
	System-on-Chip	Design	
HW/SW	Interfaces	and	Communica;ons	

Hao	Zheng	
Comp	Sci	&	Eng	
U	of	South	Florida		

1 



System	Structural	Model	

2 

Br
id
ge
	

HW	

P5	

HW	

P3	
P4	

P1	
P2	

CPU	 Mem	
Ar
bi
te
r	



Basic	Elements	of	HW/SW	Interfaces	

3 

1.	On-chip	communicaCon	fabrics,	ex.	buses	



Basic	Elements	of	HW/SW	Interfaces	

4 

2.	CPU	interface	for	SW	to	communicate	with	custom	HW.	



Basic	Elements	of	HW/SW	Interfaces	

5 

3.	HW	interface	for	custom	HW	to	communicate	with	CPU.	



Basic	Elements	of	HW/SW	Interfaces	

6 

4.	SW	driver	converts	SW	IO	operaCons	to	operaCons	
supported	by	CPU	interface.	



Basic	Elements	of	HW/SW	Interfaces	

7 

5.	Programming	model	where	SW	running	CPU	uses	to	
control	custom	HW	module.		



Synchroniza;on	Schemes	

8 

SynchronizaCon	is	necessary	for	effecCve	communicaCons,	
i.e.	data	transferred	between	CPU	and	HW	correctly.	

SynchronizaCon	is	part	of	interface	implementaCon.	



Synchroniza;on	Schemes	

9 

Time:		how	synchronizaCon	is	defined	over	Cme.	



Synchroniza;on	Schemes	

10 

Data:		how	data	is	represented	in	synchronizaCon.	



Synchroniza;on	Schemes	

11 

Control:		how	synchronizaCon	is	implemented	locally	in	
individual	modules..	



Semaphores	

•  Used	to	control	of	accesses	to	shared	
resource.		
•  Two	ops	on	semaphore	S:	
– P(S):	acquire	S.	
– V(S):	release	S.	

•  How	can	we	ensure	an																															
order	between	thread	 	 	 	 	 	 	 	 			
1	&	2?	
	
	

12 

thread	1:	
…	
P(S);	
x++;	
V(s);	
…	

thread	2:	
…	
P(S);	
x	=	x	–	2;	
V(s);	
…	



Semaphores	

13 

int	shared_data;	
semaphore	S;	

enCty	one	{	
				P(S);	
				while	(1)	{	
								short_delay();	
								shared_data	=	…;	
									V(S);	
}}	

enCty	two	{	
				short_delay();	
				while	(1)	{	
								P(S);	
								rd	=	shared_data;	
}}	



Semaphores	

•  Semaphores	can	only	guarantee	exclusive	
access	to	shared	resources.	
– Difficult	to	control	precise	data	transfer	
– MulCple	semaphores	can	be	used,	but	not	
elegant.	

•  Handshaking:	a	signaling	protocol	between	
two	enCCes	to	coordinate	data	transfers.	
– Can	handle	enCCes	with	different	speeds.	

14 



One-Way	Handshake	

15 

Assume	that	enCty	
two	is	slower.	



Two-Way	Handshake	

16 



X	

Two-Way	Handshake	for	Data	Transfer	

17 

req	
ack	
data	

X	X	X	X	X	 d1	

clk	

req	

ack	

data	

Src	 Dest	

X	X	X	



Communica;on	Constrained	vs	Computa;on	
Constrained	

18 

System	performance	should	consider	both	computaCon	performance	
and	communicaCon	overhead.	



Communica;on	Constrained	vs	Computa;on	
Constrained	

19 



Tight	and	Loose	Coupling	

20 

Coupling:	the	
level	of	
interacCons	
between	two	
components.	

Degree	of	
coupling	affects	
choice	and	
implementaCon	
of	
synchronizaCon.		



Dedicated	vs	Shared	Interfaces	

21 

282 9 Principles of Hardware/Software Communication

Table 9.2 Comparing a
coprocessor interface with a
memory-mapped interface

Coprocessor Memory-mapped
Factor interface interface

Addressing Processor-specific On-chip bus address
Connection Point-to-point Shared
Latency Fixed Variable
Throughput Higher Lower

describe in detail in the next Chapters – are called memory-mapped interface and
coprocessor interface respectively. Table 9.2 compares the key features of these two
interfaces.

These two interfaces each take a different approach to synchronization. In the
case of a coprocessor interface, synchronization between a hardware module and
software is at the level of a single instruction. Such a coprocessor instruction
typically carries both operands (from software driver to hardware coprocessor)
as well as result (from hardware coprocessor to software driver). In the case of
a memory-mapped interface, synchronization between a hardware module and
software is at the level of a single bus transfer. Such a bus transfer is unidirectional
(read or write), and either carries operands from the software driver to the hardware
coprocessor, or else results from the hardware coprocessor to the software driver.
Clearly, the use of a coprocessor interface versus a memory-mapped interface imply
a different style of synchronization between hardware and software.

A given application can use either tight-coupling or loose-coupling. Figure 9.10
shows how the choice for loose-coupling of tight-coupling can affect the latencies
of the application. The left side of the figure illustrates a tight-coupling scheme.
The software will send four separate data items to the custom hardware, each time
collecting the result. The figure assumes a single synchronization point which sends
the operand and retrieves the result. This is the scheme that could be used by a
coprocessor interface. The synchronization point corresponds to the execution of a
coprocessor instruction in the software.

The right side of the figure illustrates a loosely coupled scheme. In this case, the
software provides a large block of data to the custom hardware, synchronizes with
the hardware, and then waits for the custom hardware to complete processing and
return the result. This scheme would be used by a memory-mapped interface, for
example using a shared-memory.

Loosely-coupled schemes tend to yield slightly more complex hardware designs
because the hardware needs to deal more extensively with data movement between
hardware and software. On the other hand, tightly-coupled schemes lean more
on the software to manage overall system execution. Achieving a high degree of
parallelism in the overall design may be easier to achieve with a loosely-coupled
scheme than with a tightly-coupled scheme.

Cght	
coupling	

loose	
coupling	

Nature	of	coupling	affects	the	organizaCon	of		HW/SW	interfaces	



Reading	Guide	

•  Chapter	9,	the	CoDesign	book.	

22 


