Compilers [Fall 2013]
Programming Assignment I
Objectives
   1.  To understand the definitions of DJ and DISM, which will serve as source and target languages for a compiler built in future assignments.
   2.  To implement small DJ and DISM programs.

   3.  To become familiar with and able to use a DISM simulator.

Due Date:  Sunday, September 8, 2013 (at 11:59pm).
Machine Details
Complete this assignment by yourself on the following CSEE network computers: c4lab01, c4lab02, ..., c4lab20.  These machines are physically located in the Center 4 lab (ENB 220).  Do not use any server machines like grad, babbage, sunblast, etc.  You can connect to the C4 machines from home using SSH.  (Example: Host name: c4lab01.csee.usf.edu  Login ID and Password: <your NetID username and password>)  You are responsible for ensuring that your programs compile and execute properly on these machines.
Assignment Description
For this assignment, you will acquaint yourself with the DJ and DISM languages by implementing one small program in each language.  You will write a DJ program in a file called binProduct.dj and a DISM program in a file called binProduct.dism.
The desired functionality is for your programs to input pairs of natural numbers as they’re entered by the user, until the user enters a zero as the first in a pair of numbers.  The first number in each pair indicates a bin for the second number.  For example, the pair of numbers 3 4 means that bin 3 contains the number 4.  After the user enters a bin number of 0, your programs then allow the user to enter natural numbers until another 0 is entered; for every natural number i entered, your programs must output the product of all the numbers in bin i (or 0 if there are no numbers in that bin).  Throughout all these operations, your programs must be reasonably efficient—there should never be long, noticeable pauses during execution.
Examples of Desired Behavior:
Enter a natural number: 1

Enter a natural number: 2

Enter a natural number: 1

Enter a natural number: 3

Enter a natural number: 1

Enter a natural number: 4

Enter a natural number: 0

Enter a natural number: 1

24

Enter a natural number: 0
(Here bin 1 contains 2, 3, and 4, so the product for bin 1 is 24)
Enter a natural number: 0

Enter a natural number: 2

0

Enter a natural number: 3

0

Enter a natural number: 1

0

Enter a natural number: 0

(Here no bins contain numbers, so 0 is returned for all of their products)
Enter a natural number: 0

Enter a natural number: 0

(Here no numbers are stored and no products are sought)

Enter a natural number: 70000

Enter a natural number: 9

Enter a natural number: 70000

Enter a natural number: 7

Enter a natural number: 100000

Enter a natural number: 1

Enter a natural number: 100000

Enter a natural number: 1

Enter a natural number: 200000

Enter a natural number: 5

Enter a natural number: 200000

Enter a natural number: 0

Enter a natural number: 200000

Enter a natural number: 7

Enter a natural number: 0

Enter a natural number: 70000

63

Enter a natural number: 100000

1

Enter a natural number: 200000

0

Enter a natural number: 1

0

Enter a natural number: 0
(Notice here that bin 200000 contains a 0, so 0 is returned for its product)
Hints
Whenever a DJ or DISM program attempts to read a natural number, the prompts of “Enter a natural number: ” get printed automatically.  Hence, you don’t need to worry about outputting those prompts.  DJ and DISM programs can only input and output natural numbers (using the readNat and printNat calls in DJ, and the rdn and ptn instructions in DISM).
You may assume that the user never stores more 1,000 numbers total into bins.

My binProduct.dj is 25 lines of code (not counting whitespace/comments), and my binProduct.dism is 28 lines of code.
Testing Your DISM Program

Please use the DISM simulator, sim-dism, to test your DISM program.  When your DISM program halts, it may halt with any code.
Testing Your DJ Program
Because you are writing a program in a new language for which no compiler yet exists, you can’t test your program by executing it!  This situation is unpleasant but realistic.  You’ll have to ensure by hand that your DJ program is valid and would behave correctly if executed.  
Although you can’t directly test your DJ program, you can test it indirectly by modifying it (by hand) into an equivalent, valid Java program.  You can then compile and execute that Java program.  If you want to test your binProduct.dj in this way, you may find Java’s Scanner class helpful for mimicking the behavior of DJ’s readNat expression. Documentation is at: http://docs.oracle.com/javase/6/docs/api/java/util/Scanner.html
Extra Credit

To help populate our test suite of DJ programs, you may, for up to +10% extra credit, write and submit a second DJ program of at least 300 lines of well-formatted code (not counting whitespace or comments).  Your program needs to implement something new, i.e., some functionality you’ve designed by yourself.  Note that we may post your extra-credit program online, including with your name.
Formatting and Submission Notes
· Type the following pledge as an initial comment in every file you submit for this course: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.”  Type your name after the pledge.  Not including this pledge in a submitted file will lower your assignment grade 50%.

· Upload and submit your files for Assignment 1 in Blackboard.  Please upload and submit each file by itself; do not zip them into one.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.
· For every day that your assignment is late (up to 3 days), your grade reduces 10%.

· To make it easier for our teaching assistant to read and evaluate your code, please use spaces rather than tabs in your code and avoid long lines of code (I try to limit lines to 80 characters in width).
· Your programs will be graded on both correctness and style, so include good comments, well-chosen variable names, etc. in your programs.


































































1

