun map F L =
5. [6 points]

a) Is an expression-sequencing expression of the form (e1; e2; e3) syntactic sugar in ML, given that ML already has syntax for defining and invoking anonymous functions?

b) If you answered no in part (a), provide an example of such an expression that cannot be converted into one or more anonymous-function declarations and calls. If you answered yes in part (a), show how to convert any such expression into one or more anonymous-function declarations and calls.

6. [12 points (6 points for each part)]

a) Implement a new function called mapnfoldr that simultaneously performs both a map and a foldr operation on a list. Function mapnfoldr is just like a foldr except that it maps list elements before folding them. The only complication is that although the foldr operation works right to left through a list, the map operation works left to right.
Function mapnfoldr takes four (curried) arguments: a mapping function, a folding function, an initial value for the foldr function, and a list on which to operate.

Example 1:
mapnfoldr (fn x=>x+1)(fn(x,y)=>print(Int.toString(x)))()[8,1,3,5]
causes the following to be printed: 6429
and produces the following result: ()

Example 2:

mapnfoldr(fn x=>print(Int.toString(x)))(fn(x,y)=>y+1) 0 [8,1,3,5]

causes the following to be printed: 8135

and produces the following result: 4

Example 3:

mapnfoldr (fn x=>print(Int.toString(x))) (fn(x,y)=>y+1) 0 []
causes nothing to be printed and produces the following result: 0

Your implementation must: (1) use ML syntax (including pattern matching, anonymous variables, and as-bindings when appropriate), (2) not include any calls to built-in functions (such as map, rev, foldl, or foldr), and (3) not define any helper methods.

Hint: Start by implementing a regular foldr function, and then add the map functionality. Remember that ML has left-to-right call-by-value evaluation.
b) What type does mapnfoldr have?

7. [7 points]

In class we encoded booleans as Church booleans in λUT as follows.

true:
λt.λf.t
false:
λt.λf.f
Encode a nand function in λUT. Your function must take Church booleans b1 and b2 and return an encoded Church boolean equivalent to (b1 nand b2). Recall that (b1 nand b2) is false iff b1 and b2 are both true.
8. [8 points]

Consider a language L with binary-sum, product, int, unit, and iso-recursive types.

τ::= τ1 + τ2 | τ1 x ... x τn | int | unit | t | rec t is τ

L has all the standard language constructs for manipulating expressions of these types.

a) Define a type, called τB, of binary trees of ints. Your solution must use L’s syntax for specifying types and begin as follows.
τB = rec t is
b) Define an expression representing an empty tree. Your solution must have the same type you provided in part (a).
9. [6 points]

Define the dynamic semantics of λUT using evaluation contexts.

10. [16 points]

Consider a simple programming language L with lists, defined as follows:

types τ ::= int | τ list
expressions e ::= n | x | nil | e1::e2 |
 listcase e1 of (nil=>e2 | x::xs=>e3)
Notes:

· L has five sorts of expressions. The last vertical bar in the definition of expressions above is part of the syntax of a listcase expression.

· In the definition of expressions above, n refers to an integer and x a variable name.
· Cons and listcase expressions in L have the expected semantics, as discussed in class.
a) How many types exist in L?

Reminder:

e ::= n|x|nil|e1::e2|listcase e1 of (nil=>e2 | x::xs=>e3)
b) Is L Turing complete? Why or why not? [1-2 sentences]

c) Define which of L’s expressions are values.

d) Define the static semantics of L. Do not give names to your rules. As usual, assume that all expressions are implicitly alpha-converted, so you never have to consider contexts containing more than one entry for the same variable.
Reminder:

e ::= n|x|nil|e1::e2|listcase e1 of (nil=>e2 | x::xs=>e3)
e) Define the dynamic semantics of L. Do not give names to your rules. You may assume that rules for capture-avoiding substitution already exist. You may define the dynamic semantics using either explicit search rules or evaluation contexts.
11. [23 points]
a) State but do not prove the (standard) Preservation Theorem for λST.

b) State but do not prove the (standard) Progress Theorem for λST.
c) Assuming that the single-step judgment has already been defined for λST, provide inference rules for a multistep judgment of the form e1 * e2.
d) Assuming that the progress and preservation theorems hold for λST, use your responses to parts (a)-(c) to prove the following standard type-safety theorem:
e1,e2,τ : (e1:τ  e1 * e2) e2:τ  ((v: e2=v)  (e3: e2 e3)))

PAGE
9

