Complete the following problems and turn in a hardcopy of your solutions by the beginning of class on January 21st (5:00 pm).

1. **4 points.** Consider an extension of diML that provides support for references, arrays, and while loops (each defined as we did in class). Call this language diml-RAW. We wish to extend diml-RAW so that it supports **for** and **foreach** loops. The **for** loops should have the form \(\text{for } (e_1; e_2; e_3) \{ e_4 \} \), and should behave as **for** loops in C, except they should evaluate to \text{false} when the loop terminates (like **while** loops in diml-RAW). The **foreach** loops should have the form \(\text{foreach } (x \in e_1) \{ e_2 \} \) and operate as shown below (note that **foreach** loops should also evaluate to false when the loop terminates). Provide the static and dynamic semantics of both **for** and **foreach** loops, keeping consistent with the existing language semantics of diml-RAW.

 The following function should, when given an integer array, add 1 to every element in the array.

 \[
 \text{fun } f \text{ (xs : int array) : bool = foreach (x in xs) \{ x := !x + 1; \}}
 \]

2. **6 points.** Let’s assume that you have already defined a single-step judgement (i.e., \(e \rightarrow e’ \)) for some language \(L \). Now, define the multi-step judgement \(e \rightarrow^* e’ \). Next, prove the following theorem, which states that the alpha-equivalence relationship is preserved by the multi-step relation.

 \(\alpha \)-**safety:** \((e_1 = \alpha e_2) \land (e_1 \rightarrow^* e’_1) \Rightarrow \exists \ e’_2 : (e_2 \rightarrow^* e’_2 \land e’_1 = \alpha e’_2) \)

 In your proof of the alpha-safety theorem, you may assume that the following two lemmas hold:

 \(\alpha \)-**progress:** \((e_1 = \alpha e_2) \land (e_1 \rightarrow e’_1) \Rightarrow \exists \ e’_2 : e_2 \rightarrow e’_2 \)

 \(\alpha \)-**preservation:** \((e_1 = \alpha e_2) \land (e_1 \rightarrow e’_1) \land (e_2 \rightarrow e’_2) \Rightarrow e’_1 = \alpha e’_2 \)

3. **1.5 points extra credit.** Prove that the \(\alpha \)-progress and \(\alpha \)-preservation lemmas hold for the call-by-name untyped lambda calculus.