Programming Languages (COP 4020) [Fall 2008]
Assignment IV
Objectives

1. To practice proving the soundness of programming languages by proving Progress and Preservation Theorems for a new language.

2. To demonstrate an understanding of the semantics of references in strongly typed languages by implementing a type checker and interpreter for a simple language with references.

3. To gain experience with recursively defined data types and exceptions in ML.

Due Date for Language-theory Portion: Wednesday, December 3, 2008, at 6:05pm.

Due Date for Programming Portion: Friday, December 5, 2008, at 11:59pm.
Machine Details

Complete the programming portion of this assignment on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description
1. [5 points]

Recall language L from Assignment III:

expressions e ::= x | n | e1+e2 | let val x = e1 in e2 end | if e1 then e2 else e3 | T | F | B

(a) Provide rules for L’s static and dynamic semantics.

(b) State a Canonical Forms Lemma for L. You do not need to prove the lemma.

(c) State and prove Progress and Preservation Theorems for L.
For this problem, you may assume without proof that all the standard programming-language lemmas besides Progress and Preservation (e.g., the Inversion and Substitution Lemmas) hold for L. You may also assume that all auxiliary programming-language definitions (e.g., of values and capture-avoiding substitution) already exist. As usual, you may assume that all expressions are implicitly alpha-converted, so you never have to consider contexts (Γ) containing more than one entry for the same variable. Finally, in part (c), and in all proofs for this class, you need not prove cases where the logic would be identical to an existing proof case. For example, if your proof has cases T-T, T-F, and T-B, but all three cases have identical proof logic, then you could simply prove case T-T and then write something like, “Cases T-F and T-B are analogous to case T-T.”
Extra Credit

For an extra 25% credit on this assignment, prove that the Substitution Lemma holds for language L.

2. [1 point]

Correct any mistakes in the tc.sml file you submitted for Assignment III. Then copy the contents of your tc.sml file to a new file called tc-refs.sml and extend your type-checker code in tc-refs.sml to handle MinML reference expressions. Function tc in tc-refs.sml will only be used to type check MinML expressions statically, so your type checker never needs to provide types for location expressions (which may only appear dynamically). If an expression input to your type checker contains a location value, function tc should raise an exception called tcLocationVal. Hence, tc-refs.sml needs to define two top-level values: exception tcLocationVal and function tc.
You can find data-type definitions for MinML with references in file types-refs.sml at: http://www.cse.usf.edu/~ligatti/pl-08/as4/types-refs.sml. As on Assignment III, you may assume that all variable names in expressions being type checked are unique.
3. [4 points]

In a new file named eval-refs.sml, implement a function eval : expr -> expr. Function eval takes a MinML expression e (which may use references) and evaluates e for as many steps as possible. If evaluation of e converges to a value v, then eval(e) returns v; if e diverges then so does eval(e). Thus, function eval is an interpreter of MinML expressions (i.e., eval performs step-by-step evaluation of MinML expressions).
You will want to create several helper functions to implement eval. I recommend making one of these the following.
step:(int*expr) list -> int -> expr -> ((int*expr) list*int*expr)
This curried step function takes (1) the current memory (stored as a list of location-value bindings), (2) the next location (memory address) available for use, and (3) an expression e’ currently being evaluated. Then step returns a triple containing (1) the possibly updated memory that results from taking one evaluation step, (2) the next location (memory address) available for use after taking this step, and (3) the expression e’’ that results from taking a step from e’. However, if no e’’ exists—perhaps because e’ is ill typed or is already a value—then step should raise a cannotStep exception. In fact, eval must raise cannotStep at any point that execution gets “stuck” without a value being produced (but note that because MinML with references is type safe, only ill-typed expressions get “stuck” before becoming values). File eval-refs.sml must therefore define only two top-level values: exception cannotStep and function eval.
To help you test your interpreter, we provide two files called fact.sml and fact-refs.sml at: http://www.cse.usf.edu/~ligatti/pl-08/as4/. These files build, type check, and evaluate MinML expressions that compute six factorial (6!). The sample executions on the following page illustrate how to use these files. Please note, though, that we will grade your submissions using MinML expressions that are not in fact.sml or fact-refs.sml.
In Problems 2 and 3, you may assume that all variable names in expressions being type checked and interpreted are unique (so you never have to alpha-convert expressions). You may also assume that memory is unlimited, so you never have to deal with memory reclamation. Finally, although Problems 2 and 3 require you to type check and evaluate MinML expressions containing references, none of the ML code you submit for this assignment may use references or arrays.
Sample Executions

> sml
Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "types-refs.sml";
[opening types-refs.sml]

datatype typ = Arrow of typ * typ | Bool | Int | Ref of typ

datatype oper = Equal | Less | Minus | Plus | Times

datatype expr

 = ...
val it = () : unit

- use "tc-refs.sml";
[opening tc-refs.sml]

exception tcLocationVal

val tc = fn : expr -> typ option

val it = () : unit

- use "eval-refs.sml";
[opening eval-refs.sml]

exception cannotStep

val eval = fn : expr -> expr

val it = () : unit

- use "fact.sml";
[opening fact.sml]

[autoloading]

[library $SMLNJ-BASIS/basis.cm is stable]

[autoloading done]

720

val it = () : unit

val it = () : unit

- use "fact-refs.sml";
[opening fact-refs.sml]

720

val it = () : unit

val it = () : unit

Submission Notes

· Type the following pledge as an initial comment in your .sml files: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Also write and sign the same pledge on your solution to Problem 1. Not including this pledge on either portion of the assignment will lower your overall grade 50%.

· Your .sml files must be commented appropriately.

· For full credit, your code must compile with no errors or warnings.
· Upload and submit your tc-refs.sml and eval-refs.sml files into the digital dropbox in Blackboard.

· You may submit your .sml files in Blackboard as many times as you like; we will grade your latest submission.

· The theory portion of this assignment (Problem 1) is due at the beginning of class (i.e., at 6:05pm) on 12/03/08. Solutions submitted after that time will be considered late; however, you are always welcome to submit solutions early.
· For every day that any part of your assignment is late, your grade reduces 10%.
1

