
Compilers [Fall 2011]

Test III
NAME: __
Instructions:

1) This test is 10 pages in length.
2) You have 2 hours to complete and turn in this test.
3) Respond to essay questions with complete and grammatically correct English sentences in well-structured paragraphs.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated, and will not cheat, on this test.”

Signed: __

1. [6 points]

List all the sorts of values that target code from dj2dism includes in a stack frame. That is, in our pictures of stack frames, what are all the kinds of data we included, or allowed to be included, in each frame? (Complete sentences aren’t required for this problem; a simple list will suffice.)
2. [10 points]
Describe, in the level of detail discussed in class, how mark-and-compact collectors work. Structure your response as a short essay.
3. [14 points]
a) Draw a minimum-state DFA recognizing exactly those strings over {0,1} that do not contain 010 as a substring. That is, your DFA should accept exactly those strings over {0,1} that never contain 010 as consecutive symbols.

b) Write a regular expression that exactly matches the strings described in Part (a). Keep your response as simple as possible (i.e., with the fewest number of regular-expression operators).
4. [8 points]

Draw an AST for the following DJ expression:

n+n=n+n=if((6+5)*4>while(readNat()){0;}){3;}else{2;}
5. [5 points]

Describe the basic process for implementing a bootstrapped compiler. [2-4 sentences]

6. [25 points] [Essay]
Suppose we wish to add repeat-until expressions to DJ. An example repeat-until expression is: repeat {x=x+1; y=y+2;} until (y>x). Such expressions are similar to do-while loops in languages like C and Java.

Describe in detail the modifications/additions you’d make to dj2dism, to allow source programs to use repeat-until expressions. The next page is blank, in case you’d like to continue your essay there.
7. [14 points] a) Perform a liveness analysis of the following DISM program.
mov 4 2
mov 2 6
#1:
beq 4 2 #4

mov 5 3
#2:
add 4 5 1

mov 3 3

mov 1 3
#3:
jmp 0 #5
#4:
beq 3 4 #1

jmp 0 #2
#5:
hlt 4
b) Can any registers in the above program be coalesced? If so, which ones?

8. [18 points]

G is:
0 S -> N$

2
A -> ε

4
B -> ε
1 N -> AB

3
A -> Ax

5
B -> Bxy
a) Draw an LALR(1) parse table (and DFA) for G.

G is:
0 S -> N$

2
A -> ε

4
B -> ε
1 N -> AB

3
A -> Ax

5
B -> Bxy
b) Complete the following LALR(1) parse trace according to G. If you arrive at a point in the parse trace in which conflicting actions must be performed or a parse error is detected, indicate the problem and stop the parse trace at that point.

Stack

Input

Action

 $

c) Is G ambiguous? If so, prove it.

Undergraduates stop here. The remaining problem is for graduate students.

G is:
0 S -> N$

2
A -> ε

4
B -> ε
1 N -> AB

3
A -> Ax

5
B -> Bxy
d) [12 points]

Complete the following GLR parse trace according to G.

DAG

Input

Action

 xxy$

PAGE
5

