
System-on-Chip	Design	
Introduc6on	

Hao	Zheng	
Computer	Science	&	Engineering	

U	of	South	Florida	

Standard	Methodology	for	IC	Design	
•  System-level	designers	write	a	C	or	C++	model	

– WriAen	in	a	stylized,	hardware-like	form	
– SomeEmes	refined	to	be	more	hardware-like	

•  C/C++	model	simulated	to	verify	funcEonality	
•  Model	given	to	Verilog/VHDL	coders	
•  Verilog	or	VHDL	specificaEon	wriAen	
•  Models	simulated	together	to	test	equivalence	
•  Verilog/VHDL	model	synthesized	

Designing	Large	Digital	Systems	
•  Systems	become	more	complex,	pushing	us	to	to	
design	and	verify	at	higher	level	of	abstracEon	
- Enable	early	exploraEon	of	system	level	tradeoffs	
- Enable	early	verificaEon	of	enEre	system	
- Enable	verificaEon	at	higher	speed	

•  SW	is	playing	an	increasing	role	in	system	design	
•  Problems:	

– System	designers	don’t	know	Verilog	or	VHDL	
– Verilog	or	VHDL	coders	don’t	understand	system	
design	

	

What	Is	SystemC?	
•  A	subset	of	C++	capable	of	system-level	or	HW	
modeling	
– Easy	integraEon	of	SW/HW	in	a	single	model	

•  A	collecEon	of	libraries	that	can	be	used	to	
simulate	SystemC	programs	
– Libraries	are	freely	distributed	

•  Commercial	compilers	that	translates	the	
“synthesis	subset”	of	SystemC	into	a	netlist	

•  Language	definiEon	is	publicly	available	
	

SystemC	Language	Architecture	

©2001 Open SystemC Initiative (OSCI)4

SystemC 2.0 Language Architecture
Figure 1 below summarizes the SystemC 2.0 language architecture. There are several important concepts to
understand from this diagram.

■ All of SystemC builds on C++.
■ Upper layers within the diagram are cleanly built on top of the lower layers.
■ The SystemC core language provides only a minimal set of modeling constructs for structural description,

concurrency, communication, and synchronization.
■ Data types are separate from the core language and user-defined data types are fully supported.
■ Commonly used communication mechanisms such as signals and fifos can be built on top of the core

language. Commonly used models of computation (MOCs) can also be built on top of the core language.
■ If desired, lower layers within the diagram can be used without needing the upper layers.

Figure 1 – SystemC 2.0 Language Architecture

A Communication Modeling Example
Let’s look at a simple communication modeling example: a FIFO which stores ten characters. The FIFO will
have blocking read and write interfaces such that characters are always reliably delivered. (A working version
of this example is included in the “examples/ simple_fifo” directory within the SystemC 2.0 distribution.)

First, we specify the separate read and write interfaces to the FIFO. To illustrate, let’s say that the write interface
allows the FIFO to be reset, while the read interface allows a non-blocking query of the number of characters
currently in the FIFO.

C++ Language Standard

Standard Channels
 for Various MOC's

Kahn Process Networks
Static Dataflow, etc.

Methodology-Specific
Channels

Master/Slave Library, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Integers Integers

Upper layers are
built on lower
layers

Lower layers can
be used without
upper layers

Benefits	
•  SystemC	provides	a	single	language	

– To	describe	HW	&	SW	at	various	abstracEon	levels	
– To	facilitate	seamless	HW	&	SW	co-simulaEon	
– To	facilitate	step-by-step	refinement	of	a	system	
design	from	high-level	down	to	RTL	for	synthesis.	

•  A	SystemC	model	is	an	executable	specificaEon.		
– Offers	fast	simulaEon	speed	for	design	space	
exploraEon	

SystemC	Environment	SystemC Environment

SystemC	Model	–	Overview	A system in SystemC

SystemC	Model	Overview	
•  A	SystemC	model	consists	of	module	definiEons	plus	a	top-
level	funcEon	that	starts	the	simulaEon	

•  Modules	contain	processes	(C++	methods)	and	instances	of	
other	modules	

•  Ports	on	modules	define	their	interface	
–  Rich	set	of	port	data	types	(hardware	modeling,	etc.)	

•  Channels	&	interfaces	provide	high-level	communicaEon	
models.	

•  Signals	in	modules	convey	informaEon	between	instances	
•  Clocks	are	special	signals	that	run	periodically	and	can	trigger	
clocked	processes	

•  Rich	set	of	numeric	types	(fixed	and	arbitrary	precision	
numbers)	

Model	of	Time	
•  Time	units:	sc_time_unit

•  ConstrucEon	of	Eme	objects	

SC_FS femtosecond
SC_PS picosecond
SC_NS nanosecond
SC_US microsecond
SC_MS millisecond
SC_SEC second

sc_time t1(42, SC_PS)

Modules	
•  Hierarchical	enEty	
•  Similar	to	enEty	of	VHDL	

•  Actually	a	C++	class	definiEon	

•  SimulaEon	involves	
– CreaEng	objects	of	this	class	
– ConnecEng	ports	of	module	objects	together	
– Processes	in	these	objects	(methods)	are	called	by	the	
scheduler	to	perform	the	simulaEon	

Modules	
SC_MODULE(mymod) {
 /* port definitions */
 /* signal definitions */
 /* clock definitions */

 /* storage and state variables */

 /* process definitions */

 SC_CTOR(mymod) {
 /* Instances of processes and
other modules */

 }
};

Ports	
•  Define	the	inputs/outputs	of	each	module	
•  Channels	through	which	data	is	communicated	
•  Port	consists	of	a	direcEon	

–  input 	 	sc_in	
– output	 	sc_out	
– bidirecEonal 	sc_inout	

•  And	any	C++	or	SystemC	type	
•  More	general	port	types:	sc_port</*interface*/>	

Interfaces	

•  Connect	ports	to	channels.	
•  Each	defines	a	set	of	
operaEons	through	which	a	
port	can	operate	a	channel.	

•  Implemented	by	channels.	
•  A	port	accesses	a	channel	
through	the	supported	
interfaces.	

sc_interface

sc_signal_in_if<T>
read()

sc_signal_inout_if<T>
write()

Ports	
SC_MODULE(mymod) {

 sc_in<bool> load, read;

 sc_inout<int> data;

 sc_out<bool> full;

 /* rest of the module */

};

Ports	
/* port sc_in declaratioin */

template<class T>

 class sc_in : public
sc_port<sc_signal_in_if<T> > ...;

/* port sc_inout declaration */

template<class T>

 class sc_inout : public
sc_port<sc_signal_inout_if<T> > ...;

Signals	
•  Convey	informaEon	between	processes	within	a	
module	

•  DirecEonless	
– module	ports	define	direcEon	of	data	transfer	

•  Type	may	be	any	C++	or	built-in	type	
•  A	special	type	of	channel.	
	

Signals	
SC_MODULE(mymod) {
 /* signal definitions */
 sc_signal<sc_uint<32> > s1, s2;
 sc_signal<bool> reset;

 /* … */
 SC_CTOR(mymod) {
 /* Instances of modules that
 connect to the signals */
 }
};

Channels	

•  Models	communicaEons	
•  In	SystemC,	a	channel	is	a	module	with	local	
storage	and	a	set	of	allowed	operaEons	grouped	
in	interfaces.	

•  Modules	are	connected	by	connecEng	channels	to	
their	ports.	

•  PrimiEve	channels:	mutexs,	FIFOs,	signals	
•  Hierarchical	channels	can	model	more	
sophisEcated	communicaEon	structures,	ie	buses.	

Instances	of	Modules	
/* Each instance is a pointer to an object in the
module */

SC_MODULE(mod1) { … };
SC_MODULE(mod2) { … };
SC_MODULE(foo) {
 mod1* m1;
 mod2* m2;
 sc_signal<int> a, b, c;
 SC_CTOR(foo) {
 m1 = new mod1(“i1”); (*m1)(a, b, c);
 m2 = new mod2(“i2”); (*m2)(c, b);
 }
};

Connect instance’s
ports to signals

Port	Binding	

Named Port Binding
 a_port.(port or channel instance);
 a_port.bind(port or channel instance);

Posi6onal	Port	Binding	
 a_module.(p1, p2, ...);

 px is an instance of a port or
 a channel.

Named	Port	Binding	–	Example		

SC_MODULE(M) {
 sc_inout<int> P, Q, R, S;
 sc_inout<int> *T;
 SC_CTOR(M) {
 T = new sc_input<int>;
 ...
 };
};

SC_MODULE(Top) {
 sc_inout <int> A, B;
 sc_signal<int> C, D;
 M m;
 SC_CTOR(Top) : m("m") {
 m.P(A);
 m.Q.bind(B);

 m.R(C);
 m.S.bind(D);
 m.T->bind(E);

 };
};

Processes	
•  Define	funcEonaliEes	of	modules.	
•  Simulate	concurrent	behavior.	
•  Procedural	code	with	the	ability	to	suspend	and	
resume	

•  Similar	to	VHDL	processes	

Three	Types	of	Processes	
•  METHOD	

– Models	combinaEonal	logic	

•  THREAD	
– Models	event-triggered	sequenEal	processes	

•  CTHREAD		/*	going	away	*/	
– Models	synchronous	FSMs	
– A	special	case	of	THREAD	

METHOD	Processes	
•  Triggered	in	response	to	changes	on	inputs	
•  Cannot	store	control	state	between	invocaEons	
•  Designed	to	model	blocks	of	combinaEonal	logic	
•  SequenEal	logic	can	be	modeled	with	addiEonal	
state	variables	declared	in	the	modules	where	the	
processes	are	created.	

METHOD	Processes	
SC_MODULE(onemethod)	{	
		sc_in<bool>	in;	
		sc_out<bool>	out;	
	
		void	inverter()	{	out	=	~in;	}	
	
		SC_CTOR(onemethod)	{	
	
				SC_METHOD(inverter);	
				sensiEve(in);	
}};	

Process is simply a
method of this class

Instance of this
process created

and made sensitive
to an input

METHOD	Processes	
•  Invoked	once	every	Eme	input	“in”	changes	

•  Should	not	save	state	between	invocaEons	

•  Runs	to	compleEon:	should	not	contain	infinite	loops	
– Not	preempted	

	
void	onemethod::inverter()	{	
		bool	internal;	
		internal	=	in;	
		out	=	~internal;	
}	

Read a value from the port
Write a value to an
output port

THREAD	Processes	
•  Triggered	in	response	to	changes	on	inputs	

•  Can	suspend	itself	and	be	reacEvated	
– Method	calls	wait()	to	relinquish	control	
– Scheduler	runs	it	again	later	

•  Designed	to	model	just	about	anything.	
– More	general	than	METHOD	processes.	

THREAD	Processes	
SC_MODULE(onemethod)	{	
		sc_in<bool>	in;	
		sc_out<bool>	out;	
	
		void	toggler();	
	
		SC_CTOR(onemethod)	{	
	
				SC_THREAD(toggler);	
				sensiEve	<<	in;	
		}	
	
};	

Process is simply a
method of this class

Instance of this
process created

alternate sensitivity
list notation

THREAD	Processes	
•  Reawakened	whenever	an	input	changes	

•  State	saved	between	invocaEons	

•  Infinite	loops	should	contain	a	wait()	
	
void	onemethod::toggler()	{	
		bool	last	=	false;	
		for	(;;)	{	
				last	=	in;	out	=	last;	wait();	
				last	=	~in;	out	=	last;	wait();	
		}	
}	

Relinquish control
until the next
change of a signal
on the sensitivity
list for this process

CTHREAD	Processes	
•  Triggered	in	response	to	a	single	clock	edge	

•  Can	suspend	itself	and	be	reacEvated	
– Method	calls	wait	to	relinquish	control	
– Scheduler	runs	it	again	later	

•  Designed	to	model	clocked	digital	hardware	

CTHREAD	Processes	
SC_MODULE(onemethod) {
 sc_in_clk clock;
 sc_in<bool> trigger, in;
 sc_out<bool> out;

 void toggler();

 SC_CTOR(onemethod) {

 SC_CTHREAD(toggler, clock.pos());
 }

};

Instance of this
process created and
relevant clock edge
assigned

•  Reawakened	at	the	edge	of	the	clock	
•  State	saved	between	invocaEons	
•  Infinite	loops	should	contain	a	wait()	
	

void onemethod::toggler() {
 bool last = false;
 for (;;) {
 wait_until(trigger.delayed() == true);
 last = in; out = last; wait();
 last = ~in; out = last; wait();
 }
}

CTHREAD	Processes	

Relinquish control until
the next clock edge

Relinquish control
until the next clock
edge in which the
trigger input is 1

A	CTHREAD	for	Complex	Mul6ply	
struct complex_mult : sc_module {
 sc_in<int> a, b, c, d;
 sc_out<int> x, y;
 sc_in_clk clock;

 void do_mult() {
 for (;;) {
 x = a * c - b * d;
 wait();
 y = a * d + b * c;
 wait();
 }}

 SC_CTOR(complex_mult) {
 SC_CTHREAD(do_mult, clock.pos());
}};

•  Events,	sensiEvity	and	noEficaEon	are	essenEal	for	
simulaEng	concurrency	in	SystemC.	

•  An	event	is	an	object	of	class	sc_event.	

•  An	event	is	generated	by	its	owner.	

Events	

sc_event e;

e.notify();

e.notify(SC_ZERO_TIME);

e.notify(100, SC_NS);

Event	No6fica6on	and	Process	Triggering	

Process	or	Channel	
(Owner	of	event)	

Event	

Process	1	 Process	1	 Process	1	

notification

trigger trigger trigger

Event	No6fica6on	and	Process	Triggering	

process1 {

 s.write(true);

 e.notify(sc_ZERO_TIME);

}

sc_signal<bool> s;
s.initialize(false);
sc_event e;

process2 {

 wait(e);

 bool v = s.read();

}

v gets	the	new	value	of	s, ‘true’.

Event	No6fica6on	and	Process	Triggering	

process1 {

 s.write(true);

 e.notify();

}

sc_signal<bool> s;
s.initialize(false);
sc_event e;

process2 {

 wait(e);

 bool v = s.read();

}

v gets	the	old	value	of	s, ‘false’.

•  Afer	an	event	is	generated,	all	processes	sensiEve	
on	it	are	triggered.	

•  StaEc	sensiEvity		

•  Dynamic	sensiEvity:	use	wait(e)	in	processes.	

Sensi6vity	

sensitivity << a << b;

wait(e1 & e2 & e3);

wait(e1 | e2 | e3);

wait(200, SC_NS);

More	on	Interfaces	
•  Ports	and	Interfaces	allow	the	separaEon	of	
computaEon	from	communicaEon.	

•  All	SystemC	interfaces	derived	from	
sc_interface

– Declared	as	abstract	classes	
•  Consists	of	a	set	of	operaEons	
•  Specifies	only	the	signature	of	an	operaEon	

– name,	parameter,	return	value	
– OperaEons	are	defined	in	channels			

Interfaces:	Example	

Communication and Synchronization in SystemC 2.0
Many of the language features already within SystemC 1.0 are also very useful for system-level modeling.
The structural description features available in SystemC 1.0 (modules and ports) are also useful for system
design, as are the extensive set of data types and the ability to express concurrency using processes.
However, the SystemC 1.0 mechanism for communication and synchronization—the hardware signal—is
not sufficiently general for system-level modeling. For example, in a system level design, a designer might
want to specify that several modules communicate using queues, or that several processes execute
concurrently and manage access to shared global data using mutexes.

SystemC 2.0 introduces a new set of features for generalized modeling of communication and synchronization.
These are: channels, interfaces and events. A channel is an object that serves as a container for communication
and synchronization. Channels implement one or more interfaces. An interface specifies a set of access
methods to be implemented within a channel, but the interface itself does not provide the implementation.
An event is a flexible, low-level synchronization primitive that is used to construct other forms of synchronization.

Channels, interfaces and events enable designers to model the wide range of communication and synchronization
found in system designs. Examples include HW signals, queues (FIFO, LIFO, message queues, etc.),
semaphores, memories and busses (both as RTL and transaction-based models).

A Communication Modeling Example
Let’s look at a simple communication modeling example: a FIFO which stores ten characters. The FIFO will
have blocking read and write interfaces such that characters are always reliably delivered.

First, we specify the separate read and write interfaces to the FIFO. To illustrate, let’s say that the write
interface allows the FIFO to be reset, while the read interface allows a non-blocking query of the number
of characters currently in the FIFO.

class write_if : public sc_interface
{

public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{

public:
virtual void read(char &) = 0;
virtual int num_available() = 0;

};

As illustrated above, an interface is an abstract base class in C++ that inherits from sc_interface.
Interfaces specify a set of access methods for a channel but provide no implementation of those methods.
Next, let’s specify a high-level model for the FIFO. The FIFO uses C++ multiple inheritance to inherit both
the read and write interfaces, and also the properties of channels from sc_channel.

3

More	on	Channels	

•  Models	communicaEons	
•  In	SystemC,	a	channel	is	a	module	with	local	
storage	and	a	set	of	allowed	operaEons	grouped	
in	interfaces.	

•  Modules	are	connected	by	connecEng	channels	to	
their	ports.	

•  PrimiEve	channels:	mutexs,	FIFOs,	signals	
•  Hierarchical	channels	can	model	more	
sophisEcated	communicaEon	structures,	ie	buses.	

Channels:	Example	
class fifo : public sc_channel,

 public write_if,
 public read_if

{
private:

 // just a constant in class scope
 const int max = 10;
 char data[max];
 int num_elements, first;
 sc_event write_event, read_event;

public:

 // ** definition of interfaces
};

Channels:	Example	
class fifo : public sc_channel,

 public write_if,
 public read_if

{
private:

 // local data members.

public:

 SC_CTOR(fifo)() {
 num_elements = first = 0;
 }
 // more on next slide

};

Channels:	Example	
class fifo : public sc_channel,

 public write_if,
 public read_if

{
private:

 // local data members.

public:

 void write(char c) {
 if (num_elements == max)
 wait(read_event);
 data[(first+num_elements)%max] = c;
 ++num_elements;
 write_event.notify();
 }};

Channels:	Example	
class fifo : public sc_channel,

 public write_if,
 public read_if

{
private:

 // local data members.

public:

 void read(char& c) {
 if (num_elements == 0)
 wait(write_event);
 c = data[first];
 --num_elements;
 read_event.notify();
 }};

Channels:	Example	
class fifo : public sc_channel,

 public write_if,
 public read_if

{
private:

 // local data members.

public:

 void reset() {
 num_elements = 0;
 }

 int num_available() {
 return num_elements;
 }};

A	Complete	Model	

7©2001Open SystemC Initiative (OSCI)

// the producer module
class producer : public sc_module
{
public:

sc_port<write_if> out; // producer output port

SC_CTOR(producer) // module constructor
{

SC_THREAD(main); // start the process
}
void main() // the producer process
{

char c;
while (true) {

...
out->write(c); // write c into fifo
if (...)

out->reset(); // reset the fifo
}

}
};

// the consumer module
class consumer : public sc_module
{
public:

sc_port<read_if> in; // consumer input port

SC_CTOR(consumer) // module constructor
{

SC_THREAD(main); // start the process
}

void main() // the consumer process
{

char c;
while (true) {

in->read(c); // read c from the fifo
if (in->num_available() > 5)

...; // perhaps speed up processing
}

}
};

// the top module
class top : public sc_module
{
public:

fifo *fifo_inst; // a fifo instance
producer *prod_inst; // a producer instance
consumer *cons_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{

fifo_inst = new fifo (Fifo1”);
prod_inst = new producer("Producer1");
// bind the fifo to the producer's port
prod_inst->out(fifo_inst);

cons_inst = new consumer("Consumer1");
// bind the fifo to the consumer's port
cons_inst->in(fifo_inst);

}
};

A	Complete	Model	

7©2001Open SystemC Initiative (OSCI)

// the producer module
class producer : public sc_module
{
public:

sc_port<write_if> out; // producer output port

SC_CTOR(producer) // module constructor
{

SC_THREAD(main); // start the process
}
void main() // the producer process
{

char c;
while (true) {

...
out->write(c); // write c into fifo
if (...)

out->reset(); // reset the fifo
}

}
};

// the consumer module
class consumer : public sc_module
{
public:

sc_port<read_if> in; // consumer input port

SC_CTOR(consumer) // module constructor
{

SC_THREAD(main); // start the process
}

void main() // the consumer process
{

char c;
while (true) {

in->read(c); // read c from the fifo
if (in->num_available() > 5)

...; // perhaps speed up processing
}

}
};

// the top module
class top : public sc_module
{
public:

fifo *fifo_inst; // a fifo instance
producer *prod_inst; // a producer instance
consumer *cons_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{

fifo_inst = new fifo (Fifo1”);
prod_inst = new producer("Producer1");
// bind the fifo to the producer's port
prod_inst->out(fifo_inst);

cons_inst = new consumer("Consumer1");
// bind the fifo to the consumer's port
cons_inst->in(fifo_inst);

}
};

A	Complete	Model	

7©2001Open SystemC Initiative (OSCI)

// the producer module
class producer : public sc_module
{
public:

sc_port<write_if> out; // producer output port

SC_CTOR(producer) // module constructor
{

SC_THREAD(main); // start the process
}
void main() // the producer process
{

char c;
while (true) {

...
out->write(c); // write c into fifo
if (...)

out->reset(); // reset the fifo
}

}
};

// the consumer module
class consumer : public sc_module
{
public:

sc_port<read_if> in; // consumer input port

SC_CTOR(consumer) // module constructor
{

SC_THREAD(main); // start the process
}

void main() // the consumer process
{

char c;
while (true) {

in->read(c); // read c from the fifo
if (in->num_available() > 5)

...; // perhaps speed up processing
}

}
};

// the top module
class top : public sc_module
{
public:

fifo *fifo_inst; // a fifo instance
producer *prod_inst; // a producer instance
consumer *cons_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{

fifo_inst = new fifo (Fifo1”);
prod_inst = new producer("Producer1");
// bind the fifo to the producer's port
prod_inst->out(fifo_inst);

cons_inst = new consumer("Consumer1");
// bind the fifo to the consumer's port
cons_inst->in(fifo_inst);

}
};

A	Complete	Model:	Top	Level	

int sc_main(int argc, char *argv[])

{

 top(“model”);

 // some environment definition

 // ...

 sc_start(1000, SC_SEC);

}

Simula6on	Constructs	

// Start and run simulation forever.

sc_start();

// start and run simulation for 1000 seconds

sc_start(1000, SC_SEC);

// start and run simulation for 1000 seconds
// an alternative approach

sc_time sim_run(1000, SC_SEC);
sc_start(sim_run)

Simula6on	Constructs	
// Returns current simulated time since
// sc_start() is called.

sc_time sc_time_stamp();

// example

cout << “The current simulation time is”
 << sc_time_stamp() << endl;

// Useful to find out performance of a
// component during simulation
Sc_time op_start = sc_time_stamp();
 /* perform some operations */
sc_time delay = sc_time_stamp() – op_start;

Simula6on	Seman6cs	
•  A	SystemC	model	is	a	set	of	communicaEng	
processes.	

•  In	each	simulaEon	step,	a	process	is	in	one	of	two	
states:	
– AcEve	–	executed	unEl	the	next	wait().	
– Suspended	–	by	calling	wait().	

•  For	all	acEve	processes,	which	one	to	executed	
next	is	unknown	

Simula6on	Seman6cs	

•  SystemC	is	a	sequenEal	language.	
•  Scheduler	mimics	concurrency.	

– SequenEalizes	concurrency	processes.	
•  SimulaEon	iterates	over	the	following	steps	

– Evaluate:	acEve	processes	are	executed	one	at	a	Eme	
– Update:	change	signals,	event	noEficaEon	with	zero	
Eme	delay	

– Advance	simulaEon	Eme.	

•  SimulaEon	stops	when	there	are	not	events	
scheduled.	

Simula6on	Seman6cs	

292.4 SystemC Simulation Kernel

2.4 SystemC Simulation Kernel

The SystemC simulator has two major phases of operation: elaboration and execu-
tion. A third, often minor, phase occurs at the end of execution; this phase could be
characterized as post-processing or cleanup.

Execution of statements prior to the sc_start() function call are known as the
elaboration phase. This phase is characterized by the initialization of data structures, the
establishment of connectivity, and the preparation for the second phase, execution.

The execution phase hands control to the SystemC simulation kernel, which
orchestrates the execution of processes to create an illusion of concurrency.

The illustration in Fig. 2-6 should look very familiar to those who have studied
Verilog and VHDL simulation kernels. Very briefly, after sc_start(), all simu-
lation processes (minus a few exceptions) are invoked in unspecified deterministic
order 5 during initialization.

After initialization, simulation processes are run when events occur to which
they are sensitive. The SystemC simulator implements a cooperative multitasking
environment. Once started, a running process continues to run until it yields con-
trol. Several simulation processes may begin at the same instant in simulator time.
In this case, all of the simulation processes are evaluated and then their outputs are
updated. An evaluation followed by an update is referred to as a delta cycle.

If no additional simulation processes need to be evaluated at that instant (as a
result of the update), then simulation time is advanced. When no additional simulation
processes need to run, the simulation ends.

This brief overview of the simulation kernel is meant to give you an overview
for the rest of the book. This diagram will be used again to explain important

sc_main()

Elaborate

sc_start()

While
processes
Ready

Execute code possibly
issuing events or
updates. Either suspend
waiting or exit entirely.

.notify()
immediate

.notify(SC_ZERO
_TIME)delayed

.notify(t)
timed

SystemC Simulation Kernel

Initialize Evaluate Advance
Time

Cleanup Update

Delta
Cycle

Fig. 2.6 SystemC simulation kernel

5 Discussed later.

A delta cycle does not advance simulation time.

More	on		ZERO	TIME	and	Immediate	Event	
No6fica6ons	

SC_CTOR(example) {
 SC_THREAD(A);
 SC_THREAD(B);
}

void A() {
 e.notify();
 cout << “A sent event e” << endl;
}

void B() {
 wait(e);
 cout << “B got event e” << endl;
}

Reading	Guide	
•  SystemC-1	book:	chapter	1	&	2	

– skip	secEon	2.8	
•  SystemC-2	book:	chapter	1	&	2	
•  Refer	to	Chapter	3	of	SystemC-2	book	for	SystemC	
data	types.	

