Compiler Design (Techniques) [Fall 2007]

Test III
NAME: __
Instructions:

1) This test is 12 pages in length.
2) You have 2 hours to complete and turn in this test.
3) Short answer questions include a guideline for how many sentences to write. Respond in complete English sentences.
4) This test is closed books, notes, papers, friends, neighbors, etc.

5) Use the backs of pages in this test packet for scratch work. If you write more than a final answer in the area next to a question, circle your final answer.
6) Write and sign the following: “I pledge my Honor that I have not cheated on this test.”

Signed: __

1. [5 points]

Compare and contrast compilers with interpreters. [1-3 sentences]

2. [6 points]

Describe one serious security vulnerability that strong type checking prevents, and explain how strong type checking prevents that vulnerability. [2-4 sentences]
3. [5 points]

Draw an LL(1) parse table for the following grammar.

0
S -> A$

1
A -> (A)A
2 A ->
4. [16 points]
For the following questions, make all the DISM-memory-layout assumptions we made in class, ensure all the DISM-memory invariants we ensured in class, and respond in pseudocode.
a) What is an algorithm for correctly generating DISM-style machine code equivalent to the DJ while-loop expression while(e) {e-list} ?

b) DJ lacks short-circuit-disjunction expressions of the form e1 || e2. If DJ were extended with short-circuit-disjunction expressions, what would be an algorithm for correctly generating DISM-style code equivalent to e1 || e2 ?

5. [4 points]

To what value does the DJ expression "new C" evaluate at runtime? [1-2 sentences]
6. [3 points]
When is a register live? [1 sentence]
7. [6 points]
a) What is loop-code hoisting? [1-2 sentences]
b) Provide an example of a correct loop-code hoist.

8. [5 points]

The definition of DJ specifies the following as valid variable names.

“Variable names... are case sensitive and must begin with a letter. Also, variable names must contain only digits (0-9) and ASCII upper- and lower-case English letters.”

Write a regular expression that exactly matches valid DJ variable names.

(You may use normal, lex-style notation.)

9. [6 points]

a) What do the L, R, and 1 mean in LR(1)? [3 sentences]
b) There are several synonyms for LR parsing. What are two of them? [1 sentence]

10. [6 points]

a) What do the Ls and the 1 mean in LL(1)? [3 sentences]
b) There are several synonyms for LL parsing. What are three of them? [1 sentence]
11. [9 points]
The following grammar is a well-known example of ambiguity. It exhibits what is called the dangling-else ambiguity.

E -> if E then E else E | if E then E | 0

Prove that this grammar is ambiguous.

12. [18 points]

Consider the following context-free grammar G.

0
S -> A$

1
A -> aBd

2 A -> bCd

3 A -> aCe
4 A -> bBe
5
B -> f
6
C -> f
a) Draw an LR(1) DFA for G. Be sure to number your DFA states.
G is:

0
S -> A$

1
A -> aBd

2 A -> bCd

3 A -> aCe

4 A -> bBe

5
B -> f

6
C -> f

You should be able to answer the following questions without spending time drawing any parse tables; simply use your LR(1) DFA from part (a) for reference.

b) Is G in LR(1)? If G is not in LR(1), explain why (and be specific).
c) Which, if any, of your LR(1) DFA states (from part (a)) would you merge to build an LALR(1) parser for G?
d) Is G in LALR(1)? If G is not in LALR(1), explain why (and be specific).
13. [11 points]

a) Draw an NFA having at least one epsilon transition that recognizes exactly the set of binary numbers matching the regular expression: (1* | ε) | ((100)*11*)
b) Draw a DFA equivalent to your NFA from part (a).
Undergraduates stop here. The remaining question is for graduate students only.
14. [20 points] Draw a dj2dism-style vtable for the following valid DJ program.
class C1 extends C2 {

 nat f(nat n) {6;}

}

class C2 extends C3 {

 nat g(nat n) {5;}

 nat f(nat n) {4;}

}

class C3 extends Object {

 nat h(nat n) {3;}

 nat f(nat n) {2;}

 nat g(nat n) {1;}

}
main {0;}

PAGE
10

