Compiler (Design) [Fall 2009]
Test III
NAME: __
Instructions:

1) This test is 10 pages in length.
2) You have 2 hours to complete and turn in this test.
3) Short answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated, and will not cheat, on this test.”

Signed: __

1. [20 points]
a) Write a lex rule (i.e., regular expression) for tokenizing binary floating-point literals without + or E symbols, which are defined as follows:

· A float may optionally begin with a – sign.

· A float may optionally end with an exponent portion. Exponent portions of floats must begin with the character e, then may contain a – sign, and then must contain a nonempty sequence of bits (i.e., binary digits).

· A float may contain any natural number of bits but must contain at least one bit.

· A float must contain at least one bit before the exponent portion, if one is present.

· A float may optionally contain a decimal point. Any natural number of bits may appear before a decimal point, but at least one bit must appear after a decimal point. If the float contains both a decimal point and an exponent portion, then at least one bit must appear between the decimal point and the exponent portion.

Keep your response simple enough that it cannot be simplified in any significant ways.
b) On this page or the next, draw a minimum-state DFA that recognizes exactly the binary floating-point literals described in Part (a). Do not bother drawing any edges to a dead state, or a dead state itself, in your minimum-state DFA.
2. [30 points]
Let us consider adding “case” (also known as “switch”) expressions to DJ. The format will be: case(e) of {n1: es1 | n2: es2 | … | ni: esi | default: esd}
· At compile time, all of the natural numbers n1,n2,…,ni must be distinct. Because i is a natural number, there may be no cases besides the default case.

· At runtime, expression e gets evaluated to a natural number n. If n=n1 then expression list es1 gets executed and its result becomes the result of the entire case expression; if n=n2 then expression list es2 gets executed and its result becomes the result of the entire case expression; etc.; and if n equals none of n1, n2, ..., ni, then expression list esd gets executed and its result becomes the result of the entire case expression. Note that case expressions here do not “fall through” from one case to another, as occurs in C and Java switch statements.
a) What is an algorithm for type checking one of these case expressions? Respond in pseudocode while assuming that (1) your code will be inserted into the typeExpr function of typecheck.c in dj2dism and (2) the rest of typecheck.c is fully and correctly implemented. Hint: think of a case expression as nested if-then-else expressions.
b) What is an algorithm for correctly generating DISM-style machine code equivalent to one of these case expressions? Respond in pseudocode while making all the DISM-memory-layout assumptions we made in class and ensuring all the DISM-memory invariants we ensured in class. Do not worry about the amount of code memory used by your algorithm’s output. Hint: case expressions should be compiled into code that uses jmp instructions wisely to execute more efficiently (generally speaking) than equivalent nested if-then-else expressions. Recall that jmp s i in DISM means PC <- R[s] + i.

The next page is blank in case you need more space.
3. [15 points]
Implement (in pseudocode) a recursive-descent parser for the following grammar.
0 S-> A$

1 A -> xBAy

2 A ->

3 B ->

4 B -> z
Assume the following three functions are already defined:

 void error() //Generates a parse-error message and exits.

 Token peek() //Returns next token in input buffer.

 void consume(Token t)//Consumes next input token. If the next token is not t,

 // this function generates an error message and exits.
Do not bother to create ASTs in your parser.
4. [8 points]

Write two pseudo-assembly-code programs such that the second is an optimized (but otherwise equivalent) version of the first. Make sure the second program optimizes the first in at least four different (but standard) ways. Provide the names of the four types of optimizations that could be utilized to convert the first version to the second.
5. [5 points]

List the primary disadvantages of reference-counting garbage collectors.
6. [22 points]
Essay question: In the class assignments, we implemented a compiler called dj2dism. Let us now consider implementing a dism2dj compiler. For every one of the standard phases of compilation, contrast that phase’s implementation in dj2dism with its implementation in dism2dj. Highlight all the major differences between the two compilers’ implementations. If you need more space, continue on the back of this page.
Undergraduates stop here. The remaining question is for graduate students only.
7. [15 points]

Why is it undecidable to determine whether non-garbage heap data can be collected? Provide a basic, high-level proof.

PAGE
4

