

1

Compilers [Fall 2016]

Programming Assignment V

Objectives

 1. To learn basic typing rules (i.e., static semantics) for an object-oriented language

with inheritance and subtyping.

 2. To implement an enhanced symbol table for Diminished Java (DJ) programs.

 3. To implement a type checker for DJ programs.

Due Date: Sunday, November 13, 2016 (at 11:59pm).

Machine Details

Complete this assignment by yourself on the following CSEE network computers:

c4lab01, c4lab02, ..., c4lab20. These machines are physically located in ENB 220. You

can connect to these machines from home using SSH. (Example: Host name:

c4lab01.csee.usf.edu Login ID and Password: <your NetID username and password>)

You are responsible for ensuring that your programs compile and execute properly on

these machines.

Assignment Description

This assignment asks you to extend your dj2dism compiler with type checking (i.e.,

semantic analysis). The type checker will rely on symbol-table data structures.

Begin by downloading and studying the header files for the symbol-table module (in file

symtbl.h) and the type-checking module (in file typecheck.h). These files are posted at

http://www.cse.usf.edu/~ligatti/compilers-16/as5.

Implement the typecheckProgram method (declared in typecheck.h) in a new file called

typecheck.c. For extra credit, you may also implement the setupSymbolTables method

(declared in symtbl.h) in a new file called symtbl.c.

If you are completing this assignment by extending your Assignment IV implementation

(as is recommended), you’ll also have to make a few minor modifications to your dj.y:

1. The symtbl.h and typecheck.h header files need to be included.

2. The main method in dj.y, which is the main method of the entire compiler, needs

to invoke setupSymbolTables and typecheckProgram so that the compiler

actually performs the type checking.

3. Once you’re confident that your compiler produces correct ASTs, you’ll no longer

want your compiler to print ASTs during normal operation (users generally don’t

want to see the ASTs their compilers build). Therefore, remove the call to

printAST from dj.y (possibly, e.g., by setting a DEBUG_PARSE flag to 0).

Notes on Typing DJ Programs (beyond those given in the Definition of DJ handout):

 A list of expressions has the same type as the final expression in the list.

 A DJ method M may “redeclare” variable names locally or in its parameter that are

already defined as class variables. In this case, the local/parameter declaration

punctures the scope of the class variable, so any use of the variable in M refers to the

http://www.cse.usf.edu/~ligatti/compilers-16/as5

2

local/parameter rather than the class variable. However, a variable-expression block

B may not redeclare variables that have already been declared in B (or that have the

same name as a parameter that can be used in B).

 The expression null has type “any object”, which is a subtype of every class.

 The expression new C() has type C.

 An equality expression E1==E2 is well typed (with type nat) exactly when (1) E1 has

valid type T1, (2) E2 has valid type T2, and (3) either T1 is a subtype of T2 or T2 is a

subtype of T1.

 An if-then-else expression is well typed exactly when its if-expression has nat type

and either (1) the then- and else-expression-lists both have nat type, or (2) the then-

and else-expression-lists both have an object type. In case (1), the type of the entire

if-then-else is nat. In case (2), the type of the entire if-then-else expression is the join

of the types of the then- and else-expression-lists. For example, the expression

if(true) {null;} else{new Object();} has type Object because the join of

“any-object” type and Object is Object.

 A for-loop expression is well typed (with a nat type) exactly when all its

subexpressions are well typed and its loop-test subexpression has nat type.

 A method that expects a parameter of type C may be passed any parameter that is a

subtype of C.

 A method M, declared to return a value of type T, may return any value whose type is

a subtype of T. In any case, the method’s return type is still considered to be its

declared return type T.

 The assignment expression ID=E (where ID is an identifier and E is an expression) is

well typed (with whatever type ID has) exactly when (1) ID is a well-typed variable

and (2) E’s type is a subtype of ID’s type. Assignment expressions of the form

E.ID=E are type checked analogously.

 A use of the keyword this must appear inside a declaration of some class C, in which

case this has type C.

 The class hierarchy declared in a DJ program may not contain cycles (e.g., we cannot

have C1 a subclass of C2, C2 a subclass of C3, and C3 a subclass of C1). Similarly,

no class may be its own superclass.

 Overriding methods’ parameter names may differ from those of overridden methods.

 The main block of a DJ program must be well typed (though it may have any type).

 Of course, all variables must be declared prior to use.

The examples at http://www.cse.usf.edu/~ligatti/compilers-16/as1/dj/examples/bad/ are

intended to illustrate all the high-level sorts of typing errors that are possible in DJ.

Although more typing errors are possible, the additional possibilities should be simple

variations of errors illustrated in the posted examples. (E.g., bad19.dj illustrates an error

in which the second operand in a disjunction expression has non-nat type; obviously your

type checker needs to ensure that both operands in a disjunction have nat type.)

Hints

My symtbl.c file is 283 lines of code (68 of which are comments/whitespace), while my

typecheck.c file is 600 lines of code (64 of which are comments/whitespace; many others

are checks that pointers about to be dereferenced are non-null). This is a relatively

http://www.cse.usf.edu/~ligatti/compilers-16/as1/dj/examples/bad/

3

challenging assignment, requiring you to write several hundred lines of code. Please

budget your time accordingly.

Many examples of valid and invalid DJ files, on which you can test your type checker,

are posted at http://www.cse.usf.edu/~ligatti/compilers-16/as1/dj/examples. A complete

solution to this assignment will detect an error in every one of the “bad” example DJ

programs and no errors in any of the “good” example DJ programs. As usual, we’ll grade

your type checker on DJ programs that haven’t been distributed to the class.

Grading

Your grade on this assignment is determined by the level to which you implement the

desired functionality:

 Level I: typecheckProgram correctly type checks all DJ programs that (1) declare

no classes and (2) declare no local variables (hence you never even need to use the

symbol tables). Please note that at this level you can only assume that DJ programs

input to your type checker declare no classes and no variables; input programs may

still contain expressions with identifiers, the new keyword, the null keyword, etc.

Expect to write about 250 lines of code for this level.

 Level II: typecheckProgram correctly type checks all DJ programs that declare no

classes. For this level, expect to write about 50 lines of code beyond that of Level I.

 Level III: typecheckProgram correctly type checks all DJ programs (with the

typeExpr function properly setting the staticClassNum and staticMemberNum

AST-node attributes, which should be used in Assignment VI).

Undergraduate students will earn: 85% credit for reaching Level I, 100% credit for

reaching Level II, and 110% credit for reaching Level III.

Graduate students will earn: 60% credit for reaching Level I, 75% credit for reaching

Level II, and 100% credit for reaching Level III.

All students will earn +10% extra credit for correctly implementing the

setupSymbolTables method in a file called symtbl.c.

Compilation of the Type Checker

To compile your type checker from scratch, use the following sequence of commands.
> flex dj.l

> bison –v dj.y

> gcc dj.tab.c ast.c symtbl.c typecheck.c –o dj-tc

Alternatively, you can download a working version of the lexer and parser as object-code

file dj.tab.o at http://www.cse.usf.edu/~ligatti/compilers-16/as5. Also at that URL you’ll

find object-code files ast.o (the AST module) and symtbl.o (which can be used if you

decide not to implement symtbl.c). These object-code files are executable on the C4

Linux machines.

If you’ve downloaded dj.tab.o, ast.o, and symtbl.o (in addition to the header files ast.h,

symtbl.h, and typecheck.h), compile your type checker with:
> gcc dj.tab.o ast.o symtbl.o typecheck.c –o dj-tc

http://www.cse.usf.edu/~ligatti/compilers-16/as1/dj/examples
http://www.cse.usf.edu/~ligatti/compilers-16/as5

4

Please remember that it’s recommended for you to try to build a full Level-III dj2dism

compiler from scratch (i.e., without using any of the provided object-code files), and

you’ll receive +15% extra credit on the final assignment for doing so.

Example Executions

As with Assignments III and IV, your type checker should first report lexical and

syntactic errors before exiting. Assuming there are no lexical or syntactic errors, your

compiler performs type checking. If the input DJ program is well typed, your type

checker should output nothing.
> ./dj-tc good1.dj

Otherwise, your type checker must report at least one error before exiting. Errors must

be reported with (1) reasonably accurate and helpful error messages and (2) the line

numbers on which the errors occur. For example:
> ./dj-tc bad3.dj

Semantic analysis error on line 7:

 Variable declared multiple times (here and in a superclass)

> ./dj-tc bad9.dj

Semantic analysis error on line 3:

 Invalid declared return type

> ./dj-tc bad14.dj

Semantic analysis error on line 9:

 non-nat type in printNat

> ./dj-tc bad44.dj

Semantic analysis error on line 6:

 reference to 'this' outside of a class

Submission Notes

 Type the following pledge as an initial comment in your typecheck.c and (optional)

symtbl.c files: “I pledge my Honor that I have not cheated, and will not cheat, on this

assignment.” Type your name after the pledge. Not including this pledge will lower

your grade 50%.

 Upload and submit your typecheck.c and (optional) symtbl.c files on Canvas. Please

upload and submit each file by itself; do not zip them into one.

 When submitting your code in Canvas, include with your submission a comment

indicating at which level we should grade your assignment: I, II, or III. If you don’t

indicate a level, we’ll grade your submission as a Level-III submission.

 You may submit your assignment in Canvas as many times as you like; we’ll grade

your latest submission.

 For every day that your assignment is late (up to 3 days), your grade reduces 10%.

 To make it easier for our teaching assistant to read and evaluate your code, use spaces

rather than tabs in your code and avoid long lines of code (I try to limit lines to 80

characters in width).

 Your programs will be graded on both correctness and style, so include good

comments, well-chosen variable names, etc. in your programs.

