Compilers [Fall 2009] 

Test I
NAME:  ______________________________________________________
Instructions:  

1) This test is 8 pages in length.
2) You have 75 minutes to complete and turn in this test.
3) Short answer questions include a guideline for how many sentences to write.  Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work.  If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated, and will not cheat, on this test.” 

_______________________________________________________________________

_______________________________________________________________________




Signed: ______________________________________________

1.  [5 points]  
What are the primary advantages of using a lexer generator, versus implementing a lexer from scratch?  [1-2 sentences]

2.  [6 points] 
Contrast concrete syntax trees with abstract syntax trees.  [1-2 sentences]
3.  [6 points] 

Dr. X has written 67 total front and back ends to compilers.  What is the maximum number of compilers Dr. X could have implemented? 

4.  [5 points] 

Java (unlike DJ) has separate types for booleans and ints, so expressions like true==1 are not allowed.  Also, Java allows the expression 1==0==false==true but does not allow the expression true==false==0==1.  Is the == operator in Java left-associative, right-associative, or non-associative?

5.  [18 points]

Consider the following NFA N over alphabet {x}.
[image: image1.png]



a) Draw a DFA that is equivalent to N.

b) Write a regular expression that matches exactly the same set of strings that N accepts.  Keep your response simple enough that it cannot be simplified in any significant ways.
6.  [60 points] 
Consider the following CFG G:
0
S -> L$

1
L -> TLT

2
L -> ε
3
T -> x
a) Write a regular expression that matches exactly those strings that are derivable from S, or briefly explain why no such regular expression exists.
b) Is G ambiguous?  If so, prove it.

G is:
0
S -> L$

1
L -> TLT

2
L -> ε
3
T -> x
c) Draw an LL(1) parse table for G.  It will have at least one conflict.

d) Rewrite G into an equivalent grammar G’ that is in LL(1).  Draw the LL(1) parse table for G’.

G is:
0
S -> L$

1
L -> TLT

2
L -> ε
3
T -> x
e) Draw an LR(1) parse table for G.  It will have at least one conflict.

G is:
0
S -> L$

1
L -> TLT

2
L -> ε
3
T -> x
f) Rewrite G into an equivalent grammar G’’ that is in LR(0).  Draw the LR(0) parse table for G’’.
g) Draw the SLR parse table for your grammar G’’ from Part (f) above.

Undergraduates stop here.  The remaining question is for graduate students. 
7.  [18 points]

a) Construct a DFA that accepts exactly those strings over {0,1} that, when interpreted as a binary (base-2) number, are divisible by 3.  Hint: DFA states can keep track of whether the current input is divisible by 3, and if not, the remainder when dividing by 3.
b) Write a regular expression matching exactly binary numbers divisible by 3, or briefly explain why no such regular expression exists.  If such a regular expression does exist, keep your response simple enough that it cannot be simplified in any significant ways.

















































































PAGE  
8

