
	System-on-Chip	Design	
Microprocessor	Interfaces	

Hao	Zheng	
Comp	Sci	&	Eng	
U	of	South	Florida		

1 



Basic	Elements	of	HW/SW	Interfaces	

2 

1.	On-chip	communica>on	fabrics,	ex.	buses	



Memory	Mapped	Interfaces	

3 

To	resolve	simultaneous	
writes	to	the	register.	



Memory	Mapped	Interfaces	

4 

vola?le	int	*MMReg	=	(int*)	0x8000;	
int	value	=	*MMReg;	
*MMReg	=	5;	



Keyword	Vola?le	

5 

11.1 Memory-Mapped Interfaces 319

Microprocessor

Register File

D Cache

ALU

Memory

Memory
Mapped
Register

volatile int *p = (int *) 0x8000;
int *p = (int *) 0x4000;

0x4000-
0x4FFF

0x8000

0x8000 must be a
non-chacheable 

address !

Fig. 11.2 Integrating a memory-mapped register in a memory hierarchy

• When using normal pointer operations, the processor and the compiler will
attempt to minimize the number of operations to the main memory. This means
that the value stored at an int * can appear in three different locations in the
memory hierarchy: in main memory, in the cache memory, and in a processor
register.

• By defining a register as a volatile int *, the compiler will avoid main-
taining a copy of the memory-mapped register in the processor registers. This is
essential for a memory-mapped register, because it can be updated by a custom-
hardware module, outside of the control of a microprocessor.

However, defining a memory-mapped register with a volatile pointer will
not prevent that memory address from being cached. There are two approaches
to deal with this situation. First, the memory addresses that include a memory-
mapped register could be allocated into a non-cacheable memory area of a processor.
This requires a processor with a configurable cache. For example, the Microblaze
processor uses this technique. A second approach is to use specific cache-bypass
instructions on the microprocessor. Such instructions are memory-access operations
on the same address as normal load/store instructions, but they do not relay on the
processor data cache. The Nios-II processor, for example, has ldio and stio
instructions that serve as cache-bypass counterparts to the normal load (ld) and
store (st) instructions.

Building on the principle of a memory-mapped register, we can create commu-
nication structures to tie hardware and software together.

refer	to	Wiki	for	a	good	example	of	using	vola5le.	



MailBoxes	

6 



FIFOs	

7 

This	FIFO	has	two	slave	interfaces.	

Allows	masters	to	perform	non-blocking	opera>ons	on	a	slave.	



Shared	Memory	

8 

To	transfer	large	chunks	of	data	between	SW	and	HW.	



Coprocessor	Interfaces	

9 

+  high	throughput,	fixed	latency	
-  non-reusable,	HW	>ed	to	a	specific	CPU.	



Coprocessor	Interfaces:	An	Example	

10 

put	rD,	FLSx				//	copy	register	rD	to	FSL	interface	FSLx	
get	rd,	FSLx				//	copy	FSL	interface	FSLx	into	register	rD	



Coprocessor	Interfaces:	An	Example	

11 

Assume	that	the	size	of	FIFO	is	2.	



Reading	Guide	

•  Sec>on	11.1	–	11.2,	the	CoDesign	book.	
– Skip	11.1.6,	11.2.2	

12 



	System-on-Chip	Design	
Hardware	Interfaces	

Hao	Zheng	
Comp	Sci	&	Eng	
U	of	South	Florida		

13 



Hardware	Interface	

14 

HW	interface	control	comm	and	comp	of	HW:	
data	transfer,	word	length	conversion,	local	storage,	instruc?on	set,		

local	control.	



Hardware	Interface	Func?ons	

•  Data	transfer	between	CPU	and	HW	using	a	
communica>on	protocol.	

•  Word	length	conversion	between	the	interface	
and	the	HW	internal	format.	

•  Local	storage	for	buffering	data.	
•  Instruc?on	set	provides	a	programming	interface	
to	SW.	

•  Local	control	of	the	HW	in	response	to	SW	
command.		

15 



Generic	Structure	of	HW	Interfaces	

16 

Input	data	buffer	 Input	data	buffer	

Command	decode/	
control	



Data	Design	
•  Concerns	passing	data	from	interface	to	ports	of	HW	
module.	
–  Three	factors:	word	length,	direc>on,	update	rate.	

•  Example:	int	gcd(int	m,	int	n);	//	3	HW	ports	
•  Ideally,	interface	supports	three	ports:	
–  Two	input	ports:	m,	n	
– One	output	port:	out.	
–  Implemented	with	three	memory-mapped	registers.	

•  But	interface	does	not	support	all	required	ports.	
– Or,	HW	ports	used	infrequently,	making	a	dedicated	
interface	port	less	efficient.	

•  Solu>on:	port	mul>plexing	

17 



Time	Mul?plexing	

18 

SW	writes	n	and	m	in	sequence	to	the	HW	interface.	

Interface	
port	



Index	Register	

19 

HW	interface	selects	outputs	from	HW	modules	to	output	port	by	
controlling	the	index	port.	



Port	Mul?plexing 		

•  Mapping	HW	ports	to	limited	interface	ports.	
•  Interface	control	becomes	more	complicated.	
•  Useful	to	word	length	conversion.		
– HW	port	is	128	bit	wide,	but	interface	port	is	32	bit	
wide.	How	the	conversion	be	done?		

•  	Addi>onal	bit	mask	register	is	used	to	map	
individual	bits	from	interface	to	a	HW	port.	

20 



Control	Design	

21 

1.  Interpret	commands	to	generate	control	signals.	
2.  Capture	status	signals		



Hierarchical	Control	

22 

A	command	from	SW	is	converted	to	a	sequence	of	micro-commands	
for	FSMs	

Input	
buffering	

word	length	
conversion	

Output	
buffering	

word	length	
conversion	



Execu?on	Flow	

23 

Can	be	pipelined	to	improve	performance.	



Programmer’s	Model	

•  Address	map	–	organiza>on	of	SW	accessible	
storage,	memory	or	HW	registers	
– SW	views	a	single	register	for	a	memory	address.	
– HW	may	have	separate	registers	for	write/read.		

•  Instruc?on	Set	
– Need	to	consider	trade-off	between	flexibility	for	SW	
and	efficiency	for	HW.	

– Should	include	commands	for	SW/HW	synchroniza>on	
and	HW	ini>aliza>on.	

24 



Reading	Guide	

•  Read	Sec>on	12.1	–	12.3,	the	CoDesign	book.	
– Skip	12.3.2	

•  Skim	sec>on	12.4.	

25 


