Programming Languages (COP 4020) [Fall 2008]
Assignment III
Objectives

1. To demonstrate an understanding of MinML’s static semantics by implementing a MinML type checker.

2. To gain experience programming with recursively defined data types in ML.
3. To formalize static and dynamic semantics for a new programming language.

4. To practice proving properties of programming languages.
Due Date for Programming Portion: Sunday, November 9, 2008, at 11:59pm.

Due Date for Language-theory Portion: Monday, November 10, 2008, at 6:05pm.

Machine Details

Complete the programming portion of this assignment on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description
1. In a new file named tc.sml, implement a MinML type checker. The only top-level value defined in tc.sml should be a function named tc (though tc may of course define helper functions within its body). Function tc has type expr -> typ option, which means that tc takes a MinML expression e and returns an option o. If e is well typed with a MinML type t then o should be SOME(t); on the other hand, if e is ill typed then o should be NONE. The expr and typ data types are already defined in a file called types.sml, located at: http://www.cse.usf.edu/~ligatti/pl-08/as3/types.sml.
To help you test your type checker, we also provide a file called exprs.sml at: http://www.cse.usf.edu/~ligatti/pl-08/as3/exprs.sml. The code in this file builds and type checks several example MinML expressions. The sample executions on the following page illustrate how to use all these files. Please note, though, that we will grade your type checker using MinML expressions that are not in exprs.sml.
Notes:

· An equality expression e1=e2 is well typed iff e1 and e2 have the same type t, and t is either bool or int.

· Your tc function must be purely functional; tc may not use references or arrays.

· Store variable contexts (i.e., type environments) as lists of variable-type bindings.

Extra Credit

Your tc function may assume that all variable names in the expression being type checked are unique (though it is not difficult to make tc work correctly without this assumption). However, for an extra 20% credit on this assignment, you may implement a second function in tc.sml called uniqueVarNames, of type expr->expr. This function takes an arbitrary MinML expression e1 (possibly having non-unique variable names) and returns a MinML expression e2 such that: (1) all variable names in e2 are unique and (2) e2 is alpha-equivalent to e1.
Sample Executions
> sml
Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "types.sml";
[opening types.sml]

datatype typ = Arrow of typ * typ | Bool | Int

datatype oper = Equal | Less | Minus | Plus | Times

datatype expr

 = ApplyExpr of expr * expr

 | FalseExpr

 | FunExpr of string * string * typ * typ * expr

 | IfExpr of expr * expr * expr

 | NumExpr of int

 | OpExpr of expr * oper * expr

 | TrueExpr

 | VarExpr of string

val it = () : unit

- use "tc.sml";
[opening tc.sml]

val tc = fn : expr -> typ option

val it = () : unit

- use "exprs.sml";
[opening exprs.sml]

val it = SOME Bool : typ option

val it = NONE : typ option

val it = NONE : typ option

val it = NONE : typ option

val it = SOME Bool : typ option

val it = SOME (Arrow (Int,Arrow (#,#))) : typ option

val it = NONE : typ option

val it = () : unit

- Control.Print.printDepth := 8;

[autoloading]

...

<Note: The printDepth command changes the depth to which data structures get printed, enabling us to see the full types returned by the type checker>

...

[autoloading done]

val it = () : unit

- use "exprs.sml";
[opening exprs.sml]

val it = SOME Bool : typ option

val it = NONE : typ option

val it = NONE : typ option

val it = NONE : typ option

val it = SOME Bool : typ option

val it = SOME (Arrow (Int,Arrow (Int,Arrow (Int,Int)))) : typ option

val it = NONE : typ option

val it = () : unit
2. Consider the following language L.
expressions e ::= x | n | e1+e2 | let val x = e1 in e2 end | if e1 then e2 else e3 | T | F | B
Notes:
· This is the same language that we considered in Problem 4 of Assignment II, except that L now has four new sorts of expressions. As before, L contains variables (x), numbers (n) of type nat, addition expressions, and SML-style let-expressions.
· Language L also contains if-then-else expressions and ternary-logic values. Instead of simply having true and false values, L has T, F, and B values, all of which have type tern. These ternary values can be interpreted to mean “true” (T), “false” (F), and “both” (B). That is, B refers to a logical value that is both true and false (perhaps because it refers to an assertion that is sometimes, but not always, true).

· In language L, if-then-else expressions operate in the same way as if-then-else expressions in SML, except that the test expression (i.e., e1 in any expression of the form if e1 then e2 else e3) must have type tern, rather than bool. Dynamically, when we evaluate the test expression to a value, execution proceeds as follows:
· When the test expression is true, we execute only the then-branch. The overall if-expression evaluates to whatever the then-branch evaluates to.
· When the test expression is false, we execute only the else-branch. The overall if-expression evaluates to whatever the else-branch evaluates to.
· When the test expression is both, we execute both then- and else-branches to values vthen and velse. If vthen and velse are natural numbers then the overall if-expression evaluates to vthen + velse. If vthen and velse are ternary-logic values then the overall if-expression evaluates to vthen ^ velse, as defined in the following truth table:

	^
	T
	F
	B

	T
	T
	B
	B

	F
	B
	F
	B

	B
	B
	B
	B

Provide definitions for:
(a) Capture-avoiding substitution in L ([e/x]e’ = e’’)
(b) The dynamic semantics of L
 (e → e’)
(c) The static semantics of L
 (Γ├ e : τ)
Then state and prove the following Context-weakening Lemma for L:

(d) For all Γ1, Γ2, e, and τ : if Γ1├ e : τ and Γ1  Γ2 then Γ2├ e : τ.
 (In other words, extra “junk” in the context does not affect expression typing.)
For this problem, you do not need to define rules for free variables in, or alpha-converting between, expressions; you may just assume that these definitions already exist. As usual, you may also assume that all expressions are implicitly alpha-converted, so you never have to consider contexts (Γ) containing more than one entry for the same variable. Finally, ensure that L has a left-to-right evaluation order.
 Submission Notes

· Type the following pledge as an initial comment in your tc.sml file: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Also write and sign the same pledge on your solution to Problem 2. Not including this pledge on either portion of the assignment will lower your overall grade 50%.

· Your tc.sml file must be commented appropriately.

· For full credit, your tc.sml code must compile with no errors or warnings.
· Upload and submit your tc.sml file into the digital dropbox in Blackboard.

· You may submit your tc.sml in Blackboard as many times as you like; we will grade your latest submission.

· The theory portion of this assignment (Problem 2) is due at the beginning of class (i.e., at 6:05pm) on 11/10/08. Solutions submitted after that time will be considered late; however, you are always welcome to submit solutions early.
· For every day that any part of your assignment is late, your grade reduces 10%.
1

