High-Level Synthesis

Creating Custom Circuits from High-Level Code

Hao Zheng
Comp Sci & Eng
University of South Florida

Existing Design Flow

« Register-transfer (RT) synthesis
- Specify RT structure (muxes, registers, etc)
— Allows precise specification
- But, time consuming, difficult, error prone

Synthesizable HDL J
v

RT S))nthesis]
v

Netiist | [Technology Mapping]
% ““““““““ i
]

[Physical Design] [Placement

Bitfile | e [Routing

O0nnnnm

]
v FPGA
]
]

EERERERERERE

ASIC

00010

Future Design Flow

()
C/C++, Java, etc. J

y
High-level Synthesis

¥

u

Synthesizable HDL J
v

RT SYnthesis
v

]
Netiist | [Technology Mapping]
% “““““““ i
]

[Physical Design] [Placement

.......... v
Bitfile | " [Routing
Onnonnmnmn

]
ASIC L‘J FPGA g
1]

EERERERERERE

00010

Overview

* |Input:
— High-level languages (e.g., C)
— Behavioral hardware description languages (e.g., VHDL)
— State diagrams / logic networks

* Tools:
— Parser
— Library of modules

* Constraints:
— Area constraints (e.g., # modules of a certain type)
— Delay constraints (e.g., set of operations should finish in A clock
cycles)
* Qutput:
— Operation scheduling (time) and binding (resource)
— Control generation and detailed interconnections

High-level Synthesis - Benefits

» Ratio of C to VHDL developers (10000:1 ?)
* Easier to specify complex designs
* Technology/architecture independent designs
* Manual HW design potentially slower
— Similar to assembly code era

— Programmers could always beat compiler
— But, no longer the case

* Ease of HW/SW partitioning
— enhance overall system efficiency

e More efficient verification and validation
— Easier to V & V of high-level code

High-level Synthesis

* More challenging than SW compilation
— Compilation maps behavior into assembly instructions
— Architecture is known to compiler

 HLS creates a custom architecture to execute
specified behavior

— Huge hardware exploration space
— Best solution may include microprocessors

— |deally, should handle any high-level code
+ But, not all code appropriate for hardware

High-level Synthesis: An Example

* First, consider how to manually convert high-level
code into circuit

acc = 0;
for (i=0; i < 128; i++)
acc += ali]; ~

* Steps
1) Build FSM for controller
2) Build datapath based on FSM

A Manual Example

* Build a FSM (controller)
- Decompose code into states

acc = 0; =0.i=0
for (i=0; i < 128; i++) acc=u, 1=

acc += a[i];
i < 1& 128

\ 4

A

A

A Manual Example

 Build a

datapath

— Allocate resources for each state

A\ 4

(E§£%=am

A

\4
i < 1@: 128

acc

k+/ &328 \

acc = 0;

acc += a[i];

for (i=0; i < 128; i++)

J

+

a[i]

addr

/

1

A Manual Example
* Build a datapath

- Determine register inputs

In from memory

1] '

<128 i >= 128 MUX MUX M

¢ v ¢

load afi]) i acc ali] ||| addr
@c-‘; alil 1\ v/ XUZS \ / 2
<

+ + +

A

acc = 0;
for (i=0; i < 128; i++)
acc += a[i];

A Manual Example

* Build a datapath
- Add outputs

v
i<128 i>=128

A4

@: afi]

A

In from memory

acc = 0;
for (i=0; i < 128; i++)
acc += a[il; acc Memory address

A Manual Example

* Build a datapath
- Add control signals

In from memory

acc = 0;
for (i=0; i < 128; i++)
acc += a[il; acc Memory address

A Manual Example

« Combine controller + datapath

Start In from memory

l

acc = 0;
Done Memory Read for (i=0; i < 128; i++)

acc += a[il; J acc Memory address

A Manual Example - Optimization

* Alternatives
— Use one adder (plus muxes)

In from memory

acc Memory address

A Manual Example — Summary

» Comparison with high-level synthesis
- Determining when to perform each operation
=> Scheduling
— Allocating resource for each operation
=> Resource allocation

- Mapping operations to allocated resources
=> Binding

Another Example: Try it at home

 Your turn

x=0;
for (i=0; i < 100; i++) {
if (a[i] > 0)
X ++;
else
X -

ali] = x;

}

//output x 7

1) Build FSM (do not perform if conversion)
2) Build datapath based on FSM

High-Level Synthesis

high-level code J

Could be C, C++, Java,

/Perl, Python, SystemC,
ImpulseC, etc.

| High-Level Synthesis |

v
Custom Circuit J

Usually a RT VHDL/Verilog
description, but could as
low level as a bit file for
FPGA, or a gate netlist.

High-Level Synthesis — Overview

acc = 0;
for (i=0; i < 128; i++)
acc += a[i];

l

High-Level Synthesis }

l In from memory

Done Memory Read
acc Memory address

Main Steps

High-level Code J

Converts code to intermediate
representation - allows all following
steps to use language independent

v format.
Intermediate J

A\ 4

Front-end [Syntactic Analysis]

Representation

A\ 4

[Optimization]

. \ 4 . . .
""""")) Determines when each operation will

‘‘‘‘‘‘ [Scheduling/Resource Allocation] P

""" execute, and resources used

Back-end v
.................... [Binding/Resource Sharing] Maps operations onto physical resources

Cycle accurate RTL code

Parsing & Syntactic Analysis

Syntactic Analysis

e Definition: Analysis of code to verify syntactic

correctness
— Converts code into intermediate representation

e Steps: similar to SW compilation
1) Lexical analysis (Lexing)
2) Parsing
3) Code generation —intermediate representation

High-level Codej

... [ey ——
[Syntactic Analysis] l
R [Parsing

Representation

Intermediate J ~~~~~

Intermediate Representation

e Parser converts tokens to intermediate
representation

— Usually, an abstract syntax tree

x=0;
if (y < 2)
X=1;

Intermediate Representation

* Why use intermediate representation?
— Easier to analyze/optimize than source code
- Theoretically can be used for all languages

+ Makes synthesis back end language independent

C Code J Java J Perl J

A 4 \ 4 A4

[Syntactic Analysis] [Syntactic Analysis] [Syntactic Analysis]

e

Intermediate
Representation

v Scheduling, resource
[Back End] allocation, binding,
independent of source
language - sometimes
optimizations too

Intermediate Representation

» Different Types
— Abstract Syntax Tree
— Control/Data Flow Graph (CDFG)
- Sequencing Graph
+

 We will focus on CDFG

— Combines control flow graph (CFG) and data flow
graph (DFG)

Control Flow Graphs (CFGs)

* Represents control flow dependencies of basic

blocks
* A basic block is a section of code that always

executes from beginning to end
+ l.e. no jumps into or out of block

acc = 0; Y
for (i=0; i < 128; i++) i<128? no
acc += a[i]; yes

Control Flow Graphs: Your Turn
* Find a CFG for the following code.

| = 0;
while (i < 10) {
if (x < 5)
y =2;
else if (z < 10)
y = 6;
I++;

’ 7

Data Flow Graphs

* Represents data dependencies between
operations

a b C d

NS\
2| C< ot
2=x-y;, (?

X z Y

v

Control/Data Flow Graph

e Combines CFG and DFG
- Maintains DFG for each node of CFG

acc=0;
for (i=0; i < 128; i++)
acc += al[i];

4

Transformation/Optimization

Synthesis Optimizations

* After creating CDFG, high-level synthesis
optimizes it with the following goals

— Reduce area

— Improve latency

— Increase parallelism

— Reduce power/energy

e 2 types of optimizations
— Data flow optimizations
— Control flow optimizations

Data Flow Optimizations

* Tree-height reduction

— Generally made possible from commutativity, associativity, and distributivity

xX=a+b+c+d

a b C d
\\K/,// a]\M//b i\/)j
\+\ / > + \+/ +

a b

C d a b C d
N/ NN
\\+/* :> + *
e

S

Data Flow Optimizations

* Operator Strength Reduction

— Replacing an expensive (“strong”) operation with a faster one
— Common example: replacing multiply/divide with shift

1 multiplication 0 multiplications
b[i] = a[i] * 8;J b[i] = a[i] << 3;J

c=b<< 2
a=b+c

c=b << 2
d=b<<3;

a=c+d+b;

111

Data Flow Optimizations

* Constant propagation
— Statically evaluate expressions with constants

X=0;

y =x *15; ::::i>

z=y+ 10;

.

N < X
i
= O O

Data Flow Optimizations

* Function Specialization
— Create specialized code for common inputs

+ Treat common inputs as constants

+ If inputs not known statically, must include if statement for
each call to specialized function

int f (int x) { int f (int x) { int f_opt () {
y = X * 15; y =x * 15; return 10;
10 return y + 10;
} return y + 10; Treat , ¥
frequent
7 input as a 4
constant :>
for (I=Moo; I++) for (I=0; I < 1000; I++)
f(0); f_opt();
by by
7/7 4 57

Data Flow Optimizations

* Common sub-expression elimination

— |f expression appears more than once, repetitions can
be replaced

...... | :>

X + y already determined

Data Flow Optimizations

e Dead code elimination

— Remove code that is never executed

+ May seem like stupid code, but often comes from constant
propagation or function specialization

int f (int x) { int f_opt () {
if(x>0) azb * 15;
a=b*15; return a;
else }
a=b/4
return a;
¥ 7 Specialized version for x > 0

does not need else branch -
“dead code”

Data Flow Optimizations

* Code motion (hoisting/sinking)
— Avoid repeated computation

for (|=O, | < 100, |++) { Z=X+Y;
Z=X+Y, :: > for (1=0; 1 < 100; I++) {
bli] =ali] +z; b[i] =ali] +z;

} 7 i 7

Control Flow Optimizations

* Loop Unrolling

— Replicate body of loop

+ May increase parallelism

for (i=0; i < 128; i++)
ali] = bl[i] + c[i];

—)

for (i=0; i < 128; i+=2) {
ali] = bl[i] + c[i];

ali+1] = b[i+1] + c[i+1]

}

4

Control Flow Optimizations

* Function inlining — replace function call with body
of function

— Common for both SW and HW
— SW: Eliminates function call instructions
— HW: Eliminates unnecessary control states

for (i=0; i < 128; i++)
2L = 1Bl i)y for (i=0; i < 128; i++)
int f (int a, int b) { :1> afi] = b[i] + c[i] * 15; J

returna+b * 15;

} 4

Control Flow Optimizations

* Conditional Expansion —replace if with logic

expression

— Execute if/else bodies in parallel

y =ab
if (a)

X = b+d
else

X = bd

4

[DeMicheli]

>> y =ab
x = a(b+d) + a ‘bd

J

Can be further optimized to:

y =ab
x =y + d(a+b)

|

Example

* Optimize this

X=0;

y=a+b;

if (x < 15)
Zz=a+b-c;

else

z=X+12;

output =z * 12; ;7

Scheduling/Resource Allocation

Scheduling

* Scheduling assigns a start time to each operation in DFG
— Start times must not violate dependencies in DFG

— Start times must meet performance constraints
+ Alternatively, resource constraints

* Performed on the DFG of each CFG node
— Cannot execute multiple CFG nodes in parallel

Examples

Scheduling Problems

* Several types of scheduling problems
- Usually some combination of performance and resource constraints

* Problems:
- Unconstrained
+ Not very useful, every schedule is valid
— Minimum latency
- Latency constrained
- Mininum-latency, resource constrained

+ i.e. find the schedule with the shortest latency, that uses less than a
specified # of resources

+ NP-Complete

- Mininum-resource, latency constrained

+ i.e. find the schedule that meets the latency constraint (which may be
anything), and uses the minimum # of resources

+ NP-Complete

Minimum Latency Scheduling

 ASAP (as soon as possible) algorithm

- Find a candidate node

+ Candidate is a node whose predecessors have been scheduled and completed (or
has no predecessors)

- Schedule node one cycle later than max cycle of predecessor
- Repeat until all nodes scheduled

e f g h

a b C d
\/ \/ R g

Cyelel e e N
Cycle2 \ */ l

Cycled

Cycle4d

Minimum possible latency - 4 cycles

Minimum Latency Scheduling

 ALAP (as late as possible) algorithm
- Run ASAP, get minimum latency L

- Find a candidate

+ Candidate is node whose successors are scheduled (or has none)
- Schedule node one cycle before min cycle of successor

+ Nodes with no successors scheduled to cycle L
- Repeat until all nodes scheduled

L A= A /A0 S N S
\ /
Cycle2 *
...................................... \.\
Cycled %
.. \/ Weeenerrrnnarnen
Cycle4d

L =4 cycles

Latency-Constrained Scheduling

* Instead of finding the minimum latency, find
latency less than L

o Solutions:

- Use ASAP, verify that minimum latency less than
L

- Use ALAP starting with cycle L instead of
minimum latency (don’ t need ASAP)

Scheduling with Resource Constraints

e Schedule must use less than specified number of
resources

Constraints: 1 ALU (+/-), 1 Multiplier

Scheduling with Resource Constraints

* Schedule must use less than specified
number of resources

Constraints: 2 ALU (+/-), 1 Multiplier

Mininum-Latency, Resource-Constrained
Scheduling

* Definition: Given resource constraints, find
schedule that has the minimum latency

- Example:

Constraints: 1 ALU (+/-), 1 Multiplier

\ / \ / --------------
........
....
K .
R 3
: \
) -
K . K
...................
......
............. \ PACTTTTTTLL Teagaans
....... / \
---------- B .
o ., ‘.
. “
)
Q. '.
K
"""" N . Piiae
............. "Taamgmunnt®
..............
. e
. .
K .
R
1]
‘0
‘e
“a .
...I.IIIIII.‘

Mininum-Latency, Resource-Constrained
Scheduling

* Definition: Given resource constraints, find
schedule that has the minimum latency

- Example:

Constraints: 1 ALU (+/-), 1 Multiplier

Mininum-Latency, Resource-Constrained
Scheduling

* Definition: Given resource constraints, find
schedule that has the minimum latency

- Example:

Constraints: 1 ALU (+/-), 1 Multiplier

Binding/Resource Sharing

Binding

* During scheduling, we determined:
- When operations will execute
- How many resources are needed

» We still need to decide which operations
execute on which resources — binding
- If multiple operations use the same resource, we

need to decide how resources are shared -
resource sharing.

Binding

* Map operations onto resources such that

operations in same cycle do not use same
resource

2 ALUs (+/-), 2 Multipliers

GD\@) 77 @M

¥
Cycle3d + /

Cycle4 \/7@7

P

&/

Mult1 ALU1 ALU2 Mult2

Binding
* Many possibilities

- Bad binding may increase resources, require huge
steering logic, reduce clock, etc.

2 ALUs (+/-), 2 Multipliers

Cycle2

oot RO B /L D
e WA A i

Cycle3d ?G)f

Cycle4 \?\@5/

Mult1 ALU1 Mult2 ALU?2

Binding
« Can’tdo this

- 1 resource can’ t perform multiple ops simultaneously!

2 ALUs (+/-), 2 Multipliers

Cycle1 1\A ®/ /@ // ;@{?’ \, / |
Cycle2 @ , / f//®> 4®
NOY

Cycle3d

7 g
Cycle4 \§®

Translation to Datapath

Add mux for each input

Add input to left mux for

a b ¢ e g h i
/\T \ /
Cycle1 @ 2 3 M
Cycle2 ;@j (J/ 4 @
¥
Cycle3 \
iCH
Cycle4
1) Add resources and
a b ch dei g e f registers
1 L Ll W 2)
Mux Mux Mux Mux 3
- : . *) each left input in DFG
Mult(1,5) ALU(2,7,8,4) Mult(6) ALU(3)
v v v ! 4) Do same for right mux
Reg Reg Reg Reg .
: | | 5) If only 1 input, remove

mux

Summary

Main Steps

* Front-end (lexing/parsing) converts code into intermediate representation
- We looked at CDFG
« Scheduling assigns a start time for each operation in DFG
- CFG node start times defined by control dependencies
- Resource allocation determined by schedule
« Binding maps scheduled operations onto physical resources
— Determines how resources are shared
« Big picture:
- Scheduled/Bound DFG can be translated into a datapath

- CFG can be translated to a controller
- => High-level synthesis can create a custom circuit for any CDFG!

Limitations

* Task-level parallelism

- Parallelism in CDFG limited to individual control states
+ Can’ t have multiple states executing concurrently

- Potential solution: use model other than CDFG
+ Kahn Process Networks
Nodes represents parallel processes/tasks
Edges represent communication between processes

+ High-level synthesis can create a controller+datapath for each
process
Must also consider communication buffers

- Challenge:

+ Most high-level code does not have explicit parallelism
Difficult/impossible to extract task-level parallelism from code

Limitations

* Coding practices limit circuit performance

- Very often, languages contain constructs not appropriate
for circuit implementation
+ Recursion, pointers, virtual functions, etc.

* Potential solution: use specialized languages
- Remove problematic constructs, add task-level parallelism
» Challenge:

- Difficult to learn new languages
- Many designers resist changes to tool flow

Limitations

« Expert designers can achieve better circuits

- High-level synthesis has to work with specification in code
+ Can be difficult to automatically create efficient pipeline
+ May require dozens of optimizations applied in a particular order

- Expert designer can transform algorithm
+ Synthesis can transform code, but can’ t change algorithm

* Potential Solution: 7?7
- New language?
- New methodology?
- New tools?

