System-on-Chip Design
Introduction

Hao Zheng
Computer Science & Engineering
U of South Florida

Standard Methodology for IC Design

e System-level designers write a C or C++ model
— Written in a stylized, hardware-like form
— Sometimes refined to be more hardware-like

e C/C++ model simulated to verify functionality
* Model given to Verilog/VHDL coders

* Verilog or VHDL specification written

 Models simulated together to test equivalence

* Verilog/VHDL model synthesized

Designing Large Digital Systems

e Systems become more complex, pushing us to to
design and verify at higher level of abstraction

— Enable early exploration of system level tradeoffs
— Enable early verification of entire system

— Enable verification at higher speed
* SWis playing an increasing role in system design
* Problems:

— System designers don’ t know Verilog or VHDL

— Verilog or VHDL coders don’ t understand system
design

What Is SystemC?

* A subset of C++ capable of system-level or HW
modeling

— Easy integration of SW/HW in a single model

e A collection of libraries that can be used to
simulate SystemC programs

— Libraries are freely distributed

* Commercial compilers that translates the
“synthesis subset” of SystemC into a netlist

* Language definition is publicly available

SystemC Language Architecture

Upper layers are
built on lower
layers

Lower layers can
be used without
upper layers

Standard Channels

for Various MOC's
Kahn Process Networks

Static Dataflow, etc.

Methodology-Specific

Channels
Master/Slave Library, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Core Language
Modules

Ports

Processes
Interfaces
Channels

Events

Data Types

Logic Type (01XZ)

Logic Vectors

Bits and Bit Veectors
Arbitrary Precision Integers
Fixed Point Integers Integers

C++ Language Standard

Benefits

e SystemC provides a single language
— To describe HW & SW at various abstraction levels
— To facilitate seamless HW & SW co-simulation

— To facilitate step-by-step refinement of a system
design from high-level down to RTL for synthesis.

* A SystemC model is an executable specification.

— Offers fast simulation speed for design space
exploration

SystemC Environment

your standard
C/IC++ development

environment
™
n. L

header files (compiler)
source files for system

mﬂ "h"’”“ (linker)
and test benches

DSP

Interface

ASIC

class library (debugger)

and
simulation kernel

Wi m E kEI-

ple tﬁ

o E,E.'-"-ta et .
::E,;-.,{'-.ca't'-':'“ a.out

BiEoil 0]

SystemC Model — Overview

System

Process h
channels
or lt Channel(s)
events

"llllllll
llllllll*

... —

EEEEEER l'-
lt:ha::ala

Process

Process

Module ' Module

SystemC Model Overview

A SystemC model consists of module definitions plus a top-
level function that starts the simulation

Modules contain processes (C++ methods) and instances of
other modules

Ports on modules define their interface
— Rich set of port data types (hardware modeling, etc.)

Channels & interfaces provide high-level communication
models.
Signals in modules convey information between instances

* Clocks are special signals that run periodically and can trigger
clocked processes

Rich set of numeric types (fixed and arbitrary precision
numbers)

Model of Time

e Time units: sCc_time_unit

SC_FS femtosecond
SC_PS picosecond
SC_NS nanosecond
SC_US microsecond
SC_MS millisecond
SC_SEC second

* Construction of time objects

sc_time t1(42, SC_PS)

Modules

* Hierarchical entity
* Similar to entity of VHDL

e Actually a C++ class definition

e Simulation involves
— Creating objects of this class
— Connecting ports of module objects together

— Processes in these objects (methods) are called by the
scheduler to perform the simulation

Modules

SC MODULE(mymod) {

port definitions */

* signal definitions */
* clock definitions */

* storage and state variables */

RN

* process definitions */

SC_CTOR(mymod) {
/* Instances of processes and
other modules */

}
};

Ports

* Define the inputs/outputs of each module

* Channels through which data is communicated
* Port consists of a direction

— input SC_in

— output sc_out

— bidirectional sc_inout

* And any C++ or SystemC type
* More general port types: sc_port</*interface*/>

Interfaces

* Connect ports to channels. sc_interface
* Each defines a set of I
operations through which a

sc_signal_in_if<T>
read()
* Implemented by channels. A

port can operate a channel.

* A port accesses a channel
through the supported sc_signal_inout_if<T>
interfaces. write()

Ports

SC_MODULE (mymod) {
sc_in<bool> load, read;
sc_inout<int> data;
sc_out<bool> full;

/* rest of the module */
}s

Ports

/* port sc_1n declaratioin */
template<class T>

class sc_1in : public
sc_port<sc_signal_in_1f<T> >

/* port sc_inout declaration */
template<class T>

class sc_inout : public
sc_port<sc_signal_inout_1f<T> >

Signals

* Convey information between processes within a
module

 Directionless

— module ports define direction of data transfer
 Type may be any C++ or built-in type
* A special type of channel.

Signals

SC_MODULE (mymod) {
/* signal definitions */
sc_signal<sc_uint<32> > sl, s2;
sc_signal<bool> reset;

/7': 7':/
SC_CTOR(mymod) {

/* Instances of modules that
connect to the signals */

}
}s

Channels

e Models communications

* |[n SystemC, a channel is a module with local
storage and a set of allowed operations grouped
in interfaces.

* Modules are connected by connecting channels to
their ports.

* Primitive channels: mutexs, FIFOs, signals

* Hierarchical channels can model more
sophisticated communication structures, ie buses.

Instances of Modules

/* Each instance 1s a pointer to an object i1n the
module */

Connect instance’ s
SC_MODULE(mOdl) { }; ports to Signals

SC_MODULE(mod2) { .. };
SC_MODULE (foo) {
modl* ml;
mod2* m2;
sc_signal<int> a, b, c;
SC_CTOR(foo) {
ml = new modl(“il1”); (ml)(a, b, c);
m2 = new mod2(“i2”); (*m2)(c, b);
}
}s

Port Binding

Positional Port Binding

a_module.(pl, p2, ...);
px 1S an i1nstance of a port or
a channel.

Named Port Binding
a_port.(port or channel instance);
a_port.bind(port or channel instance);

Named Port Binding — Example

SC_MODULE(Top) {

SC_MODULE(M) { sc_inout <int> A, B;
sc_inout<int> P, Q, R, S; sc_signal<int> C, D;
sc_inout<int> *T: M m;

SC_CTOR(M) { SC_CTOR(Top) : m(*m") {
T = new sc_input<int>: m.P(A);
m.Q.bind(B);
) m.R(C)
}: m.S.bind(D);
m.T->bind(E);
;

Processes

 Define functionalities of modules.
 Simulate concurrent behavior.

* Procedural code with the ability to suspend and
resume

e Similar to VHDL processes

Three Types of Processes

* METHOD

— Models combinational logic

* THREAD

— Models event-triggered sequential processes

« CTHREAD /* going away */
— Models synchronous FSMs
— A special case of THREAD

METHOD Processes

* Triggered in response to changes on inputs
e Cannot store control state between invocations
* Designed to model blocks of combinational logic

e Sequential logic can be modeled with additional
state variables declared in the modules where the
processes are created.

METHOD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;

sc_out<bool> out;
Process is simply a

C : method of this class
void inverter() { out = ~in;]L/

SC_CTOR(onemethod) {

Instance of this
process created

SC_METHOD(inverter);

sensitive(in); < and made sensitive
}} to an input
4

METHOD Processes

* Invoked once every time input “in” changes
 Should not save state between invocations

* Runs to completion: should not contain infinite loops
— Not preempted

void onemethod::inverter() {
bool internal;
internal =in; Read a value from the port

out = ~internal; — Write a value to an
} output port

THREAD Processes

* Triggered in response to changes on inputs

e Can suspend itself and be reactivated
— Method calls wait() to relinquish control
— Scheduler runs it again later

* Designed to model just about anything.
— More general than METHOD processes.

THREAD Processes

SC_MODULE(onemethod) {
sc_in<bool> in; Process is simply a

sc out<bool> ou/ method of this class
void toggler();

SC_CTOR(onemethod) {

, Instance of this
SC_T.I-!READ(.toggIer), — — process created
sensitive << In;
) T alternate sensitivity
list notation

5

THREAD Processes

 Reawakened whenever an input changes

e State saved between invocations

* Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false: Relinquish control
! until the next

for (;;) { chan .
P , ge of a signal
last = in; out = last; wait(); / on the sensitivity
last = ~in; out = last; wait(); list for this process

}
}

CTHREAD Processes

* Triggered in response to a single clock edge

e Can suspend itself and be reactivated
— Method calls wait to relinquish control
— Scheduler runs it again later

* Designed to model clocked digital hardware

CTHREAD Processes

SC_MODULE (onemethod) {
sc_in_clk clock;
sc_in<bool> trigger, 1n;
sc_out<bool> out;
Instance of this

- . process created and
void togg-l er ()) relevant clock edge

assigned

SC_CTOR(onemethod)

} SC_CTHREAD(toggler, clock.pos());

};

CTHREAD Processes

 Reawakened at the edge of the clock
e State saved between invocations
* |nfinite loops should contain a wait()

Relinquish control
until the next clock

void onemethod: :toggler() { edge in which the
bool last = false; trigger input is 1
for (5;5) {

wait_until(trigger.delayed() == true);
last = 1n; out = last; wait();
last = ~1n; out = last; wait();
} ~—
¥ Relinquish control until

the next clock edge

A CTHREAD for Complex Multiply

struct complex_mult : sc_module {
sc_in<int> a, b, c, d;
sc_out<int> X, Yy;
sc_in_clk clock;

void do_mult() {

for (5;5) {
X =a*c-Db * d;
wait(Q);
y=a*d+b * c;
wait(Q);

3}

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());
I3 ¥

Events

e Events, sensitivity and notification are essential for
simulating concurrency in SystemcC.

 An event is an object of class SC_event.

sc_event e;
 An event is generated by its owner.

e.notify(Q;
e.not1fy(SC_ZERO_TIME) ;
e.not1ty (100, SC_NS);

Event Notification and Process Triggering

Process or Channel
(Owner of event)

notification

Y

Event

trigger triggerl trigger

Process 1 Process 1 Process 1

Event Notification and Process Triggering

sc_signal<bool> s;
s.initialize(false);
sc_event e;

processl { process?2 {
s.write(true); wait(e);
e.notify(sc_ZERO_TIME); bool v = s.read();
} }

vV getsthe newvalueofs, ‘true’.

Event Notification and Process Triggering

sc_signal<bool> s;
s.initialize(false);
sc_event e;

processl { process2 {
s.write(true); wait(e);
e.notifyQ; bool v = s.read();
} }

v getstheoldvalueofs, ‘false’.

Sensitivity
e After an event is generated, all processes sensitive
on it are triggered.
* Static sensitivity
sensitivity << a << b;
* Dynamic sensitivity: use wait(e) in processes.
wait(el & e2 & e3);

wait(el | e2 | e3);
wait(200, SC_NS);

More on Interfaces

* Ports and Interfaces allow the separation of
computation from communication.

e All SystemC interfaces derived from
sc_interface

— Declared as abstract classes
* Consists of a set of operations
* Specifies only the signature of an operation

— name, parameter, return value
— Operations are defined in channels

Interfaces: Example

class write 1f : public sc interface
{
public:
virtual void write(char) = 0;
virtual void reset() = 0;

}i

class read 1f : public sc interface
{
public:
virtual void read(char &) = 0;
virtual int num available() = O0;

}:

More on Channels

e Models communications

* |[n SystemC, a channel is a module with local
storage and a set of allowed operations grouped
in interfaces.

* Modules are connected by connecting channels to
their ports.

* Primitive channels: mutexs, FIFOs, signals

* Hierarchical channels can model more
sophisticated communication structures, ie buses.

Channels: Example

class fifo : public sc_channel,
public write_1f,
public read_1f

{

private:

// Jjust a constant 1n class scope
const 1nt max = 10;

char data[max];
int num_elements, first;
sc_event write_event, read_event;

public:
// ** definition of interfaces

}s

Channels: Example

class fifo : public sc_channel,
public write_if,
public read_if

{

private:
// local data members.

public:
SC_CTOR(fifo)) {
num_elements = first = 0O;

}

// more on next slide

}s

Channels: Example

class fifo : public sc_channel,
public write_if,
public read_if

{

private:
// local data members.

public:
voild write(char c) {
1T (num_elements == max)
wait(read_event);
data[(first+num_elements)%max] = c;
++num_e lements;
write_event.notify(Q;

}rs

Channels: Example

class fifo :

{

private:

// 1o

public:
void

}rs

public sc_channel,
public write_1if,
public read_if

cal data members.

read(char& c) {

1f (num_elements == 0)
walt(write_event);

c = data[first];

--num_elements;

read_event.notify();

Channels: Example

class fifo : public sc_channel,
public write_if,
public read_if

{

private:
// local data members.

public:
voild reset() {
num_elements = 0;

}

int num_available() {
return num_elements;

}rs

A Complete Model

// the producer module
class producer : public sc module

{
public:

sc_port<write if> out; // producer output port

SC_CTOR (producer) // module constructor
{
SC THREAD(main); // start the process
}
void main() // the producer process
{
char c;

while (true) {

out->write(c); // write c into fifo

if (...)
out->reset(); // reset the fifo

}i

A Complete Model

// the consumer module
class consumer : public sc_module

{
public:

sc_port<read if> in; // consumer input port

SC_CTOR (consumer) // module constructor
{
SC THREAD(main); // start the process
}
void main() // the consumer process
{
char c;
while (true) {
in->read(c); // read c from the fifo
if (in->num available() > 5)
ceo} // perhaps speed up processing
}
}

A Complete Model

// the top module
class top : public sc module

{

public:

}i

fifo *fifo inst; // a fifo instance
producer *prod inst; // a producer instance
consumer *cons_inst; // a consumer instance

SC _CTOR(top) // the module constructor
{

fifo inst = new fifo (Fifol”);

prod inst = new producer("Producerl");

// bind the fifo to the producer's port

prod inst->out(fifo inst);

cons_inst = new consumer('Consumerl");
// bind the fifo to the consumer's port
cons_inst->in(fifo inst);

A Complete Model: Top Level

1nt sc_main(int argc, char *argvl[])

{
top(“model™);

// some environment definition

// ...
sc_start(1000, SC_SECQC);

Simulation Constructs

// Start and run simulation forever.
sc_start();

// start and run simulation for 1000 seconds
sc_start(1000, SC_SECQC);

// start and run simulation for 1000 seconds
// an alternative approach

sc_time sim_run(1000, SC_SEC);
sc_start(sim_run)

Simulation Constructs

// Returns current simulated time since
// sc_start() 1s called.

sc_time sc_time_stamp();

// example
cout << “The current simulation time 1s”
<< sc_time_stamp() << endl;

// Useful to find out performance of a
// component during simulation
Sc_time op_start = sc_time_stamp();
/* perform some operations */
sc_time delay = sc_time_stamp() - op_start;

Simulation Semantics

* A SystemC model is a set of communicating
processes.

* |[n each simulation step, a process is in one of two
states:

— Active — executed until the nextwa1t ().
— Suspended - by callingwait ().

* For all active processes, which one to executed
next is unknown

Simulation Semantics

e SystemC is a sequential language.
* Scheduler mimics concurrency.

— Sequentializes concurrency processes.

e Simulation iterates over the following steps
— Evaluate: active processes are executed one at a time

— Update: change signals, event notification with zero
time delay

— Advance simulation time.

e Simulation stops when there are not events
scheduled.

Simulation Semantics

sc_main () SystemC Simulation Kernel
Execute code possibly
issuing events or While .
Elaborate updates. Either suspend processes -_n°tlf_Y ()
waiting or exit entirely. Ready immediate
v [N T
scstart_3» |nitialize —3» Evaluate Advance
Time
/-\ .notify (SC_ZERO geltla T
{\ _TIME) delayed \ yCo
Cl B Updat
eanup paate .notify (t)
timed

A delta cycle does not advance simulation time.

More on ZERO TIME and Immediate Event
Notifications

SC_CTOR(example) {
SC_THREAD(A) ;

SC_THREAD(B);
¥

void A {
e.notify();
cout << “A sent event e’ << endl;

}

void B() {
wait(e);
cout << “B got event e’ << endl;

}

Reading Guide

e SystemC-1 book: chapter 1 & 2
— skip section 2.8

* SystemC-2 book: chapter 1 & 2

e Refer to Chapter 3 of SystemC-2 book for SystemC
data types.

