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A common mechanism for ensuring that software behaves securely is to monitor programs at
run time and check that they dynamically adhere to constraints specified by a security policy.
Whenever a program monitor detects that untrusted software is attempting to execute a dangerous
action, it takes remedial steps to ensure that only safe code actually gets executed.

This article improves our understanding of the space of policies enforceable by monitoring the
run-time behaviors of programs. We begin by building a formal framework for analyzing policy
enforcement: we precisely define policies, monitors, and enforcement. This framework allows
us to prove that monitors enforce an interesting set of policies that we call the infinite renewal
properties. We show how to construct a program monitor that provably enforces any reasonable
infinite renewal property. We also show that the set of infinite renewal properties includes some
nonsafety policies, i.e., that monitors can enforce some nonsafety (including some purely liveness)
policies. Finally, we demonstrate concrete examples of nonsafety policies enforceable by practical
run-time monitors.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General—protection mech-
anisms; F.1.2 [Computation by Abstract Devices]: Modes of Computation—interactive and
reactive computation; D.2.5 [Software Engineering]: Testing and Debugging—monitors; D.2.4
[Software Engineering]: Software/Program Verification—validation; formal methods

General Terms: Security, Theory

Additional Key Words and Phrases: Security policies, safety, liveness, monitoring, security au-
tomata, policy enforcement

1. INTRODUCTION

A ubiquitous technique for enforcing software security is to dynamically monitor
the behavior of programs and take remedial action when the programs behave in
ways that violate a security policy. Firewalls, virtual machines, anti-virus and
anti-spyware programs, intrusion-detection tools, and operating systems all act as
program monitors to enforce security policies in this way. We can also think of any
application containing security code that dynamically checks input values, queries
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network configurations, raises exceptions, warns the user of potential consequences
of opening a file, etc., as containing a program monitor inlined into the application.
Even “static” mechanisms, such as type-safe-language compilers and verifiers, often
ensure that programs contain appropriate dynamic checks by inlining them into the
code. This article examines the space of policies enforceable by program monitors.

Because program monitors, which react to the potential security violations of
target programs, enjoy such ubiquity, it is important to understand their capabil-
ities as policy enforcers. Such an understanding is essential for developing sound
systems that support program monitoring and languages for specifying the security
policies that those systems can enforce. In addition, well-defined boundaries on
the enforcement powers of security mechanisms allow security architects to deter-
mine exactly when certain mechanisms are needed and save the architects from
attempting to enforce policies with insufficiently strong mechanisms.

Schneider defined the first formal models of program monitors and discovered
one particularly useful boundary on their power [Schneider 2000]. He defined a
class of monitors that respond to potential security violations by halting the target
application, and he showed that these monitors can only enforce safety properties—
security policies that specify that “nothing bad ever happens” in a valid run of the
target [Lamport 1977]. When a monitor in this class detects a potential security
violation (i.e., “something bad”), it must halt the target.

Aside from our work, other research on purely run-time program monitors has
likewise only focused on their ability to enforce safety properties. In this article, we
advance our theoretical understanding of practical program monitors by proving
that certain types of monitors can enforce nonsafety properties. These monitors
are modeled by edit automata, which have the power to insert actions on behalf of,
and suppress actions attempted by, the target application. We prove an interesting
lower bound on the properties enforceable by such monitors—a lower bound that
encompasses strictly more than safety properties.

1.1 Related Work

Only a handful of efforts have been made to understand the space of policies en-
forceable by monitoring software at run time. In contrast, a rich variety of mon-
itoring enforcement systems has been implemented [Liao and Cohen 1992; Jeffery
et al. 1998; Edjlali et al. 1998; Damianou et al. 2001; Erlingsson and Schneider 2000;
1999; Evans and Twyman 1999; Evans 2000; Robinson 2002; Kim et al. 1999; Bauer
et al. 2003; Erlingsson 2004; Sen et al. 2004; Havelund and Roşu 2004]. This lack
of theoretical work makes it difficult to understand exactly which sorts of security
policies the implemented systems can enforce. In this section we examine closely
related efforts and discuss high-level similarities and differences between them and
our work. In the remainder of this article, we point out additional, more specific
relationships between our results and those of related work.

Monitors as Invalid Execution Recognizers. Schneider began the effort to under-
stand the space of policies that monitors can enforce [Schneider 2000]. Building on
earlier work with Alpern, which provided logic-based and automata-theoretic defini-
tions of safety and liveness [Alpern and Schneider 1985; 1987], Schneider modeled
program monitors as infinite-state automata using a particular variety of Büchi
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automata [Büchi 1962] (which are like regular deterministic finite automata ex-
cept that they can have an infinite number of states, operate on infinite-length
input strings, and accept inputs that cause the automaton to enter accepting states
infinitely often). Schneider’s monitors1 observe executions of untrusted target ap-
plications and dynamically recognize invalid behaviors. When a monitor recognizes
an invalid execution, it halts the target just before the execution becomes invalid,
thereby guaranteeing the validity of all monitored executions. Schneider formally
defined policies and properties and observed that his automata-based execution
recognizers can only enforce safety properties (a monitor can only halt the target
upon observing an irremediably “bad” action). Researchers have devised many
techniques for proving that programs obey such automata-specified safety proper-
ties [Walker 2000; Hamlen et al. 2006b; Aktug et al. 2008].

This article builds on Schneider’s definitions and models but views program mon-
itors as execution transformers rather than execution recognizers. This fundamental
shift permits modeling the realistic possibility that a monitor might insert actions
on behalf of, and suppress actions of, untrusted target applications. In our model,
Schneider’s monitors are truncation automata, which either accept the actions of
untrusted targets or halt the target altogether upon recognizing a safety violation.
We define more general monitors modeled by edit automata that can insert and
suppress actions (and are therefore operationally similar to deterministic I/O au-
tomata [Lynch and Tuttle 1987]), and we prove that edit automata are strictly
more powerful than truncation automata (Section 3.2.2).

Computability Constraints on Execution Recognizers. After Schneider showed
that the safety properties constitute an upper bound on the set of policies en-
forceable by simple monitors, Viswanathan, Kim, and others tightened this bound
by placing explicit computability constraints on the safety properties being en-
forced [Viswanathan 2000; Kim et al. 2002]. Their key insight was that because
execution recognizers inherently have to decide whether target executions are in-
valid, these monitors can only enforce decidable safety properties. Introducing
computability constraints allowed them to show that monitors based on recogniz-
ing invalid executions (i.e., our truncation automata) enforce exactly the set of
computable safety properties. Moreover, Viswanathan proved that the set of lan-
guages containing strings that satisfy a computable safety property equals the set
of coRE languages [Viswanathan 2000].

Shallow-history Execution Recognizers. Continuing the analysis of monitors act-
ing as execution recognizers, Fong defines shallow history automata (SHA) as a
specific type of memory-bounded monitor [Fong 2004]. SHA decide whether to ac-
cept an action by examining a finite and unordered history of previously accepted
actions. Although SHA are very limited models of finite-state truncation automata,
Fong shows that they can nonetheless enforce a wide range of useful access-control
properties, including Chinese Wall policies (where subjects may access at most one
element from every set of conflicting data [Brewer and Nash 1989]), low-water-

1Schneider refers to his models as security automata. In this article, we call them truncation
automata and use the term security automata to refer more generally to any dynamic execution
transformer. Section 2.3 presents our precise definition of security automata.
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mark policies (where a lattice of trustworthiness determines whether accesses are
valid [Biba 1975]), and one-out-of-k authorization policies (where every program
has a predetermined, finite set of access permissions [Edjlali et al. 1998]). In ad-
dition, Fong generalizes SHA by defining sets of properties accepted by arbitrarily
memory-bounded monitors and proves that classes of monitors with strictly more
memory can enforce strictly more properties.

Fong simplifies his analyses by assuming that monitors observe only finite execu-
tions (i.e., all untrusted targets must eventually halt) and ignoring computability
constraints on monitors. Although we do not make those simplifying assumptions
in this article, we did when first exploring the capabilities of edit automata [Bauer
et al. 2002; Ligatti et al. 2005a].

Comparison of Enforcement Mechanisms’ Capabilities. Hamlen, Morrisett, and
Schneider observe that, in practice, program monitors are often implemented by
rewriting untrusted target code [Hamlen et al. 2006a]. A rewriter inlines a monitor’s
code directly into the target at compile or load time. Many of the implemented
monitoring systems cited at the beginning of this subsection can be viewed as
program rewriters.

Hamlen et al. define the set of RW-enforceable policies as the policies enforceable
by rewriting untrusted target applications, and they compare this set with the sets
of policies enforceable by static analysis and monitoring mechanisms. Their model
of program monitors differs from ours in that their monitors have access to the
full text (e.g., source code or binaries) of monitored target programs. Practical
monitors often adhere to this assumption: operating systems and virtual machines
can usually access the full code of target programs. However, practical monitors also
often violate this assumption: firewalls, network scanners, and user-level operating-
system extensions (e.g., user-level file systems) lack access to target programs’ code.

Hamlen et al. model programs as program machines (PMs), which are three-tape
deterministic Turing Machines (one tape contains input actions, one is a work tape,
and one tape contains output actions). They show that the set of statically enforce-
able properties on PMs equals the set of decidable properties of programs (which
contains only limited properties such as “the program halts within one hundred
computational steps when the input is 1010”). Because Hamlen et al.’s monitors
have access to the code of target programs, they can also perform static analysis on
PMs and hence enforce strictly more policies than can be enforced through static
analysis alone. For example, one can monitor a program to ensure that it never
executes a particular action, but this same property cannot be enforced by static
analysis on general PMs. Hamlen et al. also show that the RW-enforceable poli-
cies contain some nonsafety policies and are a superset of the monitor-enforceable
policies, and, interestingly, they prove that the RW-enforceable policies do not cor-
respond to any complexity class in the arithmetic hierarchy.

Security Automata in Process Algebras. As part of the S3MS (Security of Soft-
ware and Services for Mobile Systems) project, Martinelli and Matteucci have mod-
eled security automata (including truncation and edit automata) as operators in
process algebras [Martinelli and Matteucci 2007b; 2007a], particularly in variants
of Milner’s Calculus of Communicating Systems (CCS) [Milner 1978]. Having mod-
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eled security automata and their semantics, Martinelli and Matteucci demonstrate
techniques for synthesizing security automata from policies specified as formulae
in temporal logic. Matteucci has also extended the framework to accommodate
reasoning about time (using a timed variant of CCS) [Matteucci 2007], and Mat-
teucci, Martinelli, and Mori recently implemented their monitor-synthesis designs
in practical tools [Matteucci 2006; Martinelli and Mori 2007].

1.2 Contributions

We extend previous work in three primary ways.

(1) Beginning with standard definitions of policies and properties, we introduce
formal models of program monitors and define precisely how these monitors
enforce policies by transforming possibly nonterminating target executions (Sec-
tion 2). We consider this formal framework a central contribution of our work
because it not only communicates our basic assumptions about what consti-
tutes a policy, a monitor, and enforcement of a policy by a monitor, but also
enables rigorous analyses of monitors’ enforcement capabilities.

(2) We use our formal framework to delineate the space of policies enforceable by
two varieties of run-time program monitors: simple truncation automata and
more sophisticated edit automata (Section 3). We also define an interesting
set of security policies called the reasonable infinite renewal properties, and
show how, when given any reasonable infinite renewal property, to construct a
program monitor that provably enforces that policy.

(3) We analyze the set of infinite renewal properties to determine its relationships
with the standard sets of safety and liveness policies (Section 4). We prove that
the set of infinite renewal properties includes some nonsafety properties and,
hence, that program monitors can sometimes enforce nonsafety properties.

This article draws heavily from our earlier conference paper “Enforcing Non-
safety Security Policies with Program Monitors” [Ligatti et al. 2005b] but extends
that earlier work in many ways.

—We have given related work a much more complete treatment in Section 1.1 and
have added material to our description of ongoing and future work in Section 6.2.

—We include proofs for theorems. Most importantly, the proof of Theorem 3.3 in
Appendix A shows how, when given any reasonable infinite renewal property, to
construct a program monitor that provably enforces that property.

—Although we include three theorems stated in the earlier conference paper (The-
orems 3.1, 3.2, and 3.3), we have added two new theorems (Theorems 2.5 and
3.8) and have formalized another (Theorem 3.4) that was only sketched in earlier
work. The nontrivial formalization of Theorem 3.4 and the new Theorems 2.5
and 3.8 shed more light on the exact set of properties edit automata (and security
automata in general) can enforce.

—In the new Section 5, we discuss several limitations and practical considerations
relevant to our enforcement model. We also briefly describe Polymer [Bauer
et al. 2005a; Ligatti 2006], an edit-automaton-inspired, implemented enforcement
mechanism that can enforce some nonsafety policies.
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—Finally, we make numerous minor corrections and additions to the original mate-
rial. For instance, Section 2.1 includes a correction to our notation for sequence
concatenation (the original notation only applied when concatenating two finite
sequences, but we often need this notation to denote the concatenation of a finite
sequence followed by an infinite sequence).

2. MODELING MONITORS AS SECURITY AUTOMATA

This section sets up a formal framework for analyzing policies, monitors, and en-
forcement. Section 3 uses this framework in its formal analysis of the policies that
can be enforced by monitoring software.

We begin in Section 2.1 by describing some basic notation for specifying program
executions. Then, Section 2.2 defines policies and properties, and Section 2.3 defines
program monitors as security automata. Finally, Section 2.4 links together the
previous definitions to arrive at a precise definition of what it means for a monitor
to enforce a policy.

By necessity, our models abstract from and idealize actual systems. Section 5
discusses some of the implications and limitations of this idealization.

2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly countably
infinite set of program actions A (also referred to as program events). An execution,
or trace, is simply a finite or infinite sequence of actions; a finite sequence indicates
a terminating execution, while an infinite sequence indicates a nonterminating ex-
ecution. The set of all finite executions on a system with action set A is denoted
as A?. Similarly, the set of infinite executions is Aω, and the set of all executions
(finite and infinite) is A∞. We let the metavariable a range over actions, σ and τ
over executions, and Σ over sets of executions (i.e., subsets of A∞).

The symbol · denotes the empty sequence, that is, an execution with no actions.
We use the notation τ ;σ to denote the concatenation of two sequences, the first of
which must have finite length. When τ is a (finite) prefix of (possibly infinite) σ,
we write τ�σ or, equivalently, σ�τ . When τ is a strict prefix of σ (i.e., τ�σ and
τ 6=σ), we write τ≺σ or σ�τ .

Given some σ, we often use ∀τ�σ as an abbreviation for ∀τ ∈ A? : τ�σ and
∃τ�σ for ∃τ ∈ A? : τ�σ. Similarly, when given some τ , we use ∀σ�τ as an
abbreviation for ∀σ ∈ A∞ : σ�τ and ∃σ�τ for ∃σ ∈ A∞ : σ�τ . We also use
analogous abbreviations with ≺ in place of � and � in place of �.

2.2 Policies and Properties

A security policy is a predicate P on sets of (finite- or infinite-length) executions; a
set of executions Σ ⊆ A∞ satisfies a policy P if and only if P (Σ). For example, a set
of executions satisfies a nontermination policy if and only if every execution in the
set is an infinite sequence of actions. A cryptographic key-uniformity policy might
be satisfied only by sets of executions such that the keys used in all the executions
form a uniform distribution over the universe of key values.

Following Schneider [Schneider 2000], we distinguish between properties and more
general policies as follows. A security policy P is a property if and only if there
exists a decidable characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞,
ACM Transactions on Information and Systems Security, Vol. 12, No. 3, Article 19., Pub. date: January 2009.
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the following is true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

Hence, a property is defined exclusively in terms of individual executions and may
not specify a relationship between different executions of the program. The nonter-
mination policy mentioned above is therefore a property, while the key-uniformity
policy is not. The distinction between properties and policies is an important one
to make when reasoning about program monitors in our current framework because
a monitor only sees individual executions and can therefore enforce only security
properties rather than more general policies.

There is a one-to-one correspondence between a property P and its characteristic
predicate P̂ , so we use the notation P̂ unambiguously to refer both to a character-
istic predicate and the property it induces. When P̂ (σ), we say that σ satisfies or
obeys the property, or that σ is valid, legal, or good. Likewise, when ¬P̂ (τ), we say
that τ violates or disobeys the property, or that τ is invalid, illegal, or bad.

Properties that specify that “nothing bad ever happens” are called safety prop-
erties [Lamport 1977; Alpern and Schneider 1985]. No prefix of a valid execution
can violate a safety property; equivalently, once some finite execution violates the
property, all extensions of that execution violate the property. Technically, safety
means that every invalid execution has some invalid prefix after which all extensions
are likewise invalid. Formally, P̂ is a safety property on a system with action set A
if and only if the following is true.2

∀σ ∈ A∞ : (¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety proper-
ties, since security violations cannot be undone by extending a violating execution.

Dually to safety properties, liveness properties [Alpern and Schneider 1985] state
that nothing irremediably bad happens in any finite amount of time; any finite
execution can always be extended to satisfy the property. Formally, P̂ is a liveness
property on a system with action set A if and only if the following is true.

∀σ ∈ A? : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution can
be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying
and violating the property. Alpern and Schneider showed that such properties are
neither safety nor liveness but instead the conjunction of a single safety and a
single liveness property [Alpern and Schneider 1985; 1987; Schneider 1987]. The
decomposition can be straightforward: given a property P̂ , define property P̂S to

2Alpern and Schneider [Alpern and Schneider 1985] model executions as infinite-length sequences
of states in which terminating executions contain a final state, infinitely repeated. We can map an
execution in their model to one in ours simply by building a sequence of the actions that induce
the state transitions in the execution in their model (no event induces a repeated final state). For
example, consider the Alpern and Schneider execution s1; s2; s1; s1; s1; . . . and assume that action
a1 induces the transition from s1 to s2 and a2 induces the transition from s2 to s1. In our model,
this execution would be a1; a2. With this mapping, it is easy to verify that our definitions of safety
and liveness are equivalent to those of Alpern and Schneider.
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be satisfied exactly by those executions that satisfy P̂ or that have finite length
and can be extended to satisfy P̂ ; also define property P̂L to be satisfied exactly by
those executions that satisfy P̂ or that have finite length and cannot be extended
to satisfy P̂ . It is not difficult to show that P̂S is a safety property, P̂L is a liveness
property, and that an execution satisfies P̂ if and only if it satisfies both P̂S and
P̂L. Section 4.1 contains a simple example of this decomposition technique.

Finally, in our analyses we will often find it convenient to consider only a subset
of properties that we call the reasonable properties.

Definition 2.1 Reasonable Property. A property P̂ on a system with action set
A is reasonable if and only the following conditions hold.

(1) P̂ (·)
(2) ∀σ ∈ A? : P̂ (σ) is decidable

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted
target application at run time to ensure that all observable executions satisfy some
property. We model a program monitor formally by a security automaton S, which
is a deterministic, finite or countably infinite state machine (Q, q0, δ) that is defined
with respect to some system with action set A. The set Q specifies the possible
automaton states, and q0 is the initial state. Different automata have slightly
different sorts of transition functions (δ), which accounts for the variations in their
expressive power. The exact specification of a transition function δ is part of the
definition of each kind of security automaton; we only require that δ be total,
deterministic, and Turing Machine computable. We limit our analysis in this work
to automata whose transition functions take the current state and input action
(the next action the target wants to execute) and return a new state and at most
one action to output (make observable and ready to execute). A transition of the
automaton is triggered by the presence of an input action. The current input action
may or may not be consumed while making a transition; this is different from some
previous models, which required that an input action always be consumed during
a transition [Schneider 2000].

We specify the execution of each kind of security automaton S using a labeled op-
erational semantics. The basic single-step judgment has the form (q, σ) τ−→S (q′, σ′)
where q denotes the current state of the automaton, σ denotes the sequence of ac-
tions that the target program wants to execute, q′ and σ′ denote the state and action
sequence after the automaton takes a single step, and τ denotes the sequence of at
most one action output by the automaton in this step. The input sequence, σ, is
not observable to the outside world whereas the output, τ , is observable.

We generalize the single-step judgment to a multi-step judgment using standard
rules of reflexivity and transitivity.

Definition 2.2 Multi-step. The multi-step relation (σ, q) τ=⇒S (σ′, q′) is induc-
tively defined as follows (where all metavariables are universally quantified).

(1) (q, σ) ·=⇒S (q, σ)

(2) If (q, σ) τ1−→S (q′′, σ′′) and (q′′, σ′′) τ2=⇒S (q′, σ′) then (q, σ)
τ1;τ2=⇒S (q′, σ′)
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Next, we define what it means for a program monitor to transform a possi-
bly infinite-length input execution into a possibly infinite-length output execution.
This definition is essential for understanding the behavior of monitors operating on
potentially nonterminating targets.

Definition 2.3 Transforms. A security automaton S = (Q, q0, δ) on a system
with action set A transforms the input sequence σ ∈ A∞ into the output sequence
τ ∈ A∞, denoted as (q0, σ) ⇓S τ , if and only if the following constraints are met.

(1) ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A? : ((q0, σ) τ ′

=⇒S (q′, σ′)) =⇒ τ ′�τ

(2) ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ) τ ′

=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ outputs
only prefixes of τ , while the second ensures that S outputs every prefix of τ .

Section 5.3 also discusses the possibility of monitors transforming input execu-
tions from a more limited domain than A∞. This possibility may in some cases
give monitors more power, but it also raises a host of complex issues.

2.4 Property Enforcement

We and several others concurrently noted the importance of monitors obeying two
abstract principles, which we call soundness and transparency [Ligatti et al. 2003;
Erlingsson 2004; Hamlen et al. 2006a]. A mechanism that enforces a property P̂
is sound when it ensures that observable outputs always obey P̂ ; it is transparent
when it preserves the semantics of executions that already obey P̂ . We call a sound
and transparent mechanism an effective enforcer. Because effective enforcers are
transparent, they may transform valid input sequences only into semantically equiv-
alent output sequences, for some system-specific definition of semantic equivalence.
When two executions σ, τ ∈ A∞ are semantically equivalent, we write σ ≈ τ . We
place no restrictions on a semantic-equivalence relation except that it actually be an
equivalence relation (i.e., reflexive, symmetric, and transitive), and that properties
of interest do not distinguish between semantically equivalent executions.

∀σ, τ ∈ A∞ : σ ≈ τ =⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)

When acting on a system with semantic equivalence relation ≈, we call an effec-
tive enforcer an effective≈ enforcer. The formal definition of effective≈ enforcement
is given below. Together, the first and second constraints in the following definition
imply soundness; the first and third constraints imply transparency.

Definition 2.4 Effective≈ Enforcement. An automaton S with starting state q0

effectively≈ enforces a property P̂ on a system with action set A and semantic
equivalence relation ≈ if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

(1) (q0, σ) ⇓S τ ,

(2) P̂ (τ), and

(3) P̂ (σ) =⇒ σ ≈ τ

ACM Transactions on Information and Systems Security, Vol. 12, No. 3, Article 19., Pub. date: January 2009.
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Although semantic equivalence allows us to model ideal enforcement behavior,
and captures some realistic enforcement behaviors that would otherwise be ne-
glected, we have found (and this article shows) that in many situations the system-
specific equivalence relation ≈ complicates our theorems and proofs without making
them significantly more enlightening. A major difficulty with semantic equivalence
is its generality: for any reasonable property P̂ there exists a sufficiently helpful
equivalence relation that enables a security automaton to enforce P̂ .

Theorem 2.5 Permissibility of ≈. For all reasonable properties P̂ on a sys-
tem with action set A, there exists an equivalence relation ≈ and security automaton
S such that S effectively≈ enforces P̂ .

Proof. Define the equivalence relation ≈ such that ∀σ, σ′ ∈ A∞ : σ ≈ σ′ ⇐⇒
(P̂ (σ)∧P̂ (σ′)). Define S to have a single state q and never make any state transitions
or output any actions. Then, ∀τ ∈ A∞ : (q, τ) ⇓S · . By assumption, P̂ (·); hence,
S is sound. All valid executions are equivalent to · , so S is also transparent.
Therefore, S effectively≈ enforces P̂ .

Because semantic equivalence can be such a powerful aid in enforcement, we
have found that we can sometimes gain more insight into the enforcement powers
of program monitors by limiting our analyses to systems in which the equivalence
relation (≈) is just syntactic equality (=). We call effective≈ enforcers operating
on such systems effective= enforcers. To formalize effective= enforcement, we first
need to define the syntactic equality of executions. Intuitively, σ=τ for any finite
or infinite sequences σ and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective≈ enforcer for which the system-
specific equivalence relation (≈) is the system-unspecific equality relation (=).

Definition 2.6 Effective= Enforcement. An automaton S with starting state q0

effectively= enforces a property P̂ on a system with action set A if and only if
∀σ ∈ A∞ : ∃τ ∈ A∞ :

(1) (q0, σ) ⇓S τ ,
(2) P̂ (τ), and
(3) P̂ (σ) =⇒ σ=τ

Because, in our model, any two executions that are syntactically equal must
be semantically equivalent, any property effectively= enforceable by some security
automaton is also effectively≈ enforceable by that same automaton. Hence, an
analysis of the set of properties effectively= enforceable by a particular kind of au-
tomaton is conservative: the set of properties effectively≈ enforceable by that same
sort of automaton must be a superset of the effectively= enforceable properties.

3. MONITOR-ENFORCEABLE POLICIES

Now that we have set up a framework for formally reasoning about policies, prop-
erties, monitors (security automata), and enforcement, we can consider the space
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of properties enforceable by program monitors. In this section, we examine the
enforcement powers of two types of monitors: a widely studied variety that we
model with truncation automata (Section 3.1) and a more complex variety that
we model with edit automata (Section 3.2). In Section 4, we compare the proper-
ties enforceable by these two types of monitors and show that although truncating
monitors can enforce only safety properties, it is possible to enforce some nonsafety
properties using more sophisticated monitors.

3.1 Truncation Automata

We begin by demonstrating why it is often believed that program monitors enforce
only safety properties: this belief is provably correct when considering a common
type of monitor that we model by truncation automata. A truncation automaton
has only two options when it intercepts an action from the target program: it may
accept the action and make it observable, or it may halt (i.e., truncate the action
sequence of) the target program altogether. Schneider first defined this model of
program monitors [Schneider 2000], and other authors have similarly focused on this
simple, though limited, model when considering the properties enforceable by secu-
rity automata [Viswanathan 2000; Kim et al. 2002; Fong 2004]. Truncation-based
monitors have been used successfully to enforce a rich set of interesting safety poli-
cies including access control [Evans and Twyman 1999], stack inspection [Erlings-
son and Schneider 1999; Abadi and Fournet 2003], software fault isolation [Wahbe
et al. 1993; Erlingsson and Schneider 2000], Chinese Wall [Brewer and Nash 1989;
Erlingsson 2004; Fong 2004], and one-out-of-k authorization [Fong 2004] policies.3

Although previous models of program monitors considered security automata to
be invalid-sequence recognizers (a monitor simply halts the target when it recog-
nizes a policy violation), we model program monitors more generally as sequence
transformers. This shift enables us to define more sophisticated monitors such as
edit automata (Section 3.2) but also makes it important for us to recast the pre-
vious work on truncation automata to fit our model. Moving the analysis into our
formal model allows us to refine previous work by uncovering the single computable
safety property unenforceable by any truncation (or edit) automaton. Considering
truncation automata directly in our model also enables us to precisely compare the
enforcement powers of truncation and edit automata.

3.1.1 Definition. A truncation automaton T is a finite or countably infinite
state machine (Q, q0, δ) that is defined with respect to some system with action set
A. As usual, Q specifies the possible automaton states, and q0 is the initial state.
The deterministic and total function δ : Q×A→Q ∪ {halt} specifies the transition
function for the automaton and indicates either that the automaton should accept
the current input action and move to a new state (when the return value is a new
state), or that the automaton should halt the target program (when the return
value is halt). To ensure that the transition function is deterministic, we require
that halt 6∈ Q. The following rules formally specify the operational semantics of
truncation automata.

3Although some of the cited work considers monitors with powers beyond truncation, it also
specifically studies many policies that can be enforced by monitors that only have the power to
truncate.
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(q, σ) τ−→T (q′, σ′)

σ = a;σ′ δ(q, a) = q′

(q, σ) a−→T (q′, σ′) (T-Step)

σ = a;σ′ δ(q, a) = halt

(q, σ) ·−→T (q, ·) (T-Stop)

As described in Section 2.3, we extend this single-step relation to a multi-step
relation using standard reflexivity and transitivity rules.

3.1.2 Enforceable Properties. Let us consider a lower bound on the effective≈
enforcement powers of truncation automata. Any property that is effectively=

enforceable by a truncation automaton is also effectively≈ enforceable by that same
automaton, so we can develop a lower bound on properties effectively≈ enforceable
by examining which properties are effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automaton that
effectively= enforces P̂ must output σ. However, the automaton must also truncate
every invalid input sequence into a valid output. Any truncation of an invalid input
prevents the automaton from accepting all the actions in a valid extension of that
input. Therefore, truncation automata cannot effectively= enforce any property in
which an invalid execution can be a prefix of a valid execution. This is exactly the
definition of safety properties, so it is clear that truncation automata effectively=

enforce only safety properties.
Past research claimed to equate the enforcement power of truncation automata

with the set of computable safety properties [Viswanathan 2000; Kim et al. 2002].
Here we show that there is exactly one computable safety property unenforceable
by any sound truncation automaton: the unsatisfiable safety property that consid-
ers all executions invalid. We show this by proving that no security automaton can
enforce a property that considers empty executions valid. The only safety property
for which ¬P̂ (·) holds is the unsatisfiable policy; for truncation automata this im-
plies that the unsatisfiable property cannot be enforced. That security automata
cannot enforce unsatisfiable properties was independently (and concurrently with
our original derivation [Ligatti et al. 2005b]) shown by Hamlen, Morrisett, and
Schneider [Hamlen et al. 2006a]. However, we show more generally that security
automata also cannot enforce satisfiable properties P̂ such that ¬P̂ (·).

A monitor in our framework cannot enforce such a property because there is no
valid output sequence that can be produced in response to an empty, invalid input
sequence. To prevent this case and to ensure that security automata can behave
correctly on targets that generate no actions, we require that the empty sequence
satisfies any property we are interested in enforcing. Previous work assumed for
convenience that P̂ (·) [Bauer et al. 2002], but here we prove that it is a necessity.

The following theorem states that truncation automata effectively= enforce ex-
actly the set of reasonable safety properties. Although previous work has proved
similar results [Schneider 2000; Kim et al. 2002; Viswanathan 2000; Ligatti et al.
2005a], we include the theorem and proof in this article in order to transfer the
previous results to our model of monitors as execution transformers.

Theorem 3.1 Effective= T∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
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only if the following constraints are met.

(1 ) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

(2 ) P̂ (·)
(3 ) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. Please see Appendix A for the proofs of all theorems presented in this
section.

We next delineate the properties effectively≈ enforceable by truncation automata.
As mentioned above, the set of properties truncation automata effectively= enforce
provides a lower bound for the set of effectively≈ enforceable properties; a candidate
upper bound is the set of properties P̂ that satisfy the following extended safety
constraint.

∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ≈ σ′) (T-Safety)

This is an upper bound because a truncation automaton T that effectively≈ enforces
P̂ must halt at some finite point (having output σ′) when its input (σ) violates P̂ ;
otherwise, T accepts every action of the invalid input. When T halts, all extensions
(τ) of its output must either violate P̂ or be equivalent to its output; otherwise,
there is a valid input for which T fails to output an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight. We
simply have to add computability restrictions on the property to ensure that a
truncation automaton can decide when to halt the target.

Theorem 3.2 Effective≈ T∞-Enforcement. A property P̂ on a system with
action set A can be effectively≈ enforced by some truncation automaton T if and
only if there exists a decidable predicate D over A? such that the following con-
straints are met.

(1 ) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : D(σ′)
(2 ) ∀(σ′; a) ∈ A? : D(σ′; a) =⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) =⇒ τ ≈ σ′)
(3 ) ¬D(·)

Hence, truncation automata can effectively≈ enforce properties not effectively=

enforceable (i.e., nonsafety properties) only when the property and the system’s
relation of semantic equivalence allow some invalid execution σ to have a valid
prefix σ′ that (1) can be extended to a valid execution τ such that σ�τ , and (2) is
equivalent to all valid extensions of σ′.

One can imagine simple examples that satisfy these constraints. Consider, for
instance, a system with actions on and off. On this system, any subexecution
of the form (on; off)? is equivalent to the empty sequence. The property P̂ we
wish to enforce requires that only executions of the form (on; off)? are valid (e.g.,
¬P̂ ((on; off)ω) and ¬P̂ (on)). This P̂ is a nonsafety property because ¬P̂ (on) but
P̂ (on; off), and so by Theorem 3.1 it cannot be effectively= enforced by a truncation
automation. On the other hand, following the transitions specified in the proof of
Theorem 3.2 in Appendix A, a truncation automaton can effectively≈ enforce P̂ by
immediately halting before accepting any actions.
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On practical systems, it seems unlikely that a property requiring enforcement and
a system’s relation of semantic equivalence would be so broadly defined. We there-
fore consider the set of properties detailed in Theorem 3.1 (i.e., reasonable safety
properties) more indicative of the true enforcement power of truncation automata.

3.2 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security automa-
ton called the edit automaton. We analyze the enforcement powers of edit automata
and find that they can effectively= enforce an interesting, new class of properties
that we call infinite renewal properties.

3.2.1 Definition. An edit automaton E is a triple (Q, q0, δ) defined with respect
to some system with action set A. As with truncation automata, Q is the possibly
countably infinite set of states, and q0 is the initial state. In contrast to truncation
automata, the deterministic and total transition function δ of an edit automaton
has the form δ : Q×A→Q× (A ∪ {·}). The transition function specifies, when
given a current state and input action, a new state to enter and either an action to
insert into the output stream (without consuming the input action) or the empty
sequence to indicate that the input action should be suppressed (i.e., consumed
from the input without being made observable). In other work, we have defined
edit automata that can additionally perform the following transformations in a
single step: insert a finite sequence of actions, accept the current input action, or
halt the target [Ligatti et al. 2005a]. However, all of these transformations can be
expressed in terms of suppressing and inserting single actions. For example, an edit
automaton can halt a target by suppressing all future actions of the target; an edit
automaton accepts an action by inserting and then suppressing that action (first
making the action observable and then consuming it from the input). Although in
practice these transformations would each be performed in a single step, we have
found the minimal operational semantics containing only the two rules shown below
more amenable to formal reasoning. Explicitly including the additional rules in the
model would not invalidate any of our results.

(q, σ) τ−→E (q′, σ′)

σ = a;σ′ δ(q, a) = (q′, a′)

(q, σ) a′

−→E (q′, σ) (E-Ins)

σ = a;σ′ δ(q, a) = (q′, ·)
(q, σ) ·−→E (q′, σ′) (E-Sup)

As with truncation automata, we extend the single-step semantics of edit au-
tomata to a multi-step semantics with the rules for reflexivity and transitivity.

3.2.2 Enforceable Properties. Edit automata are powerful property enforcers be-
cause they can suppress a sequence of potentially illegal actions and later, if the
sequence is determined to be legal, just insert it. Essentially, the monitor feigns to
the target that its requests are being accepted, although none actually are, until the
monitor can confirm that the sequence of feigned actions is valid. At that point, the
monitor inserts all of the actions it previously feigned accepting. This is the same
idea implemented by intentions files in database transactions [Paxton 1979]. Moni-
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toring systems like virtual machines can also be used in this way, feigning execution
of a sequence of the target’s actions and only making the sequence observable when
it is known to be valid. We discuss some practical considerations and limitations of
this model, such as the difficulty of ensuring that suppressed sequences of actions
get inserted atomically, in Section 5.

As we did for truncation automata, we develop a lower bound on the set of prop-
erties that edit automata effectively≈ enforce by considering the properties they
effectively= enforce. Using the above-described technique of suppressing invalid
inputs until the monitor determines that the suppressed input obeys a property,
edit automata can effectively= enforce any reasonable infinite renewal (or simply
renewal) property. A renewal property is one in which every valid infinite-length
sequence has infinitely many valid prefixes, and conversely, every invalid infinite-
length sequence has only finitely many valid prefixes. For example, a property P̂
may be satisfied only by executions that contain the action a. This is a renewal
property because valid infinite-length executions contain an infinite number of valid
prefixes (in which a appears) while invalid infinite-length executions contain only a
finite number of valid prefixes (in fact, zero). This P̂ is also a liveness property be-
cause any invalid finite execution can be made valid simply by appending the action
a. Although edit automata cannot enforce this P̂ because ¬P̂ (·), in Section 4.2 we
will recast this example as a reasonable “eventually audits” policy and show several
more detailed examples of renewal properties enforceable by edit automata.

A property P̂ is an infinite renewal property on a system with action set A if
and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

It will often be easier to reason about renewal properties without relying on
infinite set cardinality. We make use of the following equivalent definition in formal
analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit au-
tomaton that effectively= enforces P̂ using the technique of feigning acceptance
(i.e., suppressing actions) until the automaton has seen some legal prefix of the in-
put (at which point the suppressed actions can be made observable). This technique
ensures that the automaton eventually outputs every valid prefix, and only valid
prefixes, of any input execution. Because P̂ is a renewal property, the automaton
therefore outputs all prefixes, and only prefixes, of a valid input while outputting
only the longest valid prefix of an invalid input. Hence, the automaton correctly
effectively= enforces P̂ . The following theorem formally states this result.

Theorem 3.3 Lower Bound Effective= E∞-Enforcement. A property P̂
on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

(1 ) ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

(2 ) P̂ (·)
(3 ) ∀σ ∈ A? : P̂ (σ) is decidable
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It would be reasonable to expect that the set of renewal properties also represents
an upper bound on the properties effectively= enforceable by edit automata. After
all, an effective= automaton cannot output an infinite number of valid prefixes of
an invalid infinite-length input σ without outputting σ itself. In addition, on a
valid infinite-length input τ , an effective= automaton must output infinitely many
prefixes of τ , and whenever it finishes processing an input action, its output must
be a valid prefix of τ because there may be no more input (i.e., the target may not
generate more actions).

However, there is a corner case in which an edit automaton can effectively=

enforce a valid infinite-length execution τ that has only finitely many valid prefixes.
If, after processing a prefix of τ , the automaton can decide that τ is the only valid
extension of this prefix, then the automaton can cease processing input and enter an
infinite loop to eagerly insert the remaining actions of τ . While in this infinite loop,
the automaton need not output infinitely many valid prefixes, since it is certain to
be able to extend the current (invalid) output into an infinite-length valid output
sequence.

The following theorem presents the tight boundary for effective= enforcement of
properties by edit automata, including the corner case described above. Intuitively,
constraint (1) in the theorem is a weak version of Renewal2; it permits a valid
infinite-length execution σ to have a prefix σ′ that an eager-insertion function f
can decide to extend, action by action, to σ. Constraint (2) restricts the behavior
of f to ensure that it only specifies a sequence of eagerly insertable actions in
cases where an automaton, after inserting those actions, will be guaranteed that
its output is a prefix of (or equal to) any valid extension of the current input. In
general, effective= enforcers can eagerly insert a sequence of actions σ if and only
if all valid extensions of the current input σ′ begin by extending σ′ with σ. Finally,
constraints (3) and (4) limit consideration to reasonable properties.

Theorem 3.4 Effective= E∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only if
there exists decidable eager-insertion function f : (A? × N) → ({·} ∪ A) such that
the following constraints are met.

(1 ) ∀σ ∈ Aω : P̂ (σ) ⇐⇒
(
∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)
∨ ∃σ′�σ : σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .

)
(2 ) ∀σ ∈ A∞ : ∀σ′ ∈ A? : (f(σ′, 0)6= · ∧ σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .) =⇒

(a) P̂ (σ)
(b) σ ∈ A? =⇒ (∀τ�σ′ : P̂ (τ) =⇒ σ�τ)
(c) σ ∈ Aω =⇒ (∀τ�σ′ : P̂ (τ) =⇒ σ=τ)

(3 ) P̂ (·)
(4 ) ∀σ ∈ A? : P̂ (σ) is decidable

Theorems 3.3 and 3.4 show that edit automata exercise their full effective= en-
forcement powers by operating in a transactional manner. The automaton may
complete transactions:

—lazily, by suppressing a finite sequence of dangerous actions σ and later inserting
σ when it is known to be valid; or
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—eagerly, by inserting the unique sequence of actions σ (which may have infinite
length) that completes the current transaction and later suppressing σ if it has
finite length and actually does appear in the input.

Turning our attention to effective≈ enforcement, we will find that edit automata
also exercise their full effective≈ enforcement powers in a similar transactional man-
ner. However, in the case of effective≈ enforcement, our analysis is more complex
and relies on several auxiliary definitions (Definitions 3.5, 3.6, and 3.7) to encapsu-
late the ways edit automata may output action-sequence responses to valid input
transactions. The casual reader may wish to skip the remainder of this section and
accept in summary that edit automata as fully powerful effective= and effective≈
enforcers monitor input transactions and respond lazily or eagerly (as itemized
above). In the case of effective≈ enforcement, though, the analysis becomes com-
plex because we must constrain many sequences to be equivalent rather than just
assuming equality and, conversely, can sometimes only assume equivalence where
equality would be simpler.

Our first auxiliary definition defines a type of function that can return the next
action to output in response to (or in anticipation of) a valid input transaction.
The definition uses some new notation. Let A+ be the set of all nonempty, finite
sequences of actions on a system with action set A. Then, an element of (A+)? is a
possibly empty, finite sequence of executions (σ0, .., σn) such that every execution
in the sequence is an element of A+.

Definition 3.5 Transaction Action-output Function. A function f is a transac-
tion action-output function if and only if:

(1) f has the type f : ((A+)? × N) → (A ∪ {·})
(2) f is decidable over all inputs ((σ0, .., σn),m) such that for all i (0≤i<n) there

exists a j ∈ N such that f((σ0, .., σi), j) = ·
(3) f(·, 0) = ·
(4) ∀S ∈ (A+)? : ∀m ∈ N : (f(S, m) = · =⇒ ∀n>m : f(S, n) = ·)

The first argument to a transaction action-output function is, roughly speaking,
a history of valid transactions in an input execution. The second argument, n,
indicates that the function should return the nth action (starting at 0) that the
monitor outputs in response to the most recently completed input transaction (or · if
no such action exists). Constraint (2) requires the function to be decidable whenever
all of its earlier responses (i.e., sequence outputs) to valid input transactions are
finite; it does not make sense to ask for a response from the function when it
previously responded by outputting an infinite-length sequence, and our analysis
will exclude or consider irrelevant such a possibility. Constraint (3) prohibits a
transaction action-output function from considering the empty execution a valid
transaction, and constraint (4) ensures that a transaction action-output function
cannot complete a response to a valid transaction and then later decide to output
additional actions in response to the same transaction.

Definition 3.6 straightforwardly generalizes transaction action-output functions
to full-transaction output functions. A full-transaction output function returns the
complete (possibly infinite-length) sequence of actions to output in response to a
valid input transaction.
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Definition 3.6 Full-transaction Output Function. Given any transaction action-
output function f , define the full-transaction output function Ff : (A+)? → A∞ as
follows: Ff (σ0, σ1, .., σn) = f((σ0, .., σn), 0); f((σ0, .., σn), 1); f((σ0, .., σn), 2); . . .

Similarly, Definition 3.7 generalizes full-transaction output functions to full out-
put functions. A full output function returns the complete sequence of actions to
output in response to an entire sequence of valid input transactions (i.e., an entire
input execution).

Definition 3.7 Full Output Function. Given any full-transaction output function
Ff , define the full output function Of : (A+)∞ → A∞ as follows.

(1) ∀(σ0, .., σn) ∈ (A+)? : Of (σ0, .., σn) = Ff (σ0);Ff (σ0, σ1); ..;Ff (σ0, .., σn)
(2) ∀(σ0, σ1, . . .) ∈ (A+)ω : Of (σ0, σ1, . . .) = Ff (σ0);Ff (σ0, σ1); . . .

With Definitions 3.5, 3.6, and 3.7 in hand, we delineate the properties effectively≈
enforceable by edit automata in Theorem 3.8, below. At a high level, Theorem 3.8
states that edit automata effectively≈ enforce exactly those properties that can be
enforced by outputting (possibly infinite-length) responses to input transactions,
subject to the standard enforcement restriction that all overall responses must be
valid and equivalent to valid inputs. More specifically, the two constraints in The-
orem 3.8 consider complementary scenarios: (1) considers input executions that
have a finite number of transactions but allows the monitor to respond to the final
(possibly invalid) input transaction with an infinite-length output; (2) considers in-
put executions that have an infinite number of valid transactions, each prompting
a finite response from the monitor. Constraints (1a), (1b), (2a), and (2b) place
straightforward restrictions on the overall sequences an effective≈ enforcer can out-
put in response to the sequences of input transactions: the overall output must be
valid and equivalent to any valid input. Finally, constraints (1c) and (1d) handle
special cases in which an edit automaton processes a finite number of transactions,
but in doing so fails to respond to all of its valid input. Specifically, (1c) handles
the possibility of outputting nothing in response to the tail end of a valid input,
while (1d) handles the possibility of outputting an infinite sequence of actions in
response to a strict prefix of a valid input.

Theorem 3.8 Effective≈ E∞-Enforcement. A property P̂ on a system with
action set A can be effectively≈ enforced by some edit automaton E if and only if
there exists transaction action-output function f such that the following constraints
are met.

(1 ) ∀(σ0, .., σn) ∈ (A+)? : (n < 1 ∨ Of (σ0, .., σn−1) ∈ A?) =⇒
(a) P̂ (Of (σ0, .., σn))
(b) P̂ (σ0; ..;σn) =⇒ σ0; ..;σn ≈ Of (σ0, .., σn)
(c) ∀τ � (σ0; ..;σn) : (P̂ (τ) ∧ Of (τ)=Of (σ0, .., σn)) =⇒ τ ≈ Of (σ0, .., σn)
(d) ∀τ ∈ A∞ : (P̂ (τ) ∧ σ0; ..;σn ≺ τ ∧ Of (σ0; ..;σn) ∈ Aω) =⇒

τ ≈ Of (σ0, .., σn)
(2 ) ∀(σ0, σ1, . . .) ∈ (A+)ω : (∀i ∈ N : Of (σ0, .., σi) ∈ A?) =⇒

(a) P̂ (Of (σ0, σ1, . . .))
(b) P̂ (σ0;σ1; . . .) =⇒ (σ0;σ1; . . .) ≈ Of (σ0, σ1, . . .)
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Some properties can be effectively≈ but not effectively= enforced by edit au-
tomata. For instance, recall the property P̂ described in Section 3.1.2 that con-
siders valid only executions of the form (on; off)?. Section 3.1.2 showed that, on
systems in which all executions (on; off)? are equivalent to the empty execution, P̂
is effectively≈ but not effectively= enforceable by truncation automata. Likewise, P̂
is effectively≈ but not effectively= enforceable by edit automata: an edit automaton
can effectively≈ enforce P̂ because a truncation automaton can effectively≈ enforce
P̂ (and edit automata can mimic truncation automata); an edit automaton cannot
effectively= enforce P̂ because doing so would require outputting verbatim all valid
prefixes of the invalid input (on; off)ω, which would make the entire output equal
to the invalid input.

Modifying the equivalence relation in this example to only consider finite exe-
cutions of the form (on; off)+ equivalent to on; off does not affect the fact that
neither truncation nor edit automata can effectively= enforce P̂ (because equiv-
alence relations are irrelevant to effective= enforcement). However, the modified
equivalence relation does prevent a truncation automaton T from effectively≈ en-
forcing P̂ because T has no way to react to an initial on action (if T halts then it
cannot output anything equivalent to the valid input on; off, and if T accepts then
it outputs an invalid sequence). An edit automaton E can effectively≈ enforce P̂
with the modified equivalence relation, though, because E can respond to an initial
on; off transaction by outputting on; off and then halting.

Comparing our analysis of the properties effectively≈ enforceable by edit au-
tomata with our analysis of the properties effectively= enforceable, we find that
having to consider arbitrarily permissive equivalence relations (cf. Theorem 2.5)
complicates the analysis greatly. Although it is interesting to note that even as
effective≈ enforcers edit automata exercise their full enforcement powers by oper-
ating in a transactional manner, we believe that, as with truncation automata, the
theorems related to effective= enforcement better capture the inherent power of edit
automata. Effective= enforcement provides an elegant lower bound for what can be
effectively≈ enforced in practice. In the future, it would be interesting to explore
whether practically relevant constraints could be placed on semantic equivalence
relations, and what effects such constraints would have on the powers of effective≈
enforcers.

4. INFINITE RENEWAL PROPERTIES

This section studies the class of renewal properties. We compare renewal properties
to safety and liveness properties and provide several high-level examples of renewal
properties that are neither safety nor liveness properties. Section 5.4 also describes
two nonsafety renewal policies that we have enforced in an implemented system.

4.1 Renewal, Safety, and Liveness

Safety and Renewal. The most obvious way in which safety and renewal prop-
erties differ is that safety properties place restrictions on finite executions (invalid
finite executions must have some prefix after which all extensions are invalid), while
renewal properties place no restrictions on finite executions. Thus, if we consider
systems that only exhibit finite executions, edit automata can enforce every rea-
sonable property [Ligatti et al. 2005a]. Without infinite-length executions, every
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property is a renewal property.
Moreover, an infinite-length execution that satisfies a renewal property can be

valid even if it has infinitely many invalid prefixes (as long as it also has infinitely
many valid prefixes), but an execution satisfying a safety property can contain no
invalid prefixes. Similarly, although infinite-length executions violating a renewal
property can have prefixes that alternate a finite number of times between being
valid and invalid, executions violating a safety property must contain some finite
prefix before which all prefixes are valid and after which all prefixes are invalid.
Hence, every safety property is a renewal property. Given any system with action
set A, it is easy to construct a nonsafety renewal property P̂ by choosing an element
a in A and letting P̂ (·), P̂ (a; a), but ¬P̂ (a).

Liveness and Renewal. There are renewal properties that are not liveness prop-
erties (e.g., the property that is only satisfied by the empty sequence, or, more
generally, any safety property that considers at least one execution invalid), and
there are liveness properties that are not renewal properties (e.g., the nontermina-
tion property only satisfied by infinite executions). Some renewal properties, such
as the one only satisfied by the empty sequence and the sequence a; a, are neither
safety nor liveness. As described in Section 2.2, every property is the conjunction
of a single safety and a single liveness property. Following the strategy outlined in
Section 2.2, the example renewal property satisfied only by · and a; a decomposes
into a safety property P̂S satisfied exactly by executions ·, a, and a; a and a liveness
property P̂L satisfied exactly by all finite executions except a. Although P̂S is a
renewal property, P̂L is not (because invalid infinite-length executions have infinite
valid prefixes).

Although Alpern and Schneider [Alpern and Schneider 1985] showed that exactly
one property is both safety and liveness (the property satisfied by every execution),
some more interesting liveness properties are also renewal properties. We examine
examples of such renewal properties in the following subsection.

4.2 Example Properties

We next present several examples of renewal properties that are not safety prop-
erties, as well as some examples of nonrenewal properties. By the theorems in
Sections 3.1.2 and 3.2.2, the nonsafety renewal properties are effectively= enforce-
able by edit automata but not by truncation automata. Moreover, the proof of
Theorem 3.3 in Appendix A shows how to construct an edit automaton (with a
countably infinite state set) to enforce any of the renewal properties described in
this subsection.

Renewal properties. Suppose we wish to constrain a user’s interaction with a sys-
tem that has actions a1, a2, and a3, where a3 ranges over all actions for opening
files, a2 over actions for logging out, and a1 over all other actions. A user may exe-
cute any sequence of actions that does not involve opening files but must eventually
log out. The process of executing non-file-open actions and then logging out may
repeat indefinitely, so we might write the requisite property P̂ more specifically as
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(a1
?; a2)∞.4 This P̂ is not a safety property because a finite sequence of only a1

events disobeys P̂ but can be extended (by appending a2) to obey P̂ . Our P̂ is also
not a liveness property because there are finite executions that cannot be extended
to satisfy P̂ , such as the sequence containing only a3. However, this nonsafety, non-
liveness property is a renewal property because infinite-length executions are valid
if and only if they contain infinitely many (valid) prefixes of the form (a1

?; a2)
?.

Interestingly, if we enforce the policy described above on a system that only has
actions a1 and a2, we remove the safety aspect of the property to obtain a liveness
property that is also a renewal property. On the system {a1, a2}, the property
satisfied by any execution matching (a1

?; a2)∞ is a liveness property because any
illegal finite execution can be made legal by appending a2. The property is still a
renewal property because an infinite execution is invalid if and only if it contains a
finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For
example, consider a property P̂ specifying that an execution that does anything
must eventually perform an audit by executing some action a. This is similar
to the example renewal property given in Section 3.2.2. Because we can extend
any invalid finite execution with the audit action to make it valid, P̂ is a liveness
property. It is also a renewal property because an infinite-length valid execution
must have infinitely many prefixes in which a appears, and an infinite-length invalid
execution has no valid prefix (except the empty sequence) because a never appears.
Note that for this “eventually audits” renewal property to be enforceable by an edit
automaton, we have to consider the empty sequence valid.

As discussed in Section 3.2.2, edit automata derive their power from being able to
operate in a transactional manner. At a high level, any transaction-based property
is a renewal property. Let τ range over finite sequences of single, valid transactions.
A transaction-based policy could then be written as τ∞; a valid execution is one
containing any number of valid transactions. Such transactional properties can be
nonsafety because executions may be invalid within a transaction but become valid
at the conclusion of that transaction. Transactional properties can also be non-
liveness when there exists a way to irremediably corrupt a transaction (e.g., every
transaction beginning with start ;self-destruct is illegal). Nonetheless, transactional
properties are renewal properties because infinite-length executions are valid if and
only if they contain an infinite number of prefixes that are valid sequences of trans-
actions. The renewal properties described above as matching sequences of the form
(a1

?; a2)∞ can also be viewed as transactional; each transaction must match a1
?; a2.

Nonrenewal properties. An example of an interesting liveness property that is
not a renewal property is general availability. Suppose that we have a system with
actions oi for opening (or acquiring) and ci for closing (or releasing) some resource
i. Our policy P̂ is that for all resources i, if i is opened, it must eventually be closed.
This is a liveness property because any invalid finite sequence can be made valid sim-
ply by appending actions to close every open resource. However, P̂ is not a renewal
property because there are valid infinite sequences, such as o1; o2; c1; o3; c2; o4; c3; ...,

4As Alpern and Schneider note [Alpern and Schneider 1985], this sort of P̂ might be expressed
with the (strong) until operator in temporal logic; event a1 occurs until event a2.
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Fig. 1. Relationships between reasonable safety, liveness, and renewal properties.

that do not have an infinite number of valid prefixes. An edit automaton can only
enforce this sort of availability property when the number of resources is limited
to one (in this case, the property is transactional: valid transactions begin with
o1 and end with c1). Even on a system with two resources, infinite sequences like
o1; o2; c1; o1; c2; o2; c1; o1; ... prevent this resource-availability property from being
a renewal property. Please note, however, that we have been assuming effective=

enforcement; in practice we might find that o1; o2; c1 ≈ o1; c1; o2, in which case edit
automata can effectively≈ enforce these sorts of availability properties.

Of course, there are many nonrenewal, nonliveness properties as well. We can
arrive at such properties by combining a safety property with any property that is
a liveness but not a renewal property. For example, termination is not a renewal
property because invalid infinite sequences have an infinite number of valid prefixes.
Termination is, however, a liveness property because any finite execution is valid.
When we combine this liveness, nonrenewal property with a safety property, such as
that no accesses are made to private files, we arrive at the nonliveness, nonrenewal
property in which executions are valid if and only if they terminate and never access
private files. The requirement of termination prevents this from being a renewal
property; moreover, this property is outside the upper bound of what is effectively=

enforceable by edit automata.
Figure 1 summarizes the results of the preceding discussion and that of Sec-

tion 4.1. The Trivial property in Figure 1 considers all executions legal and is the
only property in the intersection of safety and liveness properties.

5. LIMITATIONS AND PRACTICAL CONSIDERATIONS

Many gaps remain between real monitors and our models of them; we discuss the
most obvious gaps in Sections 5.1–5.3. In Section 5.4, we describe Polymer, a lan-
guage and system for enforcing run-time policies that was inspired by our work on
edit automata and with which we have implemented monitors that enforce nonsafety
policies. We discuss additional limitations of our model such as concurrency and
distributed monitoring, which are the subject of ongoing research, in Section 6.2.
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5.1 Computational and Resource Constraints

In addition to standard assumptions of program monitors, such as that a target
cannot circumvent or corrupt a monitor, our theoretical model makes assumptions
particularly relevant to edit automata that are sometimes violated in practice. Most
importantly, our model assumes that security automata have the same computa-
tional capabilities as the system that observes the monitor’s output. If an action
violates this assumption by requiring an outside system in order to be executed,
it cannot be feigned (i.e., suppressed) by the monitor. For example, it would be
impossible for a monitor to feign sending email, wait for the target to receive a
response to the email, test whether the target does something invalid with the re-
sponse, and then decide to undo sending email in the first place. Here, the action
for sending email has to be made observable to systems outside of the monitor’s
control in order to be executed, so this is an unsuppressible action. A similar limi-
tation arises with time-dependent actions, where an action cannot be feigned (i.e.,
suppressed) because it may behave differently if made observable later.

Similarly, a system may contain actions uninsertable by monitors because, for
example, the monitors (which may be firewalls, network scanners, or user-level
operating-system extensions) lack access to secret keys that must be passed as pa-
rameters to the actions. In general, environmental factors beyond the control of
the monitor may give rise to actions that are unsuppressible or uninsertable. In
the future, we plan to explore the usefulness of explicitly defining, in the specifi-
cation of systems, which actions are unsuppressible or uninsertable. This would
allow us to describe more precisely the enforcement powers of monitors on those
systems, though it would make the model significantly more complex. We might be
able to harness some of our other work [Ligatti et al. 2005a], which defined secu-
rity automata limited to inserting (insertion automata) or suppressing (suppression
automata) actions, toward this goal.

In addition, some actions of interest, although seemingly both insertable and
suppressible, may have side effects that affect program behavior in undesired ways.
For example, if an action a1 updates a variable that is referenced by subsequent
action a2, then the effect of executing a2 may be different depending on whether a1 is
suppressed or allowed to execute. Although software transactional memory [Shavit
and Touitou 1995; Harris et al. 2005] could be used to ensure that the effects
of suppressed memory operations are dealt with properly, in practice it may be
intractable to reason about arbitrary compositions of suppressed effects, in which
case many of these effectful actions might have to be considered unsuppressible or
uninsertable.

Other practical constraints could be placed on monitors as well. For instance,
Fong has shown that limiting the memory available to monitors induces limits on
the properties they can enforce [Fong 2004]. Our models place no restrictions on the
time and space available to monitors. In practice, however, it may be intractable
to allow the monitors to use super-polynomial time or space to enforce a policy.
Similarly, in many practical situations the time and space monitors can consume
may be much more strictly limited (e.g., in real-time and embedded systems), and
reasoning about which policies monitors can enforce in those circumstances would
require models beyond what we have studied in this article.
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5.2 Transactional Correctness

In addition to the difficulties suppressing or inserting individual actions described
in Section 5.1, other problems may arise in practice that would prevent sequences
of actions from being suppressed and inserted in a transactional manner. Much
of the power of edit automata comes from their ability to suppress individually a
sequence of dangerous actions and later, if the entire sequence is determined to be
valid, atomically insert them; more precisely, the insertions must succeed, and they
must succeed atomically. Truncation automata, on the other hand, do not need to
output sequences of actions atomically (and indeed cannot, since they only accept
individual actions).

Various tools, such as transactional file and database systems, might help prac-
tical implementations of edit-automata-based enforcement systems ensure that se-
quences of actions can be inserted atomically. In general, though, we cannot guar-
antee that a monitor modeled by an edit automaton will be able to insert a sequence
of actions atomically, or even that a single insertion will succeed. An attempted
insertion could be interrupted, for example, by a power failure or abrupt shutdown,
or even by physical destruction of the machine executing the monitor. Some of
these interruptions can be overcome through auxiliary technical means (e.g., by
disabling interrupts or supplying backup power to the machine). Other interrup-
tions (e.g., physical destruction of the computer the monitor is running on) may
be beyond the monitor’s ability to predict or react to. In the first case, we assume
that appropriate technical safeguards are in place; otherwise, and in the second
case, these interruptions are outside our model.

Generalizing from atomicity, to be sure that the monitors’ suppress-insert trans-
actions always complete correctly, they should also satisfy the other ACID prop-
erties [Elmasri and Navathe 1994]: consistency preservation (upon completion of
the transaction the system must be in a consistent state), isolation (the effects of
a transaction should not be visible to other concurrently executing transactions
until the first transaction is committed), and durability or permanence (the effects
of a committed transaction cannot be undone by a future failed transaction). As
with atomicity, practical systems could violate these properties. For example, if
the system manipulates the monitor’s state (accidentally, maliciously, or due to
malfunction) or fails to execute the monitor or its actions correctly, any of the
ACID properties may be violated. In such a scenario, no monitor can make any
guarantees about the policies it enforces.

In our model, which does not account for the violations discussed above and
which is simplified by disregarding the possibility of concurrent target applications,
the ACID properties are preserved. A monitor ensures consistency preservation
by simply verifying that the sequences it atomically inserts are consistent, i.e.,
obey the property being enforced. A monitor ensures durability or permanence of
a committed transaction by relying on the executing system to correctly execute
the inserted actions. Once an action has been inserted by the automaton, the
automaton can no longer touch it; furthermore, failed transactions (i.e., sequences
that don’t obey the property) cause nothing to be output and so no part of the
transaction is externally observable. We only model the actions of a single agent
and therefore isolation is trivially satisfied; we discuss extending our model to
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concurrent and distributed systems in Section 6.2.

5.3 Nonuniformity

Another reasonable, and more general, way to define security automata and their
powers of enforcement would be to permit the case where input executions may form
a subset of A∞. Intuitively, this alternative model would capture the realistic pos-
sibility that a monitor may know a priori that it will never be given as input certain
executions, e.g., because some other security mechanism such as a type checker has
already ruled out those executions. This alternative model also has the potential to
give security automata practically useful new powers, such as the ability to assume
that every execution will include explicit start and end actions. In this case, we say
that the set of possible input executions is nonuniform, in that it is a subset of the
(uniform) set of all possible executions. Nonuniformity can be useful in practice to
enforce properties that could not otherwise be enforced. For example, on a uniform
system S = {start, end, fopen f1, fclose f1, fopen f2, fclose f2, . . .}, an edit
automaton cannot enforce a property requiring that all open files get closed before
program termination (please see Section 4.2 for details). However, this property is
easily enforceable on the nonuniform system in which all monitor-input executions
begin with start and end with end actions. To enforce the desired policy on such a
nonuniform system, the monitor simply maintains a list of all open files and inserts
fclose actions to close all open files before allowing the end action to execute.

However, the effect of considering nonuniformity goes beyond what is practically
useful. In the case of truncation automata, for example, nonuniformity would allow
the automata to enforce more than just safety properties. Consider the nontermina-
tion property, which requires that every execution not terminate. Nontermination
would not be enforceable by any security automaton on a uniform system. How-
ever, on a nonuniform system that guarantees that all input executions are nonter-
minating, a truncation automaton could “enforce” the nontermination property by
accepting all actions. In this case some amount of the “enforcement” is done by
the nonuniformity, so the monitor is no longer the sole, or even main, enforcement
mechanism. By considering only uniform systems, we have tried in this article to
explore the pure enforcement powers of monitors that receive no enforcement help
from auxiliary constraints.

Considering nonuniformity also raises a host of other questions. For example,
should only input sequences have restricted domains or should output sequences be
similarly restricted? Considering nonuniformity would also nontrivially increase the
complexity of the definitions, theorems, and proofs, as they would all have to distin-
guish between potentially different system, input-execution, and output-execution
domains. For these reasons, we believe that nonuniformity is an interesting topic,
but one that warrants a complete treatment that is beyond the scope of this article.

5.4 Polymer: An Implemented System for Enforcing Run-time Policies

In this subsection we give a brief overview of Polymer, a language and system
for enforcing run-time policies. The design of the Polymer specification language
was heavily influenced by the edit-automaton model discussed in this article; the
language allows users to specify, in addition to safety properties, some nonsafety
renewal properties. Here we will focus on Polymer as a tool for implementing
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edit automata; we refer interested readers to other papers for further Polymer
details, including discussions of concurrency, semantics of the policy-specification
language, performance and overhead measurements, and low-level implementation
details [Bauer et al. 2005a; Ligatti 2006]. Polymer is fully implemented and avail-
able for download [Bauer et al. 2005b].

Polymer policies describe constraints on the behavior of Java programs. Polymer
compiles those policies into Java bytecode monitors. When users execute untrusted
Java applications, Polymer rewrites the class files used by the untrusted appli-
cations to invoke the previously compiled monitors immediately before and after
any security-relevant action (i.e., method) executes. This technique of bytecode
(or binary) rewriting to invoke run-time monitors is a common implementation
strategy [Erlingsson 2004; Evans 2000; Hamlen 2006].

Users specify a Polymer policy by writing a new class that extends Polymer’s
base Policy class. The syntax for writing the new policy is almost identical to
standard Java syntax, though Polymer does provide some extra syntactic constructs
to make it easy to analyze security-relevant actions dynamically. When creating
a new policy class, users may implement methods that specify whether and under
what circumstances security-relevant actions may execute. A policy may respond to
an about-to-be-executed target-application action (which we call a trigger action)
by inserting other actions, suppressing the trigger action (by halting, raising an
exception, or replacing the trigger action with a precomputed, “feigned” return
value), or allowing the trigger action to execute undisturbed. Polymer also contains
built-in support for composing policies.

Using the Polymer system, we have specified and enforced some nonsafety renewal
policies on real programs. We next summarize those policies; additional details are
in Ligatti’s thesis [Ligatti 2006]. The first of our implemented nonsafety policies
ensures that (hypothetical) ATM machines generate a proper log when dispensing
cash. Consider a simple ATM system for dispensing cash that contains the following
three methods.

(1) logBegin(n) creates a log message that the ATM is about to dispense n dollars.

(2) dispense(n) causes the ATM to dispense n dollars.

(3) logEnd(n) creates a log message that the ATM just completed dispensing n
dollars.

Suppose we wish to require that the ATM machine’s software properly logs all cash
dispensations. We will consider an execution valid if and only if it has the form
(logBegin(n); dispense(n); logEnd(n))∞. That is, valid executions are sequences
of valid transactions, where each valid transaction consists of logging how much cash
is about to be dispensed, dispensing that cash, and then logging that that amount of
cash has just been dispensed. Our desired policy is a nonsafety, nonliveness, renewal
property. It is nonsafety because there exists an invalid execution (logBegin(20))
that prefixes a valid execution (logBegin(20); dispense(20); logEnd(20)). It is
nonliveness because some invalid execution (dispense(20)) cannot be made valid
through extension. Nonetheless, this nonsafety, nonliveness property is clearly a
transaction-style renewal property (as described in Section 4.2), and we enforce it
in Polymer in the expected way, by suppressing preliminary logBegin and dispense
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actions until we are guaranteed that the current transaction is valid, at which point
the suppressed actions get inserted.

The second of our implemented nonsafety policies ensures that Java applications
writing to a file, possibly using multiple file-write operations, eventually give the file
satisfactory contents (e.g., to ensure that the file obeys a required file format). An
auxiliary predicate, passed as a parameter to the policy’s constructor, determines
whether a file’s contents are satisfactory. The auxiliary predicate might not hold
in the middle of a sequence of file writes but must be satisfied after a later write;
hence, the file-contents policy is not a safety policy. Actually, if we assume the
auxiliary predicate is satisfiable then the file-contents policy is a liveness policy
because any invalid finite execution can be made valid by executing whatever file-
write operations will satisfy the predicate. Similarly to the previous example, we
enforce this nonsafety renewal property by suppressing (feigning) writes to files
until we can ensure their validity, at which point we insert all suppressed writes.

6. CONCLUSIONS

This article improves our understanding of the space of policies program monitors
can enforce. We conclude by summarizing our primary contributions (Section 6.1),
enumerating some directions for future work (Section 6.2), and making closing
remarks (Section 6.3).

6.1 Summary

As outlined in Section 1.2, this article makes three principal contributions. First,
we have created a framework for reasoning about run-time policy enforcement that
allows us to model monitors as transformers, rather than recognizers, of execu-
tions. The framework makes explicit all of our assumptions about what constitutes
a policy, a monitor, and enforcement of a policy by a monitor. Second, we have
applied the framework to delineate the policies enforceable by two models of mon-
itors, finding that although simple monitors enforce exactly the set of reasonable
safety properties, more powerful monitors can enforce the set of infinite renewal
properties, which we have introduced. Third, we have analyzed the set of renewal
properties and found that it contains some nonsafety (and even some liveness)
properties; hence, monitors can sometimes enforce nonsafety properties.

6.2 Future and Ongoing Work

We outline here several of the most interesting and potentially useful directions in
which the work described in this article could be extended, some of which we are
actively pursuing.

Formally Linking Edit Automata with Polymer Policies. Section 5.4 included
an informal description of the ability of Polymer policies to implement edit au-
tomata: Polymer policies may respond to trigger actions by inserting other actions,
suppressing the trigger action (by halting, raising an exception, or replacing the
trigger action with a precomputed, “feigned” return value), or allowing the trigger
action to execute undisturbed. This implementation is simple and intuitive, but it
would be nice to formally prove a bisimulation between the operational semantics
of edit automata and the policies expressible in a system like Polymer. Proving
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such a bisimulation would be interesting because it would tie practical monitor
specifications to properties enforceable by edit automata, allowing us to describe
formally the space of policies enforceable in a practical system like Polymer.

Compositions of Policies and Monitors. Security mechanisms typically operate
in concert with other mechanisms; in fact, a mechanism’s correctness often depends
on the correctness of cooperating mechanisms. For example, a firewall may operate
correctly only if the operating system’s access-control mechanisms simultaneously
correctly prevent tampering with the firewall’s rule base or executable image.

We plan to explore theories and strategies for composing and decomposing general
policies and enforcement mechanisms. To date the major research in this area has
focused specifically on information-flow policies [Mantel 2002; McLean 1996], pure
liveness policies [Alpern and Schneider 1987; Abadi and Lamport 1993], pure safety
policies (which includes all access-control policies) [Alpern and Schneider 1987;
Abadi and Lamport 1993; Bonatti et al. 2002; Schneider 2000], and systems in
which all programs are implicitly assumed to terminate [Yu et al. 2007]. We would
like to develop a more general understanding of policy and mechanism composition
that would allow us to specify and analyze exactly how all sorts of mechanisms and
policies compose, how and where conflicts arise, and metapolicies for resolving such
conflicts. To allow for efficient and effective enforcement, we hope to be able to
decompose a specified policy into a collection of subpolicies, some of which can be
enforced statically, others that can be enforced by rewriting program code, and yet
others that must be enforced at run time.

Modeling Concurrent and Distributed Run-time Monitors. In practice, enforce-
ment mechanisms often operate concurrently to enforce a unified policy (e.g., dis-
tributed intrusion-detection mechanisms and policy enforcement in Grid comput-
ing). Most of the work done so far on modeling run-time monitors, including this
article, focuses on enforcement systems in nonconcurrent settings, preventing us
from modeling many common and useful systems and enforcement mechanisms.

For example, our current model ignores all networked or concurrent systems
(i.e., target applications), as well as policies and mechanisms on such systems.
Although this is a severe limitation, we have found much complexity so far just
reasoning about enforcement in nonconcurrent environments. However, as we be-
come more comfortable with our models, we would like to consider the possibility
of concurrency. For now, we recognize that permitting application concurrency and
distributed policies and monitors seems to create fundamental problems. For ex-
ample, we may no longer be able to model system executions as simple sequences
of actions (i.e., total orderings of actions) that induce state transitions. We may
instead want to define executions as partial orderings of actions in which actions
may execute concurrently. From this primitive definition, we would have to build
up an entirely new model of policies and enforcement mechanisms as operators on
partial orderings of actions.

6.3 Closing Remarks

Given their abundance and practicality as enforcement mechanisms, it seems strange
that we have few sophisticated models for reasoning about monitors’ actual enforce-
ment capabilities. Even basic results, such as that practical monitors can sometimes
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enforce liveness properties, are surprisingly beyond the scope of previous models of
strictly run-time enforcement mechanisms.

By continuing to explore the capabilities of various types of program monitors,
we hope to improve our fundamental knowledge of these important mechanisms
and make them easier to use and verify. In the long term, we would like to see a
wide variety of static and dynamic mechanisms, and the ways in which they can be
composed to enforce policies, understood so deeply that tools and techniques will
exist for generating efficient mechanisms that provably enforce given policies.

Acknowledgments. We are grateful to the anonymous referees for their construc-
tive suggestions for improving earlier versions of this article. This research was
supported by NSF grants CNS-0742736, CNS-0716343, and CNS-0716216, and by
Army Research Office grant DAAD19-02-1-0389.

REFERENCES

Abadi, M. and Fournet, C. 2003. Access control based on execution history. In Proceedings of
the 10th Annual Network and Distributed System Symposium.

Abadi, M. and Lamport, L. 1993. Composing specifications. ACM Transactions on Program-
ming Languages and Systems 15, 1, 73–132.

Aktug, I., Dam, M., and Gurov, D. 2008. Provably correct runtime monitoring. In Proceedings
of the 15th International Symposium on Formal Methods. 262–277.

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Information Processing Letters 21, 4
(Oct.), 181–185.

Alpern, B. and Schneider, F. B. 1987. Recognizing safety and liveness. Distributed Comput-
ing 2, 117–126.

Bauer, L., Ligatti, J., and Walker, D. 2002. More enforceable security policies. In Foundations
of Computer Security. Copenhagen, Denmark.

Bauer, L., Ligatti, J., and Walker, D. 2003. Types and effects for non-interfering program
monitors. In Software Security—Theories and Systems. Mext-NSF-JSPS International Sym-
posium, ISSS 2002, Tokyo, Japan, November 8-10, 2002, Revised Papers, M. Okada, B. Pierce,
A. Scedrov, H. Tokuda, and A. Yonezawa, Eds. Lecture Notes in Computer Science, vol. 2609.
Springer.

Bauer, L., Ligatti, J., and Walker, D. 2005a. Composing security policies with Polymer. In
Proceedings of the 2005 Conference on Programming Language Design and Implementation.

Bauer, L., Ligatti, J., and Walker, D. 2005b. Polymer: A language for composing run-time
security policies. http://www.cs.princeton.edu/sip/projects/polymer/.

Biba, K. J. 1975. Integrity considerations for secure computer systems. Tech. Rep. ESD-TR-76-
372, MITRE Corporation. July.

Bonatti, P., di Vimercati, S. D. C., and Samarati, P. 2002. An algebra for composing access
control policies. ACM Transactions on Information and System Security 5, 1 (February), 1–35.

Brewer, D. F. C. and Nash, M. J. 1989. The Chinese Wall security policy. In Proceedings of
the IEEE Symposium on Security and Privacy. 206–214.
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A. PROOFS

This appendix contains proofs for theorems presented in Section 3.

Theorem 3.1 Effective= T∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

(1 ) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

(2 ) P̂ (·)
(3 ) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. (If Direction) We construct a truncation automaton T that effectively=

enforces any such P̂ as follows.

—States: Q = A? (the sequence of actions seen so far)

—Start state: q0 = · (the empty sequence)
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—Transition function: δ(σ, a) =
{

σ; a if P̂ (σ; a)
halt otherwise

This δ is computable because P̂ is decidable over all finite-length executions.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output
from T , (q0, σ) ⇓T σ, and ∀σ′�σ : P̂ (σ′). The automaton can initially establish
IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and P̂ (·). A simple inductive argument on the
length of σ suffices to show that the invariant is maintained for all (finite-length)
prefixes of all inputs.

Let σ ∈ A∞ be the input to T . If ¬P̂ (σ) then by the safety condition in the
theorem statement, ∃σ′�σ.¬P̂ (σ′). By IP̂ (σ′), T can never enter the state for this
σ′ and must therefore halt on input σ. Let τ be the final state reached on input
σ. By IP̂ (τ) and the fact that T halts (ceases to make transitions) after reaching
state τ , we have P̂ (τ) and (q0, σ) ⇓T τ .

If, on the other hand, P̂ (σ) then suppose for the sake of obtaining a contradiction
that T on input σ does not accept and output every action of σ. By the definition of
its transition function, T must halt in some state σ′ when examining some action a
(where σ′; a�σ) because ¬P̂ (σ′; a). Combining this with the safety condition given
in the theorem statement implies that ¬P̂ (σ), which is a contradiction. Hence, T
accepts and outputs every action of σ when P̂ (σ), so (q0, σ) ⇓T σ. In all cases, T
effectively= enforces P̂ .

(Only-If Direction). Consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the
sake of obtaining a contradiction that ∀σ′�σ : ∃τ�σ′ : P̂ (τ). Then for all prefixes
σ′ of σ, T must accept and output every action of σ′ because σ′ may be extended to
the valid input τ , which must be emitted verbatim. This implies by the definition
of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T ), which is a contradiction
because T cannot effectively= enforce P̂ on σ when ¬P̂ (σ) and (q0, σ) ⇓T σ. Hence,
our assumption was incorrect and the first constraint given in the theorem must
hold.

Also, if ¬P̂ (·) then T cannot effectively= enforce P̂ on an empty execution be-
cause (q0, ·) ⇓T · for all T . Therefore, P̂ (·).

Finally, given σ ∈ A?, we can decide P̂ (σ) by checking whether T outputs exactly
σ on input σ. Because T effectively= enforces P̂ , P̂ (σ) ⇐⇒ (q0, σ) ⇓T σ. This
is a decidable procedure because T ’s transition function is computable and σ has
finite length.

Theorem 3.2 Effective≈ T∞-Enforcement. A property P̂ on a system with
action set A can be effectively≈ enforced by some truncation automaton T if and
only if there exists a decidable predicate D over A? such that the following con-
straints are met.

(1 ) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : D(σ′)
(2 ) ∀(σ′; a) ∈ A? : D(σ′; a) =⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) =⇒ τ ≈ σ′)
(3 ) ¬D(·)

Proof. (If Direction) We first note that the first and third constraints imply
that P̂ (·), as there can be no prefix σ′ of the empty sequence such that D(σ′). We
next construct a truncation automaton T that, given decidable predicate D and
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property P̂ , effectively≈ enforces P̂ when the constraints in the theorem statement
are met.

—States: Q = A? (the sequence of actions seen so far)
—Start state: q0 = · (the empty sequence)

—Transition function: δ(σ, a) =
{

σ; a if ¬D(σ; a)
halt otherwise

This δ is computable because D is decidable.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output
from T , (q0, σ) ⇓T σ, and ∀σ′�σ : ¬D(σ′). The automaton can initially establish
IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and ¬D(·). A simple inductive argument on the
length of σ suffices to show that the invariant is maintained for all (finite-length)
prefixes of all inputs.

Let σ ∈ A∞ be the input to T . We first consider the case where ¬P̂ (σ) and show
that T effectively≈ enforces P̂ on σ. By constraint 1 in the theorem statement,
∃σ′�σ : D(σ′), so IP̂ ensures that T must halt when σ is input (before entering state
σ′). Let τ be the final state T reaches on input σ before halting when considering
action a. By IP̂ (τ), we have (q0, σ) ⇓T τ . Also, since D(τ ; a) forced T to halt,
constraint 2 in the theorem statement ensures that P̂ (τ).

We split the case where P̂ (σ) into two subcases. If T never truncates input
σ then T outputs every prefix of σ and only prefixes of σ, so by the definition
of ⇓T , (q0, σ) ⇓T σ. Because P̂ (σ) and σ ≈ σ, T effectively≈ enforces P̂ in this
subcase. On the other hand, if T truncates input σ, it does so in some state σ′ while
making a transition on action a (hence, σ′; a�σ) because D(σ′; a). In this subcase,
IP̂ (σ′) implies (q0, σ) ⇓T σ′. Also, since D(σ′; a) forced T to halt, constraint 2
in the theorem statement ensures that P̂ (σ′) and σ′ ≈ σ. Therefore, T correctly
effectively≈ enforces P̂ in all cases.

(Only-If Direction). Given some truncation automaton T , we define D over A?.
Let D(·) be false, and for all (σ; a) ∈ A? let D(σ; a) be true if and only if T outputs
exactly σ on input σ; a (when run to completion). Because the transition function
of T is computable and D is only defined over finite sequences, D is a decidable
predicate. Moreover, because T effectively≈ enforces P̂ , if it outputs exactly σ on
input σ; a then the fact that T halts rather than accepting a, combined with the
definition of effective≈ enforcement, implies that P̂ (σ)∧∀τ�σ; a : P̂ (τ) =⇒ τ ≈ σ.
Our definition of D thus satisfies the second constraint enumerated in the theorem.

Finally, consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the sake of
obtaining a contradiction that ∀σ′�σ : ¬D(σ′). Then by our definition of D, T
cannot halt on any prefix of σ, so it must accept every action in every prefix. This
implies by the definition of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T ),
which is a contradiction because T cannot effectively≈ enforce P̂ on σ when ¬P̂ (σ)
and (q0, σ) ⇓T σ. Hence, our assumption was incorrect and the first constraint
given in the theorem must also hold.

Theorem 3.3 Lower Bound Effective= E∞-Enforcement. A property P̂
on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.
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(1 ) ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

(2 ) P̂ (·)
(3 ) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. We construct an edit automaton E that effectively= enforces any such
P̂ as follows.

—States: Q = A?×A?×{0, 1} (the sequence of actions output so far, the sequence
of actions currently suppressed, and a flag indicating whether the suppressed
actions need to be inserted)

—Start state: q0 = (·, ·, 0) (nothing has been output or suppressed)

—Transition function:

δ((τ, σ, n), a) =


((τ, σ; a, 0), ·) if n = 0 ∧ ¬P̂ (τ ;σ; a)
((τ ; a′, σ′, 1), a′) if n = 0 ∧ P̂ (τ ;σ; a) ∧ σ; a=a′;σ′

((τ ; a′, σ′, 1), a′) if n = 1 ∧ σ=a′;σ′

((τ, ·, 0), ·) if n = 1 ∧ σ=·
This δ is computable because P̂ is decidable over all finite-length executions.

E maintains the invariant IP̂ (q) on states q = (τ, σ, 0) that exactly τ has been
output, τ ;σ is the input that has been processed, (q0, τ ;σ) ⇓E τ , and τ is the longest
prefix of τ ;σ such that P̂ (τ). Similarly, E maintains IP̂ (q) on states q = (τ, σ, 1)
that exactly τ has been output, all of τ ;σ except the action on which E is currently
making a transition is the input that has been processed, P̂ (τ ;σ), and E will finish
processing the current action when all of τ ;σ has been output, the current action
has been suppressed, and E is in state (τ ;σ, ·, 0). The automaton can initially
establish IP̂ (q0) because q0 = (·, ·, 0), (q0, ·) ⇓E ·, and P̂ (·). A simple inductive
argument on the transition relation suffices to show that E maintains the invariant
in every state it reaches.

Let σ ∈ A∞ be the input to the automaton E. If ¬P̂ (σ) and σ ∈ A? then by the
automaton invariant, E consumes all of input σ and halts in some state (τ, σ′, 0)
such that (q0, σ) ⇓E τ and P̂ (τ). Hence, E effectively= enforces P̂ in this case. If
¬P̂ (σ) and σ ∈ Aω then by the renewal condition in the theorem statement, there
must be some prefix σ′ of σ such that for all longer prefixes τ of σ, ¬P̂ (τ). Thus,
by the transition function of E, the invariant of E, and the definition of ⇓E , E
on input σ outputs only some finite τ ′ such that P̂ (τ ′) and (q0, σ) ⇓E τ ′ (and E
suppresses all remaining actions in σ after outputting τ ′).

Next consider the case where P̂ (σ). If σ ∈ A? then by the automaton invariant,
E on input σ must halt in state (σ, ·, 0), where (q0, σ) ⇓E σ. E thus effectively=

enforces P̂ in this case. If P̂ (σ) and σ ∈ Aω then the renewal constraint and the
automaton invariant ensure that E on input σ outputs every prefix of σ and only
prefixes of σ. Hence, (q0, σ) ⇓E σ. In all cases, E correctly effectively= enforces
P̂ .

Theorem 3.4 Effective= E∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only if
there exists decidable eager-insertion function f : (A? × N) → ({·} ∪ A) such that
the following constraints are met.
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(1 ) ∀σ ∈ Aω : P̂ (σ) ⇐⇒
(
∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)
∨ ∃σ′�σ : σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .

)
(2 ) ∀σ ∈ A∞ : ∀σ′ ∈ A? : (f(σ′, 0)6= · ∧ σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .) =⇒

(a) P̂ (σ)
(b) σ ∈ A? =⇒ (∀τ�σ′ : P̂ (τ) =⇒ σ�τ)
(c) σ ∈ Aω =⇒ (∀τ�σ′ : P̂ (τ) =⇒ σ=τ)

(3 ) P̂ (·)
(4 ) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. (If Direction) We construct an edit automaton E that effectively= en-
forces any such P̂ as follows.

—States: Q = A? × A? (the sequence of actions output so far paired with the
sequence of actions currently suppressed)

—Start state: q0 = (·, ·) (nothing has been output or suppressed)
—Transition function (for simplicity, we write δ in terms of high-level transitions):

Consider processing an action a in state (τ, σ).
(A). If ¬P̂ (τ ;σ; a) and f(τ ;σ; a, 0) = · then suppress a and continue in state
(τ, σ; a).
(B). If P̂ (τ ;σ; a) and f(τ ;σ; a, 0) = · then insert σ; a (one action at a time),
suppress a, and continue in state (τ ;σ; a, ·).
(C). If f(τ ;σ; a, 0) 6= · then let σ′ = f(τ ;σ; a, 0); f(τ ;σ; a, 1); f(τ ;σ; a, 2); . . . and
insert σ; a;σ′ (one action at a time; note that σ′ may have infinite length, in
which case the automaton enters an infinite loop and the rest of this transition
description is irrelevant). Then suppress a. If, after suppressing a, the next
actions input equal σ′ then suppress each of those already inserted actions and
continue in state (τ ;σ; a;σ′, ·); otherwise halt (i.e., suppress all additional input
actions).
This δ is computable because f and P̂ are decidable over finite-length executions.

E maintains the invariant IP̂ (q) on states q = (τ, σ) that exactly τ has been
output, τ ;σ is the input that has been processed, (q0, τ ;σ) ⇓E τ , and τ is the longest
prefix of τ ;σ such that P̂ (τ). The automaton can initially establish IP̂ (q0) because
q0 = (·, ·), (q0, ·) ⇓E ·, and P̂ (·). A simple inductive argument on the transition
relation suffices to show that E maintains the invariant in every state it reaches.
The inductive argument makes use of constraint (2b) in the theorem statement
to show that E maintains the invariant after performing transition (C). Also, in
transition (C), there are two possibilities for E to stop making new (high-level)
transitions: (1) E may enter an infinite loop or (2) E may halt. For convenience,
we call these Special Operations (1) and (2) below.

Next, we let σ ∈ A∞ be an automaton input and show that E correctly effectively=

enforces P̂ on σ. First, for this and the following two paragraphs we only consider
the case in which E never performs Special Operations (1) or (2) on input σ. If
σ ∈ A? then by the automaton invariant, E on input σ will halt having output
some τ such that P̂ (τ) and P̂ (σ) =⇒ σ=τ .

If σ ∈ Aω and P̂ (σ), constraint (1) in the theorem statement ensures that σ
either has an infinite number of valid prefixes or has a prefix that extends to σ
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using consecutive f -insertions. If σ has an infinite number of valid prefixes, the
automaton invariant and transition function implies that E on σ correctly outputs
every prefix of σ and only prefixes of σ. If, on the other hand, σ has a prefix σ′

that extends to σ using consecutive f -insertions, E will perform Special Operation
(1) in transition (C), something we are currently assuming does not occur.

If σ ∈ Aω and ¬P̂ (σ), constraint (1) in the theorem statement ensures that σ
has a finite number of valid prefixes and has no prefix that extends to σ using
consecutive f -insertions (which implies that E does not perform Special Operation
(1) on input σ, something we are already assuming). Because σ has a finite number
of valid prefixes, we derive from the automaton invariant, the automaton transition
function, and the definition of ⇓E , that E on input σ outputs some τ ′ such that
P̂ (τ ′). Note that τ ′ must be the longest valid prefix of σ because E cannot make
transition (C) after outputting τ ′ unless it also performs Special Operation (1)
or (2), which we are assuming does not occur. This is because constraint (2a)
in the theorem statement and the automaton invariant together guarantee that
the actions E inserts in transition (C), when concatenated with the actions E has
already output, satisfy P̂ . Hence, if Special Operation (1) is not performed in
transition (C) after E outputs τ ′ then Special Operation (2) must be performed
because by assumption no extensions of τ ′ (besides τ ′ itself) are valid prefixes of σ.

Now consider the case in which E finishes processing σ with Special Operation
(1). In this case constraints (2a) and (2c) in the theorem statement and the au-
tomaton invariant together guarantee that the actions E inserts in transition (C),
when concatenated with the actions E has already output, satisfy P̂ and are equal
to any valid extension of the current input.

Finally consider the case in which E finishes processing σ with Special Operation
(2). In this case constraints (2a) and (2b) in the theorem statement and the au-
tomaton invariant together guarantee that the actions E inserts in transition (C),
when concatenated with the actions E has already output, satisfy P̂ and are a pre-
fix of any valid extension of the current input. However, the definition of transition
(C) implies that because E performs Special Operation (2), E’s input does not
extend its output immediately before halting; therefore E’s input must be invalid,
yet its output satisfies P̂ . Hence, in this case and all the others above, E correctly
effectively= enforces P̂ .

(Only-If Direction). For all σ ∈ A? and n ∈ N, we define f(σ, n) by running E
on input σ. If E on input σ outputs any sequence of the form σ; a0; a1; ..; an;σ′

(for actions a0, .., an and action sequence σ′ ∈ A?) then f(σ, n) = an ; otherwise
f(σ, n) = · . Eager-insertion function f is decidable because E has a decidable
transition function and σ has finite length.

With the definition of f and the assumption that E effectively= enforces P̂ ,
we show that constraints (1)–(4) in the theorem statement hold. For constraint
(1), first consider any σ ∈ Aω such that P̂ (σ). By the definition of effective=

enforcement, (q0, σ) ⇓E σ, where q0 is the initial state of E. By the definitions of
⇓E and =, E must output all prefixes of σ and only prefixes of σ when σ is input.
Assume for the sake of obtaining a contradiction that constraint (1) is untrue for
σ. This implies that there is some valid prefix τ of σ after which all longer prefixes
of σ violate P̂ . After outputting τ on input σ, E cannot output any prefix of σ
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without outputting every prefix of σ (if it did, its output would violate P̂ ). But
because constraint (1) does not hold on σ by assumption, the construction of the f
function above implies that no prefix of σ, when input to E, causes E to output σ
in its entirety. Therefore, E cannot output any prefixes of σ after outputting τ , so
E fails to effectively= enforce P̂ on this σ. Our assumption was therefore incorrect,
and constraint (1) must hold in this case.

Now consider any σ ∈ Aω such that ¬P̂ (σ). Assume for the sake of obtaining a
contradiction that constraint (1) does not hold on σ, implying that either (a) there
are an infinite number of valid prefixes of σ or (b) there is a prefix σ′ of σ such
that σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .. However, (b) cannot be true because if it
were then the definition of f would imply that on invalid input σ, E outputs σ,
something an effective enforcer cannot do. Also, (a) cannot be true because E is
an effective= enforcer and can only enforce P̂ on sequences obeying P̂ by emitting
them verbatim; if (a) were true then E on input σ would have to emit every one
of the valid prefixes of σ, thereby outputting the invalid σ in full (again something
an effective enforcer cannot do). Our assumption that constraint (1) does not hold
was therefore incorrect, and in all cases constraint (1) must hold.

We next show that constraint (2) must also hold. Consider any σ ∈ A∞ and
σ′ ∈ A? such that f(σ′, 0) 6= · and σ=σ′; f(σ′, 0); f(σ′, 1); f(σ′, 2); . . .. By the defi-
nition of function f , E on input σ′ outputs σ, σ′�σ, σ′ 6=σ, and ¬P̂ (σ′) (otherwise,
effective= enforcer E could not output σ on input σ′, given that σ 6=σ′). Because E
is an effective enforcer, its output σ must be valid, so constraint (2a) holds. Also,
if σ ∈ A? then the only way E could output σ on σ′ yet still correctly effectively=

enforce P̂ on all valid extensions τ of σ′ is for τ to begin with σ (otherwise E on
input τ could not output τ verbatim). Hence, constraint (2b) holds. Similarly, if
σ ∈ Aω then the only way E could output σ on σ′ yet still correctly effectively=

enforce P̂ on all valid extensions τ of σ′ is for there to be exactly one such τ , which
must be equal to σ itself (otherwise E on valid input τ would output infinite-length
σ rather than τ). Hence, constraint (2c) also holds.

Finally, constraints (3) and (4) hold for the same reasons given in the “Only-If”
direction of the proof of Theorem 3.1.

Theorem 3.8 Effective≈ E∞-Enforcement. A property P̂ on a system with
action set A can be effectively≈ enforced by some edit automaton E if and only if
there exists transaction action-output function f such that the following constraints
are met.

(1 ) ∀(σ0, .., σn) ∈ (A+)? : (n < 1 ∨ Of (σ0, .., σn−1) ∈ A?) =⇒
(a) P̂ (Of (σ0, .., σn))
(b) P̂ (σ0; ..;σn) =⇒ σ0; ..;σn ≈ Of (σ0, .., σn)
(c) ∀τ � (σ0; ..;σn) : (P̂ (τ) ∧ Of (τ)=Of (σ0, .., σn)) =⇒ τ ≈ Of (σ0, .., σn)
(d) ∀τ ∈ A∞ : (P̂ (τ) ∧ σ0; ..;σn ≺ τ ∧ Of (σ0; ..;σn) ∈ Aω) =⇒

τ ≈ Of (σ0, .., σn)

(2 ) ∀(σ0, σ1, . . .) ∈ (A+)ω : (∀i ∈ N : Of (σ0, .., σi) ∈ A?) =⇒
(a) P̂ (Of (σ0, σ1, . . .))
(b) P̂ (σ0;σ1; . . .) =⇒ (σ0;σ1; . . .) ≈ Of (σ0, σ1, . . .)

ACM Transactions on Information and Systems Security, Vol. 12, No. 3, Article 19., Pub. date: January 2009.



19: 38 · Jay Ligatti et al.

Proof. (If Direction) We construct an edit automaton E that effectively≈ en-
forces any such P̂ as follows.

—States: Q = (A+)?×A? (the sequence of valid transactions input so far paired
with the sequence of actions currently suppressed)

—Start state: q0 = (·, ·) (nothing has been input or suppressed)
—Transition function (for simplicity, we write δ in terms of high-level transitions):

When processing an action a in state (S, σ), always make the following high-level
transition. First, insert τ = Ff (S, σ; a) (one action at a time; note that τ may
have infinite length, in which case the automaton enters an infinite loop and the
rest of this transition description is irrelevant). Then suppress a and continue
either in state (S, (σ; a)) if τ = · , or in state ((S, σ; a), ·) otherwise.
This δ is computable because part (2) of Definition 3.5 implies that Ff (S, σ; a)
is always computable (one output action at a time).

Let τ be S̄, the concatenation of all executions in a sequence of executions S
(where S ∈ (A+)? and τ ∈ A?). Then E maintains the invariant If (q) on states
q = (S, σ) that exactly Of (S) = Of (S, σ) has been output, τ ;σ is the input that
has been processed, and (q0, τ ;σ) ⇓E Of (S). The automaton can initially establish
If (q0) because q0 = (·, ·), Of (·) = ·, and (q0, ·) ⇓E ·. A simple inductive argument
on the transition relation suffices to show that E maintains the invariant in every
state it reaches.

Next, we show that E correctly effectively≈ enforces P̂ on any σ ∈ A∞. First con-
sider the case in which E on input σ never enters an infinite loop, as described in the
high-level transition function above. Let the prefixes of σ for which Ff does not re-
turn · be laid out as a finite or infinite sequence of nonempty executions (σ0, σ1, . . .)
such that (σ0;σ1; . . .)�σ and Ff (σ0) 6= · , Ff (σ0;σ1) 6= · , etc. By E’s transition
function and invariant, (q0, σ) ⇓E Of (σ0, σ1, . . .). Therefore, if (σ0;σ1; . . .)=σ then,
regardless of whether (σ0;σ1; . . .) is a finite or infinite sequence, constraints (1a),
(1b), (2a), and (2b) ensure that E correctly effectively≈ enforces P̂ on σ. Also, if
(σ0;σ1; . . .)6=σ (which implies that (σ0;σ1; . . .) is a finite sequence of executions),
constraint (1a) implies that E’s output Of (σ0, σ1, . . .) satisfies P̂ , while constraint
(1c) implies that if P̂ (σ) then σ ≈ Of (σ0, σ1, . . .). Again, E correctly effectively≈
enforces this σ.

On the other hand, if E on input σ does enter an infinite loop after having input
τ�σ, the automaton invariant implies that E, while considering some input action
a, ceases to input further actions of σ in some state (S, σ′) such that τ = S̄;σ′; a.
By the automaton invariant and transition function, E’s (infinite-length) output
must be Of (S, σ; a), so (q0, σ) ⇓E Of (S, σ; a). By constraint (1a) in the theorem
statement, P̂ (Of (S, σ; a)). Also, by constraint (1d), P̂ (σ) =⇒ σ ≈ Of (S, σ; a).
Hence, in all cases E correctly effectively≈ enforces P̂ .

(Only-If Direction). For all (σ0, .., σn) ∈ (A+)? and m∈N, define f((σ0, .., σn),m)
recursively. As a basis, f(·,m) = · . In the general case, first use the recursive defini-
tions of f((σ0, .., σn−1), 0), f((σ0, .., σn−1), 1), . . . to calculate τ = Of (σ0, .., σn−1).
If τ has infinite length then the value returned by f is irrelevant. Assuming
τ is finite, run E on input σ = σ0; ..;σn until τ has been output (τ must be
output because our definition of f maintains the invariant that E on any input
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σ0; ..;σj ∈ (A+)? outputs Of (σ0, .., σj)). After E outputs τ on input σ, define
f((σ0, .., σn), 0) to be the next action output after τ (or · if nothing more than τ is
output), f((σ0, .., σn), 1) to be the second action output after τ (or · if less than two
actions are output after τ), etc. This f satisfies all four constraints in Definition 3.5
and is therefore a valid transaction action-output function.

With the definition of f , the invariant that E on any input σ0; ..;σj ∈ (A+)?

outputs Of (σ0, .., σj), and the assumption that E effectively≈ enforces P̂ , we show
that constraints (1) and (2) in the theorem statement hold. For constraint (1) we
consider a sequence of executions S = (σ0, .., σn) ∈ (A+)? such that E outputs
only finitely many actions in response to σ0; ..;σn−1 (or in response to · when S is a
sequence of zero or one executions). Let σ = σ0; ..;σn. The invariant on E and the
fact that E effectively≈ enforces P̂ imply constraints (1a) and (1b). Moreover, if E
fails to output anything beyond Of (S) when input a strict extension of σ then the
definition of effective≈ enforcement implies constraint (1c). Finally, if E outputs
an infinite-length execution on input σ (i.e., Of (S) ∈ Aω) then the definition of
effective≈ enforcement implies constraint (1d).

For constraint (2) we consider a sequence of executions S = (σ0, σ1, . . .) ∈ (A+)ω

such that E outputs only finitely many actions in response to σ0; ..;σi, for all i ∈ N.
Let σ = σ0;σ1; . . .. We can extend the invariant on E (stipulating that E on any
input σ0; ..;σj ∈ (A+)? outputs Of (σ0, .., σj)) to the infinite sequence S in this case
by the definition of Of (Definition 3.7). Because E on input σ outputs Of (S), and
E effectively≈ enforces P̂ , constraints (2a) and (2b) must also hold.
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