Programming Languages [Fall 2008]
Test II
NAME: __
Instructions:

1) This test is 8 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short-answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated on this test.”

Signed: __

1. [5 points]

What are first-class objects? [1-2 sentences]

2. [5 points]
What are three high-level benefits of type systems? [1 sentence]
3. [4 points]
What does the standard Inversion Lemma in a type-safety proof guarantee? [1 sentence]

4. [7 points]

Implement a function r : ’a list -> ’a list that reverses a list. Your solution must (1) be only one line of code, (2) use ML syntax, (3) use one of SML/NJ’s built-in fold functions (but use no other built-in functions), and (4) begin as follows:
fun r L =
5. [14 points]

a) Implement a new function called foldl2 that operates just like foldl except that it folds through two lists simultaneously.
For example:

 foldl2 (fn(x,y)=>print(Int.toString(x))) () [9,1,4] [6,3,2,5,7]

and:

 foldl2 (fn(x,y)=>print(Int.toString(x))) () [9,1,4,5,7] [6,3,2]
both cause the following to be printed:

 96134257
Notice that the first list passed to foldl2 gets folded before the second list.
Your implementation must: (1) use ML syntax (including pattern matching, anonymous variables, and as-bindings when appropriate), (2) not include any calls to built-in functions (such as map, rev, foldl, or foldr), and (3) not define any helper methods.
b) What type does foldl2 have?

6. [18 points] For all the following, (1) assume that correct definitions of values and capture-avoiding substitution already exist and (2) do not give names to your rules.
a) Define a call-by-value dynamic semantics for λUT with a left-to-right evaluation order.
b) Define a call-by-value dynamic semantics for λUT with a right-to-left evaluation order.

c) Define a call-by-name dynamic semantics for λUT.

d) Define a full-beta-reduction dynamic semantics for λUT.

7. [12 points]

In class we encoded booleans as Church booleans in λUT as follows.

true:
λt.λf.t
false:
λt.λf.f
a) Encode an and function in λUT. Your function must take Church booleans b1 and b2 and return an encoded Church boolean equivalent to (b1  b2).

b) Encode an or function in λUT. Your function must take Church booleans b1 and b2 and return an encoded Church boolean equivalent to (b1  b2).
c) Encode an xor function in λUT. Your function must take Church booleans b1 and b2 and return an encoded Church boolean equivalent to (b1 xor b2). Recall that (b1 xor b2) is true iff exactly one of b1 and b2 is true.
8. [35 points]
Consider a simple programming language O with options, defined as follows:
types τ ::= int | τ option
expressions e ::= n | x | SOME(e) | NONE |
 case e1 of (SOME(x)=>e2 | NONE=>e3)
Notes:

· O has five sorts of expressions. The last vertical bar in the definition of expressions above is part of the syntax of a case expression.

· In the definition of expressions above, n refers to an integer and x a variable name.

· The semantics of O’s expressions matches the semantics of the same expressions in ML. For example, if e1 in case e1 of (SOME(x)=>e2 | NONE=>e3) evaluates to SOME(NONE), then e2 will execute with x bound to NONE.
a) Define which of O’s expressions are values.
b) Define free variables (FVs) in expressions in O.
Reminder:

e ::= n|x|SOME(e)|NONE|case e1 of (SOME(x)=>e2 | NONE=>e3)
c) Define capture-avoiding substitution in O.
d) Define the static semantics of O. Do not give names to your rules. As usual, assume that all expressions are implicitly alpha-converted, so you never have to consider contexts containing more than one entry for the same variable.
Reminder:

e ::= n|x|SOME(e)|NONE|case e1 of (SOME(x)=>e2 | NONE=>e3)
e) Define the dynamic semantics of O. Do not give names to your rules.
f) State but do not prove the (standard) Preservation Theorem for O.

g) State but do not prove the (standard) Progress Theorem for O.

PAGE
8

