System-on-Chip Design HW/SW Interfaces and Communications

> Hao Zheng Comp Sci & Eng U of South Florida

System Structural Model

1. On-chip communication fabrics, ex. buses

2. CPU interface for SW to communicate with custom HW.

3. HW interface for custom HW to communicate with CPU.

4. SW driver converts SW IO operations to operations supported by CPU interface.

5. Programming model where SW running CPU uses to control custom HW module.

Synchronization is necessary for effective communications, i.e. data transferred between CPU and HW correctly.

Synchronization is part of interface implementation.

Time: how synchronization is defined over time.

Data: how data is represented in synchronization.

Control: how synchronization is implemented locally in individual modules..

Semaphores

- Used to control of accesses to shared resource.
- Two ops on semaphore S:
 -P(S): acquire S.
 -V(S): release S.
- How can we ensure an order between thread 1 & 2?

thread 1:thread 2:......P(S);P(S);x++;x = x - 2;V(s);V(s);

. . .

Semaphores

- Semaphores can only guarantee exclusive access to shared resources.
 - Difficult to control precise data transfer
 - Multiple semaphores can be used, but not elegant.
- Handshaking: a signaling protocol between two entities to coordinate data transfers.
 - Can handle entities with different speeds.

One-Way Handshake

Assume that entity two is slower.

Two-Way Handshake

Two-Way Handshake for Data Transfer

Communication Constrained vs Computation Constrained

System performance should consider both computation performance and communication overhead.

Communication Constrained vs Computation Constrained

Tight and Loose Coupling

Dedicated vs Shared Interfaces

Nature of coupling affects the organization of HW/SW interfaces

Factor	Coprocessor interface	Memory-mapped interface
Addressing	Processor-specific	On-chip bus address
Connection	Point-to-point	Shared
Latency	Fixed	Variable
Throughput	Higher	Lower
	ſ	1
	tight coupling	loose coupling

Reading Guide

• Chapter 9, the *CoDesign* book.