Advanced Programming Languages (COP 4930/CIS 6930) [Spring 2011]
Assignment II
Due Date: Tuesday 2/15/11 at 2pm (please turn in solutions in hardcopy at the beginning of class).
Assignment Description
Do the following by yourself.
1. [3 points for graduate students; 5 points for undergraduates]

Let L be the version of diML discussed in class right up to subtyping. That is, L is diML fully extended with all the features we defined prior to subtyping, including let-expressions of the form let x=e in e’ end.
(a) Implement in L a function Z:int array->int that takes an array of ints and returns the last element in the array.

(b) Implement in L a function P that takes an array A of pointers to arrays of int->int functions. Suppose all the functions in all the subarrays of A are called f1 to fn. Then P needs to return a pointer to an array of (distinct) pointers to all the positive integers that result from calling f1(0), f2(0), …, fn(0).

For example, suppose A contains pointers to two subarrays A’ and A’’, where A’ contains just the function fun f1(x:int):int=x+1 and A’’ contains the functions fun f2(x:int):int=x and fun f3(x:int):int=x+1. Then P(A) returns a pointer to a 2-element array we’ll call X. The first element of X (i.e., X[0]) must be a pointer to the integer 1 (because f1(0)=1), and the second element of X (i.e., X[1]) must be a (different) pointer to the integer 1 (because f3(0) is also 1). Note that we’ve omitted from X a pointer to the result of f2(0) because f2(0) is not a positive integer.
(Hint: You might try implementing these functions in ML first, and then translating your solutions to diML. The Elements of ML textbook describes arrays in Chapter 7.)
As usual, please provide helpful comments in your diML code.
2. [3 points for graduate students; 5 points for undergraduates]

Prove the following statement or present a counterexample: For all diML types (, there exist expressions e and e’ such that e:(, e’:(, e is normalizing, and e’ diverges.
3. [4 to 5.5 points for graduate students; +1.5 to 3 points extra credit for undergraduates]

Consider the following syntax for a type-safe language M with pattern matching.
types

(::= int | {l1:(1, …, ln:(n} | <l1:(1, …, ln:(n>
values

v ::= n | {l1=v1, …, ln=vn} | (inl v):(
patterns
p ::= x | _ | n | {l1=p1, …, ln=pn} | inl p
case branches
b ::= _=>e | p=>e else b
expressions
e ::= x | n | e1+e2 | {l1=e1, …, ln=en} | (inl e):(| case e of b
M has types for integers, records, and variants. As usual, the order of labels in records and variants doesn’t matter. Also, the underscore (_) is a wildcard pattern, which matches any value.
Define the static and dynamic semantics of M (such that all of M’s constructs are statically typed, and dynamically behave, in the ways we’d expect based on our discussions in class). The dynamic semantics may, but does not have to, be defined with evaluation contexts. After defining M’s semantics, for an additional +1.5 points (extra credit), prove that M is type safe (assuming the standard lemmas hold).

4. [Problem for Assignment III]

Submit a problem for our next assignment. The problem should be on a new topic (i.e., something covered in class between February 1 and February 10). This time, please also provide a high-level solution (i.e., an outline of a solution) to your problem.
Submission Notes

· Write and sign the following pledge on your solution: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.”
· You may submit solutions up to 2 days late with a 15% penalty.

1

