Operating Systems (COP 4600) [Fall 2006]

Programming Assignment 1

OBJECTIVES:

1. To gain experience creating processes programmatically with the fork command.

2. To execute shell commands in a C program using the execvp function.
3. To introduce simple signal handling.
DUE DATE:

· Sunday, September 24, 2006 (at 11:59pm)
ASSIGNMENT DESCRIPTION:

0. Complete this assignment by yourself on the following CSEE network computers: Obelix, Epidemix, Geriatrix, Asterix, Panoramix, or Dogmatix. These machines are physically located in the Center 4 lab (Room 220). Do not use any server machines like grad, babbage, sunblast, etc.
1. Download the as1.c and input.dat files at http://www.cse.usf.edu/~ligatti/4600-06/as1.

2. Study the code in as1.c and compile and execute it. N.B.: Press Ctrl-c to terminate execution.

Understanding the purpose of every line of as1.c is an important part of this assignment. Please note that some of the code exists to handle the Ctrl-c signal. Unix systems use signals to notify a process that a particular event (e.g., user pressing Ctrl-\ or Ctrl-c) has occurred. Once a signal has been generated, the signal gets delivered to a process where it can be handled. For more information regarding signals, please refer to page 120 of the textbook.

3. Modify as1.c so that it performs the following actions:
a) Accept a filename as command-line input. The input file contains a sequence of shell commands, one per line. Each command consists of two parts: the command name and a set of command parameters.

We have provided a sample input file (input.dat), which you can use to test your program. We will be using a different input file for the evaluation of assignments.

b) Read one line of the input file (you can use fgets() to read a complete line).

c) Fork a child process.
d) Inside the child process, identify the parent’s process id (C-function: getppid) and the self process id (C-function: getpid). Pass the command line that was read in step (b), the parent’s id, and the self id to a function called process1.

e) In process1, perform the following:

· Convert the input line into the format that the execvp() function accepts: execvp(char *command, char *params[]), where command represents the command to be performed and params stores the parameters to this command. N.B.: We have provided a function called setup to help you perform this conversion.

· Print the parent and child pids on the console.
· Execute the command using execvp and display the results on the console.

· Exit from the child process.
f) Perform steps (b), (c), and (d) until the end of file is reached. While a child process is executing, make the parent process wait until the child finishes. When the child exits, the parent should print a message indicating which child has just exited.
g) Close the input file.

h) Create another child process.
i) Inside the child process, identify the parent and self pids, and pass them to a function called process2.

j) In process2, perform the following:
· Setup a signal handler to exit the program (i.e., the child process) when a keyboard interrupt signal Ctrl-\ is pressed.

· Create a signal handling message: “\n\nSignal <Ctrl><\> has been caught.\n\n”
· Print the parent and child pids on the console.
· Wait in an infinite loop until the user presses Ctrl-\.
k) While the child process is executing, make the parent process wait until the child finishes.
l) Exit from the parent process.
Some Important Pointers:
· Do not call the getchar function anywhere in your code. This can create a conflict between the signals and the user inputs.
· You should check that the user specifies exactly one filename as command-line input.

· You should check that the input file gets opened and closed correctly.
SAMPLE EXECUTION:

>> gcc as1.c

>> a.out
usage: a.out filename

>> a.out input.dat

Parent pid = 21270, child pid = 21271

total 64

-rw------- 1 ligatti faculty 50688 Sep 7 15:44 Handout.doc

-rwx------ 1 ligatti faculty 9028 Sep 8 10:41 a.out

-rw------- 1 ligatti faculty 3871 Sep 7 21:12 as1.c

-rw------- 1 ligatti faculty 48 Sep 7 19:30 input.dat

Child with pid 21271 has just exited.
Parent pid = 21270, child pid = 21272

/home/csee2/ligatti/4600/as1

Child with pid 21272 has just exited.
Parent pid = 21270, child pid = 21273

"try it - It Should Work"

Child with pid 21273 has just exited.
Parent pid = 21270, child pid = 21274

 UID PID PPID C STIME TTY TIME CMD

 ligatti 20870 20361 1 10:36:36 pts/14 0:01 -tcsh

 ligatti 21270 20870 0 10:42:14 pts/14 0:00 a.out input.dat

Child with pid 21274 has just exited.
Parent pid = 21270, child pid = 21275

*** ERROR: exec failed

Child with pid 21275 has just exited.
Parent pid = 21270, child pid = 21276

^\

Signal <Ctrl><\> has been caught.

Quit

>>
SUBMISSION NOTES
· Type the following pledge as an initial comment in your C file:
“I pledge my Honor that I have not cheated on this assignment.”
Type your name after the pledge. Not including this pledge will lower your grade 50%.
· Upload as1.c onto Blackboard using the digital drop-box. You can make any number of submissions; we will evaluate the latest submission.
· It is your responsibility to ensure that your program compiles on the Unix machines.
· For every day your assignment is late, your grade reduces 10%.
· The program must be commented appropriately.
