Programming Languages (COP 4020) [Fall 2008]

Assignment II
Objectives

1. To gain experience writing and using higher-order functions in a functional programming language, including curried forms.
2. To become familiar with standard higher-order functions in SML/NJ (map, foldl, and foldr in particular).

3. To practice defining inference rules in deductive systems and using structural induction to prove properties in those systems.

4. To define free variables and alpha-equivalence for expressions in a simple programming language.
Due Date for Programming Portion: Sunday, October 12, 2008, at 11:59pm.

Due Date for Language-theory Portion: Monday, October 13, 2008, at 6:05pm.

Machine Details

Complete the programming portion of this assignment on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description
1. In a new file named primes.sml, define a let-environment that does the following.
a. Input from TextIO.stdIn a list L of integers. The user will provide one integer per line to stdIn, and for simplicity you may assume that the user will only enter valid integers. Stop inputting integers when the user enters an integer less than 2. No integer in L may be less than 2.
b. Write a function getPrimeFactors : int -> int list that takes an argument n and returns a list of the prime factors of n. Function getPrimeFactors accomplishes its task with a simple Sieve of Eratosthenes as follows:
i) Create a list pList of integers from 2 to n. pList contains the potential prime factors of n.
ii) For all integers i from 2 to the floor of the square root of n (i.e., floor(Real.Math.sqrt(real(n)))), remove all multiples of i—but not i itself—from pList. This creates a list primeList of all the prime numbers between 2 and n.
iii) Remove from primeList all integers that are not factors of n (this can be done in only one line of code with the foldl function) and return the resulting list from getPrimeFactors.
c. Use map and getPrimeFactors to convert each element E of L into a list of E’s prime factors. This produces a list L2 whose elements are lists of prime factors (hence, L2 is an int list list).
d. Use foldl to print the contents of every list in L2. Make the output match the format given in the Sample Executions section of this handout.
e. Use foldl or foldr on L2 to obtain L3, an int list containing the unique prime factors of all the integers input. For example, even if more than one integer input is divisible by 3, the integer 3 should only appear once in L3.
f. Use foldl or foldr to print all the elements of L3. Make the output match the format given in the Sample Executions section of this handout, but the order in which the unique prime factors get output does not matter.
g. Use foldl or foldr on L2 to print all the prime numbers input. Make the output match the format given in the Sample Executions section of this handout, but the order in which the prime numbers get output does not matter.
h. Finally, the body of the let-environment defined in primes.sml (i.e., the part between the in and end keywords) should just contain the following expression to indicate the end of the output: print("\n============================\n")
The sample executions on the following page illustrate the operation of primes.sml. It took me about 1.5 hours to design, implement, and test my 66-line primes.sml.
2. Define inference rules for greater-than and less-than judgments over natural numbers. The judgment forms are: ├ N1 > N2 and ├ N1 < N2. Recall that N1 and N2, being natural numbers, adhere to our definition of natural numbers (├ N nat), as discussed in class. Your definitions of valid greater- and less-than judgments must match the normal mathematical notions of natural numbers being greater, or less, than others (e.g., 21>11).
3. Using your definitions of greater-than and less-than, formally prove that for all natural numbers N1 and N2: (N1 > N2) if and only if (N2 < N1).
4. Consider the following language L.
expressions e ::= x | n | e1+e2 | let val x = e1 in e2 end
This language just contains variables (x), natural numbers (n), addition expressions, and let-expressions. Let-expressions in this restrictive language have the same meaning as let-expressions in SML. For example, the program:

let val x = let val x = 4 in x+x end in let val x = x+x in x+x end end

is equivalent to the following (alpha-converted) program.
let val x = let val y = 4 in y+y end in let val z = x+x in z+z end end
Both of these example programs evaluate to 32.

Provide definitions for:
(a) Free variables in expressions in L

(b) Alpha-equivalence of expressions in L
Sample Executions
> sml
Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "primes.sml";
[opening primes.sml]

[autoloading]

[library $SMLNJ-BASIS/basis.cm is stable]

[autoloading done]

15

65535

19

44

13

999

87623

678

1

============================

Prime factors:

3 5

3 5 17 257

19

2 11

13

3 37

87623

2 3 113

============================

Unique prime factor list:

113 87623 37 13 11 2 19 257 17 5 3

============================

Prime numbers entered:

19 13 87623

============================

val it = () : unit

val it = () : unit

- use "primes.sml";
[opening primes.sml]

678

~14

============================

Prime factors:

2 3 113

============================

Unique prime factor list:

113 3 2

============================

Prime numbers entered:

============================

val it = () : unit

val it = () : unit
-

Submission Notes

· Type the following pledge as an initial comment in your primes.sml file: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Also write and sign the same pledge on your solution to Problems 2-4. Not including this pledge on either portion of the assignment will lower your overall grade 50%.

· Your primes.sml file must be commented appropriately.

· For full credit, your primes.sml code must compile with no errors or warnings. For this assignment, even the polyEqual warning is not allowed.
· Upload and submit your primes.sml file into the digital dropbox in Blackboard.

· You may submit your primes.sml in Blackboard as many times as you like; we will grade your latest submission.

· The theory portion of this assignment (Problems 2-4) is due at the beginning of class (i.e., at 6:05pm) on 10/13/08. Solutions submitted after that time will be considered late; however, you are always welcome to submit solutions early.
· For every day that any part of your assignment is late, your grade reduces 10%.
1

