Programming Languages (COP 4020) [Fall 2008]

Assignment I
Objectives

1. To become acquainted with the SML/NJ compiler.
2. To understand basic ML constructs such as lists, tuples, functions, pattern matching, anonymous variables, and let-environments.
3. To gain experience defining recursive and mutually recursive functions in a functional programming language.

Due Date: Sunday, September 21, 2008 (at 11:59pm).

Machine Details

Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description

0) Read Sections 1.2-3.5 of the textbook.
1) In a new file named str2nats.sml, implement a function called str2nats with type string -> int list. Function str2nats builds a list of natural numbers from a string by stripping out all non-digit separators of natural numbers in the string. For example, when input "13 sfh9ehf0 2ejg3 hfd8h-20=th=1", str2nats returns [13,9,0,2,3,8,20,1].
Function str2nats must contain a let-environment that defines, at a minimum, two mutually recursive functions beginNat and finishNat. These two functions can have whatever types are convenient for you, but beginNat must process a character list by (a) stripping off any initial non-digit characters and then (b) passing the character list (which now begins with a digit) to finishNat. Function finishNat must process a character list by (a) stripping off all initial digits (to create a natural number) and then (b) passing the character list (which now begins with a non-digit) back to beginNat. At any point that beginNat or finishNat exhaust the character list, the final list of natural numbers should be returned. That final list must then be returned from str2nats.

You may want to use function explode (discussed on page 40 of the textbook) in your implementation of str2nats and the function ord (discussed on page 25 of the textbook) in your implementations of beginNat and endNat.
2) A polynomial can be represented as a list of triples of type int*char*int. For example, the list [(5,#"x",2),(3,#"y",0),(1,#"y",4)] represents the polynomial 5x2+3y0+y4.
In a new file named simplify.sml, implement a function called simplify with type (int*char*int) list -> (int*char*int) list. Hence, simplify takes a polynomial as an argument and returns a polynomial as a result. Function simplify must convert its argument polynomial p1 into an equivalent polynomial p2 such that both of the following constraints hold:
a. All coefficients of like terms in p1 are combined in p2. For example, if p1 is 5x4+2x4 then p2 must be 7x4. If p1 is 5x0+2y0 then p2 must be 7c0 (where c could be any lower-case alphabetic character) because 5x0 and 2y0 represent the constants 5 and 2, respectively.
b. All terms in p2 are ordered by decreasing exponents. That is, all terms with exponent n must appear before all terms with exponent n-1 (for all n > 0). The ordering of terms within the same exponent group in p2 does not matter.
You may assume that all polynomial terms passed to simplify have:

a. A coefficient greater than zero,
b. A variable name that is a lower-case alphabetic character, and
c. An exponent greater than or equal to zero.

Your implementation of simplify must use anonymous variables (described in Section 3.3.3 of the textbook) whenever possible and as-bindings (described in Section 3.3.2 of the textbook) whenever appropriate (to avoid reconstructing tuples). Your solution must also define all helper functions within a let-environment of simplify.

Do not worry about optimizing the running time of your code; however, your simplify function must run reasonably efficiently. For example, your code must simplify an arbitrary polynomial of 1000 terms within a few seconds when run on a C4 machine.

To help you create polynomials on which to test your simplify function, we provide a function generatePolynomial: int -> (int*char*int) list in the file located at http://www.cse.usf.edu/~ligatti/pl-08/as1/generatePolynomial.sml. Function generatePolynomial returns a pseudorandom polynomial with n terms, where n is the argument passed to generatePolynomial. The sample executions on the following page demonstrate how to use this function.
Hints

It took me about 1 hour to implement and test my 16-line str2nats.sml and about 1.5 hours to implement and test my 38-line simplify.sml. If, after completely reading Sections 1.2-3.5 of the textbook, you find yourself spending a significant amount of time (e.g., more than 8 hours) on either program, please visit or email the teaching assistant to ask for help with whatever problems you are having.
Also, while testing your simplify function, you may want to increase the number of list elements that SML/NJ displays when it outputs list values. To increase this number from its default value of 12 to, say, 30, use the command: Control.Print.printLength := 30;
Sample Executions
> sml

Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "str2nats.sml";
[opening str2nats.sml]

val str2nats = fn : string -> int list

val it = () : unit

- str2nats "13 sfh9ehf0 2ejg3 hfd8h-20=th=1";
val it = [13,9,0,2,3,8,20,1] : int list

- str2nats " j 0080kjh324k0kj144";

val it = [80,324,0,144] : int list

- use "generatePolynomial.sml";
[opening generatePolynomial.sml]

opening Random

 datatype rand = ...

 val rand : int * int -> rand

 val toString : rand -> string

 val fromString : string -> rand

 val randInt : rand -> int

 val randNat : rand -> int

 val randReal : rand -> real

 val randRange : int * int -> rand -> int

val r =

 RND

 {borrow=ref false,congx=ref 0wx12A8EC24,index=ref 0,

 vals=[|0wx34F6B4C9,0wx25F35819,0wx67C116B7,0wx2FB0D6F4,0wx3FB65659,

 0wx10FBB583,0wx29CC68F8,0wx1C6064CD,0wx48F5C996,0wx7FCB668D,

 0wx28017032,0wx79D4BBAE,...|]} : rand

val generatePolynomial = fn : int -> (int * char * int) list

val it = () : unit
- use "simplify.sml";
[opening simplify.sml]

simplify.sml:11.37 Warning: calling polyEqual

simplify.sml:6.38 Warning: calling polyEqual

val simplify = fn : (int * ''a * int) list -> (int * ''a * int) list

val it = () : unit
- val p = generatePolynomial 12;
val p =

 [(5,#"z",3),(5,#"z",3),(6,#"y",4),(4,#"x",4),(3,#"x",0),(1,#"y",3),

 (5,#"y",3),(5,#"y",3),(6,#"y",4),(3,#"y",4),(2,#"z",1),(6,#"x",0)]

 : (int * char * int) list

- simplify p;
val it =

 [(15,#"y",4),(4,#"x",4),(10,#"z",3),(11,#"y",3),(2,#"z",1),(9,#"x",0)]

 : (int * char * int) list
- val p2 = generatePolynomial 12;
val p2 =

 [(3,#"y",2),(4,#"z",3),(4,#"z",2),(2,#"z",4),(5,#"y",2),(1,#"x",0),

 (6,#"z",0),(2,#"y",2),(6,#"z",4),(5,#"y",2),(5,#"y",3),(3,#"x",1)]

 : (int * char * int) list

- simplify p2;
val it =

 [(8,#"z",4),(4,#"z",3),(5,#"y",3),(15,#"y",2),(4,#"z",2),(3,#"x",1),

 (7,#"x",0)] : (int * char * int) list

- simplify(generatePolynomial(1000));
val it =

 [(245,#"x",4),(227,#"y",4),(213,#"z",4),(317,#"z",3),(219,#"y",3),

 (189,#"x",3),(177,#"y",2),(230,#"z",2),(241,#"x",2),(272,#"x",1),

 (202,#"y",1),(228,#"z",1),...] : (int * char * int) list

Submission Notes

· Type the following pledge as an initial comment in your .sml files: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· All functions in your .sml files must be commented appropriately.

· For full credit, your code must compile with no errors or warnings, except the polyEqual warning is allowed.
· Upload and submit your .sml files into the digital dropbox in Blackboard.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.

· For every day that your assignment is late, your grade reduces 10%.
1

