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ABSTRACT
This paper introduces and evaluates collaborative authentication,
or coauthentication, a single-factor technique in which multiple
registered devices work together to authenticate a user. Coauthen-
tication provides security benefits similar to those of multi-factor
techniques, such as mitigating theft of any one authentication se-
cret, without some of the inconveniences of multi-factor techniques,
such as having to enter passwords or biometrics. Coauthentication
provides additional security benefits, including: preventing phish-
ing, replay, and man-in-the-middle attacks; basing authentications
on high-entropy secrets that can be generated and updated auto-
matically; and availability protections against, for example, device
misplacement and denial-of-service attacks. Coauthentication is
amenable to many applications, includingm-out-of-n, continuous,
group, shared-device, and anonymous authentications. The prin-
cipal security properties of coauthentication have been formally
verified in ProVerif, and implementations have performed efficiently
compared to password-based authentication.
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1 INTRODUCTION
Authentication is one of the most common security activities end-
users perform. Authentication is also a common target of attacks,
through phishing, guessing, man-in-the-middle, token-theft, and
related vectors. Due to the commonality of using and attacking
authentication systems, evenmodest improvements to their security
or usability may produce significant benefits.
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1.1 Background
As is well understood, user authentication is based on factors, the
three standard factors being what you know (human-entered se-
crets like passwords), what you have (physical tokens like keys,
electronic remote controls, or smartcards), and what you are (bio-
metrics like fingerprints). Every authentication system, regardless
of the factors used, is based on secrets, which could take the form of
passwords, patterns of metallic teeth on keys, radio frequencies at
which devices transmit data, codes stored on devices and transmit-
ted, fingerprints, etc. Authentication systems aim to protect against
attackers who have not obtained the required secrets.

Each authentication factor has advantages and disadvanta-
ges [22]. For example, tokens are susceptible to theft, but doing so
in the obvious way requires physical access. Users will often notice
physical theft of a token more readily than a remote theft or guess-
ing of a password or biometrics. However, tokens have traditionally
relied on special-purpose hardware and consequently been more
expensive to implement and deploy than other factors. In addition,
usability benefits of tokens have traditionally been offset by the
costs of having to carry and handle the tokens [22, 29].

Multi-factor authentication attempts to improve security by
requiring successful attacks to compromise every factor being
used [21]. One two-factor mechanism combines a username and
password with a second password (a one-time password, OTP)
texted to the user’s phone [13]. Alternatively, instead of receiving an
OTP from the authenticator, the phone may share a cryptographic
key with the authenticator and generate its own OTP, called a time-
based OTP or TOTP, as a cryptographic hash, using the shared key,
of the current time [20]. A benefit of such mechanisms is that the
physical-token factor is a device already possessed and carried by
the user, thus avoiding expensive, dedicated hardware.

However, multi-factor techniques add the inconveniences of each
factor required. For example, because OTP and TOTP techniques
require users to enter two passwords and carry a registered device,
they suffer from the nontrivial usability drawbacks of password-
based authentication mechanisms (e.g., [11, 14, 19, 24, 25]) and the
inconvenience of having to access a mobile device to authenticate.

This latter inconvenience, of having to access one’s registered
mobile device to authenticate, has lessened over time, as the over-
whelming majority of adults have gone from having zero personal
smart devices accessible at all times to having one personal smart
device—a smartphone—accessible at all times [12].

With the growth of the Internet of Things, ubiquitous computing,
and wearable, edible, and implantable devices, the overwhelming
majority of adults may soon have multiple personal smart devices
accessible at all times, all of which can be registered and used to au-
thenticate. For example, to log in to a website, open a door, or start
an engine, two of a user’s registered devices, perhaps a smartphone
and smartwatch, might participate in the authentication. A gate or
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garage door might authenticate a request to open by requiring par-
ticipation from both a registered car and a registered smartphone;
then stealing only the car, or only the phone, would be insufficient
for opening the door.

Even today many people only authenticate to certain services
when multiple of their devices are present. For example, a userU
may log in to banking services only from a certain PC while in the
presence of U ’s smartphone. In this case the banking service could
register these two user devices toU and require their participation
in every authentication ofU . Because the PC and smartphone are
separate and heterogeneous, successfully stealing or otherwise
attacking one device does not imply a successful attack on the
other device. It is therefore of value to protect against attacks on
only one of the two user devices.

We call this single-factor technique, in which multiple devices
collaborate to authenticate a user, coauthentication. The user de-
vices collaborate through cryptographic protocols, such that an
authenticator receives message(s) proving that all required user
devices approve the authentication. Attackers who steal only one of
the user devices cannot authenticate, because the unstolen device
will not approve the authentication.

Benefits of coauthentication include protecting against the com-
promise of authentication secrets (cryptographic keys); preventing
phishing, replay, and man-in-the-middle attacks; basing authentica-
tion on high-entropy secrets that can be generated and updated au-
tomatically; avoiding the inconveniences of factors like passwords
and biometrics; implementing advanced authentication functionali-
ties, includingm-out-of-n, continuous, group, shared-device, and
anonymous authentication; and, when implementingm-out-of-n
authentication, providing availability protections against device
misplacement and denial-of-service attacks.

1.2 Contributions and Roadmap
As far as we are aware, coauthentication is the first single-factor,
multi-device technique for authenticating users without passwords
or biometrics.

This paper introduces and evaluates coauthentication, including
several specific coauthentication system designs, protocols, and
implementations. It makes the following contributions.
• Example coauthentication system designs, attack models,
policies, and applications are presented (Section 2).
• Coauthentication protocols, having strong two-way authen-
tication and forward-secrecy properties, are defined (Sec-
tion 3).
• The principal security properties of the coauthentication
protocols are formally verified, using ProVerif [3, 4], under a
small set of explicitly stated, realistic assumptions (Section 4).
• The implementability and performance of the coauthentica-
tion protocols are evaluated (Section 5).
• Several extensions and generalizations of coauthentication
are provided (Section 6).
• In a discussion of related work, it is shown that existing
authentication techniques, specifically those like OTPs that
may involve multiple user devices, can also benefit from the
coauthentication protocols (Section 7).

Section 8 concludes and describes ongoing work.

2 COAUTHENTICATION SYSTEM DESIGNS,
POLICIES, AND APPLICATIONS

The devices involved in coauthentication are the authenticator (e.g.,
a server deciding whether to authenticate a user), the requestor (on
which the current authentication attempt is initiated), and one or
more collaborators. The requestor and collaborator(s) are registered
with the authenticator, meaning that the devices have access to a
secret that the authenticator can use to verify the devices’ partici-
pation in an authentication. This secret accessible to the requestor
and collaborator(s) may, for example, be a secret key shared with
the authenticator, or a private key K such that the authenticator
can verify signatures created with K .

In some coauthentication protocols, the authenticator, upon re-
ceiving an authentication request, issues one or more challenges and
awaits one or more valid responses to the challenges. Other proto-
cols avoid authentication challenges. In all cases, the authenticator
verifies that multiple registered devices, more specifically the secret
keys accessible to those devices, participate in the authentication.

2.1 Attack Models and Assumptions
Coauthentication, like multi-factor techniques, protects against
theft of any one authentication secret. The secrets in coauthentica-
tion are cryptographic keys. Theft of coauthentication secrets may
occur in any way, including by remotely compromising devices to
obtain their stored keys or physically stealing devices.

Attackers are assumed to be active and can eavesdrop on, insert,
delete, and modify communications. Attackers may mount replay
and man-in-the-middle attacks.

Attackers are however assumed to be incapable of cryptanalysis;
attackers can only infer plaintexts from ciphertexts when also hav-
ing the required secret key. Without such an assumption, attackers
could extract credentials like session keys simply by monitoring
and cryptanalyzing legitimate authentications.

Some coauthentication protocols protect against attackers who
know all the secrets stored on a device that the victim user pos-
sesses. We call such attacks key-duplication attacks. For example,
an attacker may duplicate a device’s secret keys by remotely com-
promising the device. Alternatively, the attacker may physically
steal a device, duplicate all keys accessible to the device, and return
the device to the victim user, who may be unaware of the theft and
duplication.

To protect against key-duplication attacks, the coauthentication
protocols assume that a private communication channel, inacces-
sible to attackers, exists between the requestor and collaborator
devices. Such an assumption is necessary because the duplicated
keys must be updated through some channel inaccessible to the
attacker; otherwise, the attacker—who has all of the victim device
D’s keys—could decrypt and obtain any updated keys sent to D,
and modify any updated keys sent from D. Private channels may be
implemented with short-range communications, such as NFC, zig-
bee, wireless USB, infrared, or near-field magnetic induction, under
the assumption that attackers cannot access such communications
because they are on direct, device-to-device channels.

Other coauthentication protocols do not require a private chan-
nel between requestor and collaborator devices. Although these
protocols do not protect against key-duplication attacks, they do
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Authenticator Requestor Collaborator

1)R, {AuthReq,N1}KAR

2)A, {R, {CollabReq,C,N2, K̂AR ,
̂̂
KAR }KAR }KAC

3)A, {CollabReq,C,N2, K̂AR ,
̂̂
KAR }KAR

4)R, {CollabResp,C,N2}EKAR

5)A, {KSK ,C,N1}EKAR

6)R, {Acknowledдement }KSK

Figure 1: The full coauthentication protocol. Secret key KAR (KAC ) is shared between authenticator and requestor (collaborator). Each Ni is a
nonce, and {M }K is the encryption of M using key K . The third message is sent through a private channel.

protect against attackers who obtain keys by stealing devices (with-
out duplicating the keys in, and returning, the devices). In other
words, the attack model for these all-public-channel protocols as-
sumes that if an attacker has obtained a device D’s authentication
secret, then D’s legitimate user no longer possesses D.

All of this paper’s coauthentication protocols assume that devices
in the user’s possession run as intended during the coauthentica-
tion process. Without such an assumption, malware on the user’s
requestor device could simply leak decrypted session keys or any
other unencrypted private data, and malware on the user’s collab-
orator device could simply approve an attacker’s authentication
requests. Protecting against malware that is actively running on a
device in the user’s possession, while the user is authenticating, is
beyond the scope of coauthentication.

All of this paper’s coauthentication protocols also assume that
authenticators run as intended during the coauthentication pro-
cess. Without such an assumption, malware on the authenticator
could simply leak secrets or allow all authentication requests. Pro-
tecting against malware on authenticators is beyond the scope of
coauthentication.

2.2 Collaboration Policies
Each collaborator may enforce its own policy defining the circum-
stances under which it participates in a coauthentication.

For example, a collaborator may only participate in an authenti-
cation after a user has clicked a button or provided some other input
to confirm participation. Under this policy, if an attacker steals or
compromises the requestor and initiates a coauthentication, the le-
gitimate user will not confirm the attacker-initiated authentication
on the collaborator, so the authentication attempt will fail.

Alternatively, a collaborator may automatically participate in
an authentication but warn the user, or log, that it has done so, for
example by displaying a text alert with an audible warning sound
(e.g., a text message). The alert could provide a simple interface
for the user to notify the authenticator if the collaboration was
unauthorized (i.e., an attacker-initiated authentication).

The first of these example policies, which we call the disallow-by-
default collaboration policy, only collaborates when a user confirms
the authentication. The second policy, which we call the allow-
by-default-with-warning collaboration policy, relies on users to
observe a warning and handle unauthorized collaborations after

the fact. For many applications the usability benefits of the allow-by-
default-with-warning policymay outweigh the security costs; many
modern authentication systems email or text users after suspicious
logins and request after-the-fact notification of unauthorized access.

Additional collaboration policies are possible. For example, a col-
laborator could decide whether to participate in a coauthentication
based on the requestor’s proximity, that is, whether the requesting
device is co-located with the collaborator. In applications where the
attack vector of concern is device theft, a collaborator may presume
that a co-located requestor has not been stolen. Such a collaborator
may tacitly allow collaborations with co-located requestors but
show warnings for, require explicit confirmations for, or disallow
entirely, collaborations with non-co-located requestors.

When run automatically, without requiring user interaction,
coauthentication is a zero-interaction authentication system [8].
Zero-interaction systems are well suited to continuous authentica-
tion [1, 8].

3 THE FULL COAUTHENTICATION
PROTOCOL

Figure 1 illustrates the full coauthentication protocol for two user de-
vices. Authentication secrets in this protocol are shared symmetric-
cryptography keys, and there is only one collaborator.

Following the flow of data in Figure 1, the full protocol operates
as follows. Assume that during device registration, the authenticator
A and requestor R share a secret key KAR , and the authenticator A
and collaborator C share a secret key KAC .

(1) Requestor R initiates the coauthentication by sending the au-
thenticatorA its ID and an encrypted authentication-request
message containing a challenge nonce N1 (which serves to
authenticate A to R).

(2) Authenticator A receives and decrypts the request message,
finds that the requestor R is registered to a user having col-
laborating device C , creates a challenge nonce N2 (which
serves to authenticate R to A), generates two new keys (K̂AR
and ̂̂

KAR ) to share with R (to rotate keys, to ensure forward
secrecy and prevent key-duplication attacks), and double
encrypts these data in a collaboration-request message to C ,
the first (inner) encryption using KAR and the second (outer)
encryption using KAC . By double encrypting nonce N2, the
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authenticator ensures participation of both user devices’ se-
cret keys (KAR and KAC ) in the coauthentication.

(3) Collaborator C receives and decrypts the previous message,
verifies the identity of the requestor, and forwards the de-
crypted message (which is still ciphertext encrypted with
KAR ) to requestor R through a private channel.

(4) Requestor R receives and decrypts this message using KAR ,
verifies the identity of the collaborator, and obtains N2, K̂AR ,
and ̂̂

KAR . The requestor then generates and sends the au-
thenticator a collaboration-response message containing N2
encrypted with its first updated key, K̂AR . The requestor
saves the second updated key, ̂̂KAR , for a future coauthenti-
cation request.

(5) Authenticator A receives the collaboration-response mes-
sage, decrypts, and verifies the collaborator’s identity and
that the received nonce matches the N2 it sent earlier. Be-
cause A has now verified participation of both keys KAR
and KAC , it sends an authentication-complete message, for
example containing a session key KSK , to the requestor R.

(6) Requestor R sends an acknowledgment to the authenticator.

Timestamps may be added to these messages, for example to imple-
ment timeouts or fine-grained logging.

Notice that full coauthentication stores three keys long term:
KAR may be stored long term before the current round of authen-
tication, ̂̂KAR may be stored long term after the current round of
authentication, and KAC may be stored long term before and after
the current round of authentication.

3.1 Properties of the Full Protocol
The full coauthentication protocol uses nonces to authenticate the
requestor and authenticator to each other—session keys are only
shared between mutually authenticated devices. Requestor R only
shares session keys with authenticatedAs, and authenticatorA only
shares session keys with authenticated Rs.

The full protocol also employs key rotation to ensure forward
secrecy. An attacker who acquires the keys stored long term on at
most one user device cannot obtain past session keys. Each session
key KSK is encrypted with an updated K̂AR .

The full protocol mitigates man-in-the-middle attacks by making
the authentication secrets shared between the authenticator and
user devices be cryptographic keys, used to encrypt communica-
tions. In contrast, man-in-the-middle attacks may be possible on
password or biometrics systems because the authenticator may only
share, with users or user devices, secrets that are insufficient for
cryptographic use. For example, a man-in-the-middle attack on an
OTP system may proceed as follows: the victim enters a username
and password on a fake website; the fake website forwards this
information to the real website, which then issues an OTP; the vic-
tim receives and enters the OTP into the fake website; the attacker
completes the authentication on the real website and masquerades
as the user. In this case the shared username/password (or hash
thereof) is insufficient for providing the cryptographic properties
needed to mitigate man-in-the-middle attacks.

Now suppose an attacker acquires the long-term secrets stored
on at most one user device. Acquiring KAC only enables an at-
tacker, even one with access to the private channel, to permit or
deny authentications initiated by the victim. Attackers are already
assumed to be active and consequently capable of denying service
by dropping network messages. Acquiring KAC therefore provides
an attacker with no new capabilities (and Section 6.1 describes ex-
tensions of coauthentication that mitigate denial-of-service attacks
on user devices).

On the other hand, acquiring only theKAR to be used in the next
coauthentication request enables an attacker to request authenti-
cation, but assuming an appropriate collaboration policy, the col-
laborator will notify the victim user of the authentication attempt.
From the victim’s perspective, this attacker-initiated authentication
attempt will be unexpected, so the victim will deny collaboration
and therefore the authentication.

Acquiring only the KAR to be used in the next coauthentication
request also enables an attacker mounting a key-duplication attack
to wait for and decrypt a legitimate authentication request coming
from the requestor device, still in the victim’s possession. However,
such an attacker only obtains nonce N1 in the process and cannot
decrypt any of the remaining messages in the protocol, because
they are either encrypted with different keys or sent on a private
channel. Obtaining KAR and N1 provides an attacker with no new
capabilities.

The full coauthentication protocol therefore protects against
attackers who have acquired the long-term secrets stored on at
most one user device. ProVerif has been used to formalize and
verify these arguments, as described in Section 5.

3.2 Variation: Omitting the
Challenge-Response

It is possible to avoid the challenge-response portion of the full
coauthentication protocol, implemented with nonce N2, by having
the requestor send two requests, one to the authenticator (to re-
quest authentication) and another to the collaborator (to request
collaboration).

Figure 2 shows such a challengeless protocol. The requestor
sends two requests, one to the authenticator and another to the
collaborator, containing the same nonce N1. The requestor also in-
cludes the updated versions ofKAR in its collaboration-request mes-
sage, which the collaborator forwards to the authenticator. These
updated keys are double encrypted during transit from the collab-
orator to the authenticator, protecting the keys against attackers
having obtained at most one of KAR and KAC . After verifying that
both the requestor and its registered collaborator have participated
in an authentication by sending the same N1, the authenticator
sends a new session key to the requestor, encrypted with the proper
updated version of KAR . As in the full protocol, this challengeless
version results in the authenticator and requestor sharing an up-
dated ̂̂

KAR , usable in a subsequent run of the protocol as the new
version of KAR .

Having formally verified both the full and challengeless coau-
thentication protocols, to our knowledge they provide the same
security guarantees. The known tradeoffs between these protocols
relate to performance. The challengeless protocol is expected to
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Authenticator Requestor Collaborator

1)R, {AuthReq,N1}KAR
2)A,CollabReq, {N1, K̂AR ,

̂̂
KAR }KAR

3)C, {CollabResp,R, {N1, K̂AR ,
̂̂
KAR }KAR }KAC

4)A, {KSK ,C,N1}EKAR

5)R, {Acknowledдement }KSK

Figure 2: A coauthentication protocol omitting authenticator challenges. The second message is sent through a private channel.

Authenticator Requestor Collaborator
1)A,CollabReq,N1, {AuthReq,N1, K̂AR ,

̂̂
KAR }KAR

2)C, {CollabResp,R,N1, {AuthReq,N1, K̂AR ,
̂̂
KAR }KAR }KAC

3)A, {KSK ,C,N1}EKAR

4)R, {Acknowledдement }KSK

Figure 3: A challengeless coauthentication protocol incorporating message forwarding. The first message is sent through a private channel.

be more efficient overall, due to the omission of challenge creation
and the parallelization or batching of some of the communications
(e.g., the first and second messages in Figure 2). However, the com-
putations performed by individual devices may be more efficient
in the full version. For example, from the requestor’s perspective,
the challengeless protocol essentially replaces the computations
needed to decrypt the third message and generate the fourth mes-
sage of Figure 1 with the computations needed to generate the
second message of Figure 2, including generating updated versions
of KAR . For some user devices, such as IoT devices with limited
resources, some of these computations may be more expensive than
others, making one protocol more efficient than another for those
devices.

3.3 Variation: Incorporating Message
Forwarding

Figure 3 shows a variation of the challengeless protocol that incor-
porates message forwarding. The protocol shown in Figure 3 is the
same as the one shown in Figure 2 but with the collaborator for-
warding the authentication-request message to the authenticator
on behalf of the requestor.

3.4 Variation: No Private Channels
In cases where a private channel does not exist between the re-
questor and collaborator, coauthentication protocols cannot prevent
key-duplication attacks. The ability of an attacker, who has acquired
all the secrets stored on a user-possessed requestor R, to eavesdrop
on and modify all communications to and from R, makes it impos-
sible to update R’s secrets without the attacker also obtaining any
updates sent to R and modifying any updates sent from R.

In practice it may be acceptable to dismiss key-duplication at-
tacks by relying on alternative mechanisms to mitigate them. For
example, a device’s long-term, rarely updated key KAR may be
stored in a trusted platform module (TPM) [15]. With KAR in a

TPM, we might assume that attackers, who possibly have physical
access to the requestor R, may be able to use KAR to initiate authen-
tications on R, but cannot extract KAR from R. That is, mechanisms
like TPMs may mitigate key-duplication attacks by allowing au-
thentication secrets to be used but not extracted, and therefore not
duplicated.

It may also be acceptable to dismiss key-duplication attacks in
cases where the threat is considered remote or private channels
simply cannot be implemented or would be costly to implement.

In any of these cases, the coauthentication protocols can be var-
ied to no longer require a private channel between the requestor and
collaborator, yet still protect against non-key-duplication attacks.
The attack model for these all-public-channel protocols assumes
that if an attacker has obtained a device D’s authentication secret,
then D’s legitimate user no longer possesses D. This attack model
still covers attacks based on stealing devices and attempting to
authenticate on the stolen devices.

For example, Figure 4 shows an all-public-channel variation of
the protocol shown in Figure 3. The Figure-4 protocol matches
the Figure-3 protocol, except that data for updating keys is omit-
ted (because requestor-key updates cannot be confidential in an
all-public-channel scenario in which an attacker has all of the re-
questor’s secrets), and the message sent between the requestor
and collaborator is encrypted with a shared key KRC (because this
message is sent over a public channel).

The all-public-channel protocols are simpler, and expected to
run more efficiently, than the private-channel protocols but do not
protect against key-duplication attacks and do not satisfy forward
secrecy.

In practice a hybrid approach may be preferred: coauthentication
keys may be updated only periodically, using private channels at
opportune times, while public-channel protocols are used in the
common case.

To make an analogy with password-based authentication sys-
tems, ideally—from a security perspective—users would update their
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Authenticator Requestor Collaborator
1)R, {A,CollabReq,N1, {AuthReq,N1}KAR }KRC

2)C, {CollabResp,R,N1, {AuthReq,N1}KAR }KAC

3)A, {KSK ,C,N1}KAR

4)R, {Acknowledдement }KSK

Figure 4: An all-public-channel variation of the challengeless coauthentication protocol with message forwarding (Figure 3).

passwords on every authentication, to limit attackers who have ac-
quired passwords. Doing so would be like using the private-channel
protocols for coauthentication. In practice, however, tradeoffs are
made, and passwords are typically updated only rarely [11].

4 FORMAL EVALUATION
The principal security properties of the example coauthentication
protocols shown in Figures 1–4 have been formally verified with
ProVerif [3, 4]. ProVerif uses a resolution-based strategy to verify
that protocols satisfy desired security properties. A benefit of using
ProVerif is that it can model arbitrarily many sessions of a protocol
running concurrently.

Our ProVerif encodings of the coauthentication protocols, and
the properties verified, are available online [7]. The protocol encod-
ings faithfully follow the communications shown in Figures 1–4.
The modeling of key updates uses key tables to store dynamically
generated keys [5, p.37].

4.1 Assumptions
The protocols were modeled and verified under the assumptions
stated in Section 2.1. The private-channel protocols (Figures 1–3)
have strong attack models allowing key-duplication attacks.

The all-public-channel protocol (Figure 4) has a weaker attack
model that assumes authentication secrets (KAR , KAC , and KRC )
are only accessible to attackers through device theft. In terms of the
ProVerif encodings, this weaker attack model means that, in cases
where attackers are assumed to know KAR , the collaborator does
not respond to collaboration requests. The justification is that if an
attacker has acquired KAR , then by assumption the legitimate user
does not possess the requestor, so collaboration requests must be
for unauthorized, attacker-initiated authentications. It is assumed
that, with appropriate collaboration policies, users do not approve
collaborations for unauthorized authentications.

In all the protocols, attackers are active and may freely eavesdrop
on, insert, delete, and modify communications. Attackers are not
constrained to operate according to any of the protocols.

In addition to arbitrary active attackers, each protocol session
runs 3 processes (authenticator A, requestor R, and collaborator C),
and the main ProVerif process considers arbitrarily many sessions
of a protocol running concurrently.

4.2 Verification Setup
Each protocol was verified in 3 runs.

(1) The first run began with attackers knowing no secret keys.

(2) The second run began with attackers knowing all the long-
term keys accessible to the collaborator. For the protocols
shown in Figures 1–3, attackers were given KAC , and for the
protocol shown in Figure 4, attackers were given KAC and
KRC .

(3) The third run beganwith attackers knowing all the long-term
keys accessible to the requestor. For the protocols shown in
Figures 1–3, attackers were given KAR and ̂̂

KAR , and for the
protocol shown in Figure 4, attackers were given KAR and
KRC .

In all 3 runs of each of the 4 protocols, we attempted to verify
the following security properties.

P1: Secrecy of the session key. The session key KSK is only
known to the authenticator and requestor. This property subsumes
forward secrecy of session keys in the third run of the private-
channel protocols (Figures 1–3) because knowing the requestor’s
future authentication secret (̂̂KAR , which becomes KAR in the next
round of authentication) does not leak session keys.

P2: Authentication ofR toA. With one exception, we specified
authentication of R to A as requiring that if the authenticator re-
ceives an acknowledgment of a session key (and therefore believes
it shares the session key with the requestor) then the requestor was
indeed its interlocutor and the collaborator indeed collaborated.
This is an event-based property [30] having the form

endA =⇒ (beдinA ∧ collabA),

where endA refers to the event of A receiving the acknowledgment,
beдinA to R sending the authentication request, and collabA to C
sending its participation message (in the third message of Figures 1
and 2 and the second message of Figures 3 and 4).

The one exception to encoding P2 in this way is for the second
run of the all-public-channel protocol (Figure 4), where the attacker
is given KAC and KRC . In this case, the attacker may use KRC
to obtain, and KAC to collaborate with, legitimate authentication
requests, thus helping legitimate authentications succeed, which
we do not consider an attack. Therefore, for the second run of the
Figure-4 protocol, we specify property P2 as only requiring

endA =⇒ beдinA,

that is, if the authenticator believes it shares the session key with
the requestor then the requestor was indeed its interlocutor (but
the attacker, rather than the collaborator, may have collaborated).

P3: Authentication of A to R. This property is symmetric to
P2 and, with one exception, requires that if the requestor sends an
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acknowledgment of a session key (and therefore believes it shares
the session key with the authenticator) then the authenticator was
indeed its interlocutor and the collaborator indeed collaborated.
This property has the form

endR =⇒ (beдinR ∧ collabR),

where endR refers to R sending the acknowledgment, beдinR to A
receiving the authentication request, and collabR to C sending its
participation message.

As with P2, the one exception to encoding P3 in this way is for the
second run of the all-public-channel protocol (Figure 4), in which
case P3 only requires

endR =⇒ beдinR,

for the same reason explained for property P2.

4.3 Verification Results
ProVerif found no attacks on any of properties P1–P3 in any runs of
any of the protocols. That is, ProVerif did not refute any of P1–P3
in any runs of any of the protocols.

ProVerif did prove P1 and P3 for all 3 runs of all 4 protocols,
and it proved P2 for all 3 runs of the full coauthentication protocol
(Figure 1). It also proved P2 for the second and third runs of the
protocol shown in Figure 4.

For all runs of the protocols shown in Figures 2 and 3, and for
the first run of the protocol shown in Figure 4, ProVerif outputs
that P2 “cannot be proved”. It produces a trace in which a man-in-
the-middle sits between A and R, and A and C , and simply collects
and forwards all messages sent to and from A. This trace is not an
attack because the authenticator completes the protocols with R
having sent the original authentication request and C having sent
its participation message, despite the fact that the attacker touched
these messages while acting as an intermediary.

We also note that these results are for the stronger, injective-
correspondence versions of properties P2 and P3. The injective-
correspondence versions require there to be a unique predecessor
event for each end event [5, pp.19–22]; for example, the injective
version of P2 requires that for each endA event there exists a unique
beдinA predecessor event. The non-injective versions allow end
events to have non-unique predecessor events. ProVerif was able to
prove the weaker, non-injective version of property P2 for all runs
of all protocols.

5 EMPIRICAL EVALUATION
We have implemented and measured the performance of full coau-
thentication (Figure 1) and the variations shown in Figures 2–4. To
establish a baseline of performance, we also implemented and mea-
sured the performance of a basic password authentication system.

The authenticator in all implementations was the same MacBook
Pro laptop, and the requestor and collaborator in all implementa-
tions were the same Android phones, except that the password-
based implementation did not use a collaborator device. In all imple-
mentations, the authenticator, requestor, and collaborator processes
ran as Java applications.

The password-based implementation communicated overHTTPS
(using 2048-bit RSA and self-signed certificates), while the coau-
thentication implementations sent public-channel messages over

TCP on standard Wi-Fi channels. Private-channel messages were
sent through Bluetooth, though it has known vulnerabilities [10].

All symmetric cryptographic operations were implemented with
256-bit CBC-mode AES using the standard javax.crypto library,
and all (64-bit) nonces, (256-bit) session keys, and (256-bit) updated-
KAR keys were dynamically generated using Java’s cryptograph-
ically strong random number generator class SecureRandom. All
other cryptographic keys were hardcoded, the initial shared keys
being assumed to have been shared before the implementations
began running. An (8-character) username and password were also
hardcoded for the password-based implementation.

Each run of each implementation opened new network connec-
tions, including a new Bluetooth connection in the implementations
of Figures 1–3. Connections were never reused between runs of the
implementations, and the Android applications were restarted for
each run.

Each of the implementations was run 100 times, in a uniform
environment of normal (workday) university-network usage and
standard loads of kernel and user-level applications running. The
following measurements were made for each run:

• The network usage, that is, the number of bytes transmit-
ted over the course of the run. Due to unreliability in the
communication channels, the number of bytes transmit-
ted varied with each run. The network usage was mea-
sured with Android’s standard network-monitoring class
android.net.TrafficStats.
• The application-layer real time each device consumed. This
measurement was made by starting a timer when beginning
to process any newly received message or request, stopping
the timer when finished preparing a response, taking the
difference, and summing all of these times for each device.
For example, the application-layer real time consumed by
the authenticator in full coauthentication is the sum of the
real times it consumes processing the requestor’s and col-
laborator’s messages, including generating new keys and a
challenge nonce and performing the required encryptions
and decryptions. Application-layer times exclude all time
spent establishing connections and transmitting messages
in the underlying TCP, HTTPS, and Bluetooth protocols.
• The total authentication time. This is the real time, measured
on the requestor, from beginning to prepare an authentica-
tion request until finishing obtaining a plaintext session key.

As shown in Table 1, the implementations transmitting more or
more complex messages, or using HTTPS, transmitted more bytes
of data. Network (i.e., non-application-layer) activities dominated
the performance of all implementations, consuming between 70%
and 98.7% of the total authentication time on average.

In terms of application-layer performance, the password sys-
tem was the most efficient, benefiting (at the application layer)
from pushing all the cryptographic operations into the underlying
HTTPS layer.

In terms of total authentication time, the Figure-4 system out-
performed the others on average. The performance of this coau-
thentication system benefits from transmitting a smaller number of
messages over the efficient (relative to HTTPS and Bluetooth) TCP.
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Bytes Application-Layer Time (ms) Authentication
Implementation Transmitted Authenticator Requestor Collaborator Total Time (ms)
Password 3212 0.28 1.50 — 1.80 136
Figure 1 1198 2.58 22.5 18.4 43.5 594
Figure 2 1088 1.36 20.1 20.9 42.4 475
Figure 3 885 1.16 17.2 19.4 37.8 473
Figure 4 1075 0.94 14.9 23.3 39.1 131

Table 1: Average performance of the authentication systems over 100 runs.

Importantly, these performance results exclude human time,
though it is known to be substantial for password-based authenti-
cation systems. Human entry of a password is expected to take on
the order of several seconds [19, 25, 28].

Care should also be exercised when comparing the performance
of the password-based system with the performance of the private-
channel coauthentication systems (Figures 1–3), which update
KAR on every authentication. The advantages of updating KAR
are analogous to the advantages of updating a password, so a better
comparison might take into account the time required to update
passwords. Password update is expected to take on the order of a
minute of human time [27], significantly longer than an automatic
coauthentication-key update.

We conclude from these results that coauthentication performs
efficiently enough to be practical.

6 EXTENSIONS AND GENERALIZATIONS
Extensions and generalizations of coauthentication are possible.

6.1 Multiple Collaborators,m-out-of-n Policies,
and Availability Benefits

There are advantages to systems in which users register more than
two devices with an authenticator. Suppose a user has registered
n devices and the authenticator requires anym of the n devices to
coauthenticate, where 2 ≤ m ≤ n. In the coauthentication protocols
described so far,m=n=2, but now supposem=2 and n=3. In this
case, compromising only one of the user’s devices (i.e., obtaining
only one device’s authentication secrets) is still insufficient for
authenticating as that user, becausem=2. At the same time, because
m<n, the user can be authenticated even after forgetting or losing
a device, or having a device become inoperable, for example due to
a denial-of-service attack.

This m-out-of-n-device policy, enforced at the authenticator,
tolerates the absence of n−m devices. Hence, user-side denial-of-
service attacks require denying service to n−m+1 devices. When
these devices communicate through heterogeneous channels, denial-
of-service attacks based on jamming or otherwise interfering with
specific communication channels become more difficult to mount.

To prevent attackers from using n−m compromised devices to
coauthenticate,m may be further constrained to be greater than
n−m, that is,m > n/2. For example, a system that requires only 2 out
of 4 devices to coauthenticate (i.e.,m=2=n/2) tolerates the absence
of 2 devices, but if those 2 devices are absent due to theft, then the
thief can use them to coauthenticate. To prevent such attacks, the
m-out-of-n-device policy may be constrained to 2 ≤ m ≤ n < 2m

Them-out-of-n-device policy can be generalized further, to poli-
cies in which devices are, for example, (1) weighted in various ways

to get above a threshold (e.g., 2 “votes” are required to authenti-
cate the current user, but each smart shoe only gets half a vote),
(2) required (e.g., 2 devices are required but one must be the user’s
smartphone), or (3) excluded (e.g., high-risk users may not use
easily-transferrable smartcards for coauthentication).

6.2 Group Coauthentication
Users may also be coauthenticated simultaneously, as a group.
Such authentication subsumes the famous two-person concept for
authenticating users who will have access to nuclear and other
weapons [9, 31], or to bank vaults. For example, a two-person pol-
icy may require two users to simultaneously turn four keys, one
in each hand, to gain access to a weapon-deployment system. The
goal is to require both users to participate in the authentication.

Because coauthentication requires participation of multiple de-
vices in an authentication, it may require participation of multiple
users in an authentication, where each user has at least one regis-
tered device. The same coauthentication protocols can be followed
to authenticate multiple users’ devices simultaneously. More so-
phisticated group coauthentications could, for example, require
participation ofm-out-of-n devices from each of j-out-of-k users.

6.3 Device Sharing and Anonymous
Coauthentication

Users may also share devices. For example, a garage-door authen-
ticator may receive a request from a shared family car and send
challenges to all the smartphones of drivers in the family, or only
those smartphones in near-proximity. The smartphones might en-
force the collaboration policy of tacitly participating if co-located
with the requestor and not participating otherwise.

Alternatively, assume that every collaborator (smartphone) shares
the same secret key with the garage-door authenticator. Then the
authenticator may, upon receiving a request from the family car,
respond directly to the car with a challenge requiring participation
from any collaborator—and leave it to the car to obtain a collabora-
tor’s participation. An interesting aspect of this alternative is the
anonymity it provides: the authenticator only communicates with
the shared requestor device and does not knowwhich user has been
authenticated, nor which device has collaborated. Authentications
are still protected against attackers acquiring one of the secret keys.

It is also possible to achieve anonymous coauthentication for
systems in which requestor devices are not shared, by having all
potential requestors share the same secret key with the authentica-
tor. Because coauthenticators verify usage of keys, anonymity is
achieved by having devices share keys.
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Of course, these designs only protect anonymity during the
authentication process. Authenticators frequently have other op-
portunities to de-anonymize users, though techniques like onion
routing [23] may mitigate some de-anonymizations.

7 ADDITIONAL DISCUSSION OF RELATED
WORK

Many existing systems are related to coauthentication.

7.1 Threshold Schemes and Multi-Signatures
An (m,n) threshold scheme enables a secret to be divided among
n entities, such that each entity has one piece of the secret and
m of the n pieces are required to determine the secret [26]. An
(m,n) threshold scheme has cryptographic benefits analogous to
the user-authentication benefits of anm-out-of-n-device coauthen-
tication policy; both protect against fewer-than-m entities acting
maliciously and at-most-n-minus-m entities being unavailable to
participate.

Multi-signature schemes similarly enable different users or de-
vices to generate a joint digital signature [2].

Threshold and multi-signature schemes do not provide coau-
thentication systems, and vice versa, as they differ in techniques
and goals. Threshold (multi-signature) schemes contribute tech-
niques for combining secret-pieces (signatures) into a joint secret
(signature), while coauthentication systems require no joint secret
or signature. Coauthentication secrets (i.e., keys) may be used only
independently, to indicate one device’s participation in user-level
authentications, without ever being combined. The goals of thresh-
old and multi-signature schemes focus on combining pieces of
cryptographic secrets or signatures into joint secrets or signatures,
while coauthentication’s goals focus on user authentication.

7.2 OTPs and Other Techniques Using Multiple
Devices

One group of techniques related to coauthentication uses OTPs, as
discussed in Section 1. The standard use of OTPs is as follows. A
user enters a username and password on a requestor device, the
authenticator SMS-texts an OTP to the user’s phone (which may
also be the requestor device), and the user sees the OTP and enters
it on the requestor device as a second password required for authen-
tication. This use of OTPs differs from coauthentication in several
ways, perhaps the most significant being that the OTPs are used in
two-factor systems, while coauthentication is a single-factor sys-
tem. Hence, attackers can break the OTP portion of authentications
by compromising one device, the victim’s phone, or by reading the
SMS messages sent to the phone [13, 16, 18].

Another related group of techniques use multiple devices to ac-
quire multiple passwords or biometric data [17]. The authenticator
combines these data to determine whether to authenticate a user.
For example, if a user has a sensor-device implanted in each finger,
then each device may send data related to that finger’s motion to
an authenticator, which can make authentication decisions based
on whether a user has moved or gestured in the proper way for
that user. Although using multiple devices, this line of work relies
on users to enter passwords or biometrics, which are assumed to
be unguessable and unforgeable by attackers.

Coauthentication, like other zero- or low-interaction authenti-
cation systems [8], shields users from attacks based on guessing
or forging authentication secrets, such as password phishing or
biometric surveillance. Coauthentication users never have to ac-
cess or even understand the secrets required for authentication,
and coauthentication secrets can be generated automatically, with
high entropy, and without concern for whether humans have the
resources (cognitive ability, time, etc.) to generate, store, update, or
enter the secrets.

Bonneau et al. evaluated authentication techniques, including
OTPs, according to three axes: usability, deployability, and secu-
rity [6]. A total of 25 criteria are considered along these axes, such
as whether the techniques require users to memorize secrets or
carry devices. As motivated in Section 1, we consider disadvantages
related to requiring users to carry devices to be decreasing. In any
case, we believe that coauthentication satisfies the majority of Bon-
neau et al.’s criteria, though it is difficult to make precise claims in
this respect, due to subjectivity in the criteria [6, Section V-B]. The
most significant criteria coauthentication does not satisfy relate
to deployability; deploying coauthentication, like deploying any
new authentication technique, would require updating authentica-
tion clients and servers, and in some implementations, relying on
co-location verification.

7.3 Using Coauthentication Protocols to
Implement Existing Multi-Device
Techniques

Coauthentication protocols can be used to implement existingmulti-
device authentication systems.

For example, the full coauthentication protocol shown in Fig-
ure 1 can implement OTP-based authentication: the requestor might
be a laptop, the initial (static) password might be included in the
initial authentication-request message sent from requestor to au-
thenticator, the challenge nonce might be the one-time (dynamic)
password, the collaborator might be a smartphone, the communica-
tion from authenticator to collaborator might be through SMS, and
the communication from collaborator to requestor might occur by
displaying the OTP-carrying ciphertext on the smartphone screen
and having the user enter it manually on the laptop.

Similarly, the protocol shown in Figure 2 can implement authen-
tication based on biometric data collected from multiple sensors,
for example, authentication based on data collected from sensors
implanted in fingers [17]. In this case the requestor may request
collaboration from multiple sensors, each of which transmits its
authentication participation—including motion data collected—to
the authenticator. The authenticator collects and considers these
participation messages to make authentication decisions.

Implementing existing multi-device authentication systems with
coauthentication protocols provides the formally verified security
benefits outlined in Section 4. These benefits are sometimes lack-
ing in the existing systems. For example, the protocol shown in
Figure 1 provides forward-secrecy properties lacking in many ex-
isting authentication systems. In addition, although existing OTP
systems are vulnerable to text-message eavesdropping and man-
in-the-middle attacks [13, 16, 18], the coauthentication protocols
mitigate these attacks.
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8 CONCLUSIONS AND ONGOINGWORK
The coauthentication protocols and system designs have several
potential benefits. Coauthentication:

• protects against compromise of any one authentication se-
cret, similar to multi-factor techniques but without the in-
conveniences of having to enter passwords (including OTPs)
or scan biometrics;
• requires little, and in some implementations no, interaction
from users;
• mitigates phishing, replay, and man-in-the-middle attacks
(there are no passwords to phish, and the attack models
assume active attackers);
• bases authentications on high-entropy secrets that can be
generated, exchanged, stored, updated, and used automati-
cally and efficiently (in contrast with password and biometric
secrets);
• can implement advanced functionalities, includingm-out-
of-n, continuous, group, shared-device, and anonymous au-
thentications;
• has formally verified security properties;
• has been implemented and found to perform efficiently enough
to be practical;
• can be combined with additional authentication factors;
• provides protocols that may benefit existing multi-device
authentication systems, such as those based on OTPs.

Ongoing work is investigating the usability of various authen-
tication mechanisms, including coauthentication. Because coau-
thentication can be implemented with little-to-no user interaction,
we hypothesize that coauthentication mechanisms may have im-
proved usability compared to existing authentication mechanisms,
particularly multi-factor mechanisms. Coupling these hypothesized
usability benefits with the security benefits outlined in this paper,
coauthentication, or a multi-factor authentication with coauthenti-
cation as the physical-token factor, may be advantageous for some
authentication applications.
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