Operating Systems (COP 4600) [Fall 2006]

Programming Assignment 2

Objectives:

 1. To gain experience writing multithreaded programs.

 2. To use semaphores and mutexes to synchronize threads.

 3. To solve a problem in the classic producer-consumer paradigm.
Due Date:
· Sunday, October 8, 2006 (at 11:59pm)

Assignment Description:

0) Complete this assignment by yourself on the following CSEE network computers: Obelix, Epidemix, Geriatrix, Asterix, Panoramix, or Dogmatix. These machines are physically located in the Center 4 lab (Room 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to these machines from home using SSH. (Example: Host name: obelix.csee.usf.edu Login ID and Password: <your undergrad login id and password>)
1) Download the market.c file from http://www.cse.usf.edu/~ligatti/4600-06/as2.

2) Study the code in market.c and compile and execute it. This code generates random stock market trades.
3) Modify market.c into a multithreaded C program that simulates the production and consumption of stock trades using the Pthreads API (discussed in class and in Chapters 4 and 6 of the textbook).

The program takes two command-line arguments, the first indicating the number of stock brokers (i.e., stock trade producers) and the second the number of market makers (i.e., stock trade consumers). Please enforce that no more than 10 stock brokers (SBs) and no more than 10 market makers (MMs) are used. Each SB and MM runs in a separate thread, reading and writing a single, shared buffer of at most 5 stock trades. The trades in the shared buffer are conceptually incomplete, in the sense that they have been produced by an SB but have not yet been consumed by an MM. We have provided a C structure for representing stock trades; it contains 4 fields: an integer number of shares to trade, an integer indicating whether the trade is a buy or sell, an uppercase English character stock symbol, and an integer identifying the SB that produced the trade.

SBs sit in an infinite loop doing the following. They wait a random amount of time between 1 and 4 seconds and then, when the buffer has an empty position, write a random trade into the next free buffer position. Generate trades by calling the get_new_trade method we have already provided, and print a message like the following after inserting a trade into the buffer: “trade BUY 93 shares S, from SB 1, produced into position 0”. This message indicates that the first SB generated the trade “BUY 93 S” and wrote the trade into the buffer at index 0.
MMs sit in an infinite loop doing the following. They wait a random amount of time between 1 and 4 seconds and then consume the next trade from the shared buffer when one is present. After an MM consumes a trade, it prints a message like “trade BUY 93 shares S, from SB 1, consumed from position 0 by MM 1”. This message indicates that the first MM has consumed the trade “BUY 93 S”, which was generated by the first SB, from the buffer at position 0.
Implement the shared buffer as a circular queue. That is, the first trade gets produced into index 0 of the buffer, the second into index 1, third into index 2, fourth into 3, fifth into 4, and then the sixth trade to be produced gets stored into index 0 again. Similarly, the first trade will be consumed from position 0 in the buffer, the second from 1, etc.

Synchronize SBs and MMs using two semaphores and one mutex lock. One semaphore counts the number of empty buffer positions; the other counts the number of full buffer positions. The mutex lock simply controls access to critical sections. These global synchronization variables have already been declared for you in market.c, but they still need to be initialized prior to use.
The simulation continues until exactly 10 trades have been consumed. At that point, print the contents of the shared buffer (i.e., the incomplete trades) and exit the simulation entirely.

Important Pointers:

· We have already provided you many “helper methods” in market.c. Use them all and do not modify them.

· Your textbook contains helpful material. Sections 4.3.1, 6.1, 6.5, and 6.6.1 are particularly helpful for this assignment. The Chapter 6 project description (page 236) will also be very helpful, though of course the textbook project differs in many ways from this assignment.
· This problem can be solved within 180 lines of clean, well-documented code.
Submission Notes:
· Type the following pledge as an initial comment in your C file: “I pledge my honor that I have not cheated on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload market.c onto Blackboard using the digital drop-box. You can make any number of submissions; we will grade the latest.

· It is your responsibility to ensure that your program compiles on Unix machines.

· For every day that your assignment is late, your grade reduces 10%.

· Your program must be commented appropriately.
SAMPLE EXECUTIONS

>> gcc market.c -lpthread -lposix4 -omarket
>> market
usage: market num_SBs num_MMs

>> market 1 50

ERROR: the number of market makers must be > 0 and < 11
>> market 1 1

trade BUY 93 shares S, from SB 1, produced into position 0

trade BUY 93 shares S, from SB 1, consumed from position 0 by MM 1

trade SELL 23 shares F, from SB 1, produced into position 1

trade SELL 23 shares F, from SB 1, consumed from position 1 by MM 1

trade SELL 51 shares B, from SB 1, produced into position 2

trade SELL 51 shares B, from SB 1, consumed from position 2 by MM 1

trade SELL 92 shares Q, from SB 1, produced into position 3

trade SELL 92 shares Q, from SB 1, consumed from position 3 by MM 1

trade BUY 38 shares M, from SB 1, produced into position 4

trade BUY 38 shares M, from SB 1, consumed from position 4 by MM 1

trade SELL 51 shares J, from SB 1, produced into position 0

trade SELL 51 shares J, from SB 1, consumed from position 0 by MM 1

trade BUY 89 shares L, from SB 1, produced into position 1

trade BUY 89 shares L, from SB 1, consumed from position 1 by MM 1

trade BUY 11 shares Z, from SB 1, produced into position 2

trade BUY 11 shares Z, from SB 1, consumed from position 2 by MM 1

trade BUY 49 shares C, from SB 1, produced into position 3

trade BUY 49 shares C, from SB 1, consumed from position 3 by MM 1

trade BUY 79 shares T, from SB 1, produced into position 4

trade BUY 79 shares T, from SB 1, consumed from position 4 by MM 1

**** END OF SIMULATION---INCOMPLETE TRADES:
>> market 9 7

trade SELL 95 shares D, from SB 1, produced into position 0

trade SELL 95 shares D, from SB 1, consumed from position 0 by MM 2

trade BUY 53 shares Y, from SB 2, produced into position 1

trade BUY 15 shares Z, from SB 3, produced into position 2

trade BUY 66 shares X, from SB 4, produced into position 3

trade SELL 29 shares W, from SB 5, produced into position 4

trade SELL 1 shares K, from SB 6, produced into position 0

trade BUY 53 shares Y, from SB 2, consumed from position 1 by MM 1

trade BUY 15 shares Z, from SB 3, consumed from position 2 by MM 7

trade BUY 66 shares X, from SB 4, consumed from position 3 by MM 3

trade BUY 28 shares V, from SB 8, produced into position 1

trade SELL 29 shares W, from SB 5, consumed from position 4 by MM 5

trade SELL 1 shares K, from SB 6, consumed from position 0 by MM 6

trade SELL 76 shares H, from SB 9, produced into position 2

trade BUY 53 shares X, from SB 7, produced into position 3

trade BUY 28 shares V, from SB 8, consumed from position 1 by MM 4

trade SELL 76 shares H, from SB 9, consumed from position 2 by MM 2

trade SELL 25 shares S, from SB 1, produced into position 4

trade BUY 15 shares S, from SB 4, produced into position 0

trade SELL 9 shares O, from SB 2, produced into position 1

trade BUY 53 shares X, from SB 7, consumed from position 3 by MM 1

trade BUY 4 shares B, from SB 6, produced into position 2

trade SELL 56 shares Y, from SB 5, produced into position 3

trade SELL 25 shares S, from SB 1, consumed from position 4 by MM 4

**** END OF SIMULATION---INCOMPLETE TRADES:

trade BUY 15 shares S, from SB 4, in position 0

trade SELL 9 shares O, from SB 2, in position 1

trade BUY 4 shares B, from SB 6, in position 2

trade SELL 56 shares Y, from SB 5, in position 3
3

