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Exis%ng	Design	Flow	
•  Register-transfer (RT) synthesis 

-  Specify RT structure (muxes, registers, etc) 
-  Allows precise specification 
-  But, time consuming, difficult, error prone 
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Overview	
•  Input:	
-  High-level	languages	(e.g.,	C)	
-  Behavioral	hardware	descrip=on	languages	(e.g.,	VHDL)		
-  State	diagrams	/	logic	networks		

•  Tools:	
-  Parser	
-  Library	of	modules		

•  Constraints:		
-  Area	constraints	(e.g.,	#	modules	of	a	certain	type)		
-  Delay	constraints	(e.g.,	set	of	opera=ons	should	finish	in	λ	clock	
cycles)		

•  	Output:		
-  Opera=on	scheduling	(=me)	and	binding	(resource)	
-  Control	genera=on	and	detailed	interconnec=ons		



High-level	Synthesis	-	Benefits	
•  Ra=o	of	C	to	VHDL	developers	(10000:1	?)	
•  Easier	to	specify	complex	designs	
•  Technology/architecture	independent	designs	
•  Manual	HW	design	poten=ally	slower	
- Similar	to	assembly	code	era	
- Programmers	could	always	beat	compiler	
- But,	no	longer	the	case	

•  Ease	of	HW/SW	par==oning	
- enhance	overall	system	efficiency	

•  More	efficient	verifica=on	and	valida=on	
- Easier	to	V	&	V	of	high-level	code	



High-level	Synthesis	
•  More	challenging	than	SW	compila=on	
- Compila=on	maps	behavior	into	assembly	instruc=ons	
- Architecture	is	known	to	compiler	

•  HLS	creates	a	custom	architecture	to	execute	
specified	behavior	
- Huge	hardware	explora=on	space	
- Best	solu=on	may	include	microprocessors	
-  Ideally,	should	handle	any	high-level	code	
+ 	But,	not	all	code	appropriate	for	hardware	



High-level	Synthesis:	An	Example	
•  First,	consider	how	to	manually	convert	high-level	
code	into	circuit	

•  Steps	
1)  Build	FSM	for	controller	
2)  Build	datapath	based	on	FSM	

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 



A	Manual	Example	
•  Build a FSM (controller) 
- Decompose code into states 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

acc=0, i = 0 

load a[i] 

acc += a[i] 

i++ 

Done 

i	<	128	 i	>=	128	



A Manual Example 
•  Build a datapath 
- Allocate resources for each state 

acc i 

acc=0, i = 0 

load a[i] 

acc += a[i] 

i++ 

Done 

<  

addr a[i] 

+ + + 

1 128 1 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

i	<	128	 i	>=	128	



A Manual Example 
•  Build a datapath 
- Determine register inputs 

acc i 

<  

addr a[i] 

+ + + 

1 128 

2x1 

0 

2x1 

0 

1 

2x1 

&a 

In from memory 

acc=0, i = 0 

load a[i] 

acc += a[i] 

i++ 

Done 

i	<	128	 i	>=	128	

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

MUX MUX MUX 



A Manual Example 
•  Build a datapath 
- Add outputs 

acc i 

<  

addr a[i] 

+ + + 

1 128 

2x1 

0 

2x1 

0 

1 

2x1 

&a 

In from memory 

Memory address acc 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

acc=0, i = 0 

load a[i] 

acc += a[i] 

i++ 

Done 

i	<	128	 i	>=	128	 MUX MUX MUX 



A Manual Example 
•  Build a datapath 
- Add control signals 

acc i 

<  

addr a[i] 

+ + + 

1 128 

2x1 

0 

2x1 

0 

1 

2x1 

&a 

In from memory 

Memory address acc 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

acc=0, i = 0 

load a[i] 

acc += a[i] 

i++ 

Done 

i	<	128	 i	>=	128	 MUX MUX MUX 



A Manual Example 
•  Combine controller + datapath 

acc i 

<  

addr a[i] 

+ + + 

1 128 

2x1 

0 

2x1 

0 

1 

2x1 

&a 

In from memory 

Memory address acc 
Done Memory Read 

Controller 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

Start	

MUX MUX MUX 



A	Manual	Example	-	Op%miza%on	
•  Alterna=ves	
- Use	one	adder	(plus	muxes)	

acc i 

<  

addr a[i] 

+ 

128 

2x1 

0 

2x1 

0 

1 

2x1 

&a 

In from memory 

Memory address acc 

MUX MUX 

MUX MUX MUX 



A Manual Example – Summary  
•  Comparison with high-level synthesis 
- Determining when to perform each operation 

=> Scheduling 
- Allocating resource for each operation 

=> Resource allocation 
- Mapping operations to allocated resources 

=> Binding 



Another Example: Try it at home 
•  Your turn 

x=0; 
for (i=0; i < 100; i++) { 
   if (a[i] > 0)  
      x ++; 
   else 
      x --; 
 
   a[i] = x; 
} 
//output x 

1)  Build FSM (do not perform if conversion) 
2)  Build datapath based on FSM 



High-Level Synthesis 

High-Level Synthesis 

Could be C, C++, Java, 
Perl, Python, SystemC, 
ImpulseC, etc.  

Usually a RT VHDL/Verilog 
description, but could as 
low level as a bit file for 
FPGA, or a gate netlist. 

high-level	code	

Custom Circuit 



High-Level	Synthesis	–	Overview		

High-Level Synthesis 

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

acc i 

<  

addr a[i] 

+ + + 
1 128 

2x1 

0 
2x1 

0 

1 

2x1 

&a 

In from memory 

Memory address acc 
Done Memory Read 

Controller 



Main Steps 

Syntactic Analysis 

Optimization 

Scheduling/Resource Allocation 

Binding/Resource Sharing 

High-level Code 

Intermediate 
Representation 

Cycle	accurate	RTL	code	

Converts code to intermediate 
representation - allows all following 
steps to use language independent 
format. 

Determines when each operation will 
execute, and resources used 

Maps operations onto physical resources 

Front-end 

Back-end 



Parsing	&	Syntac%c	Analysis	



Syntactic Analysis 
•  Defini=on:	Analysis	of	code	to	verify	syntac=c	
correctness	
-  Converts	code	into	intermediate	representa=on	

•  Steps:	similar	to	SW	compila=on	
1)  Lexical	analysis	(Lexing)	
2)  Parsing	
3)  Code	genera=on	–	intermediate	representa=on	

Syntactic Analysis 

High-level Code 

Intermediate 
Representation 

Lexical Analysis 

Parsing 



Intermediate	Representa%on	
•  Parser	converts	tokens	to	intermediate	
representa=on	
- Usually,	an	abstract	syntax	tree	

x = 0; 
if (y < z) 
  x = 1; 
d = 6;  

Assign  

if 

cond assign assign 

x 0 

x 1 d 6 y < z 



Intermediate Representation 
•  Why	use	intermediate	representa=on?	
- Easier to analyze/optimize than source code 
- Theoretically can be used for all languages 

+ Makes synthesis back end language independent 

Syntactic Analysis 

C Code 

Intermediate 
Representation 

Syntactic Analysis 

Java 

Syntactic Analysis 

Perl 

Back End 

Scheduling, resource 
allocation, binding, 
independent of source 
language - sometimes 
optimizations too 



Intermediate Representation 
•  Different Types 
- Abstract Syntax Tree  
- Control/Data Flow Graph (CDFG) 
- Sequencing Graph 
+  ... 

•  We will focus on CDFG 
- Combines control flow graph (CFG) and data flow 

graph (DFG) 



Control Flow Graphs (CFGs) 
•  Represents	control	flow	dependencies	of	basic	
blocks	

•  A	basic	block	is	a	sec=on	of	code	that	always	
executes	from	beginning	to	end	

+ 	I.e.	no	jumps	into	or	out	of	block	

acc = 0; 
for (i=0; i < 128; i++)  
   acc += a[i]; 

i < 128? 

acc=0, i = 0 

acc += a[i] 
i ++ 

Done 

yes	 no	



Control Flow Graphs: Your Turn 
•  Find a CFG for the following code. 

 

i = 0; 
while (i < 10) { 
   if (x < 5) 
      y = 2; 
   else if (z < 10) 
      y = 6; 
   i++; 
} 



Data Flow Graphs 
•  Represents data dependencies between 

operations 

x	=	a+b;	
y	=	c*d;	
z	=	x	-	y;		

+ * 

- 

a b c d 

x z y 



Control/Data Flow Graph 
•  Combines CFG and DFG 
- Maintains DFG for each node of CFG 

acc	=	0;	
for	(i=0;	i	<	128;	i++)		
			acc	+=	a[i];	

if (i < 128) 

acc=0; i=0; 

acc += a[i] 
i ++ 

Done 

acc 

0 

i 

0 

+ 

acc a[i] 

acc 

+ 

i 1 

i 



Transforma%on/Op%miza%on	



Synthesis	Op%miza%ons	
•  Aier	crea=ng	CDFG,	high-level	synthesis	
op=mizes	it	with	the	following	goals	
- Reduce	area	
-  Improve	latency	
-  Increase	parallelism	
- Reduce	power/energy	

•  2	types	of	op=miza=ons	
- Data	flow	op=miza=ons	
- Control	flow	op=miza=ons	



•  Tree-height	reduc=on	
-  Generally	made	possible	from	commuta=vity,	associa=vity,	and	distribu=vity	

Data	Flow	Op%miza%ons	

+ 

+ 

+ 

+ + 

+ 

a b c d 
a b c d 

+ 
+ 

* 

a b c d 

+ * 

+ 

a b c d 

x = a + b + c + d 



•  Operator	Strength	Reduc=on	
-  Replacing	an	expensive	(“strong”)	opera=on	with	a	faster	one	
-  Common	example:	replacing	mul=ply/divide	with	shii	

Data Flow Optimizations 

b[i] = a[i] * 8; b[i] = a[i] << 3; 

a = b * 5; c = b << 2; 
a = b + c; 

1 multiplication 0 multiplications 

a = b * 13; 
c = b << 2; 
d = b << 3; 
a = c + d + b; 



•  Constant	propaga=on	
- Sta=cally	evaluate	expressions	with	constants	
	

Data	Flow	Op%miza%ons	

x	=	0;	
y	=	x	*	15;	
z	=	y	+	10;	

x	=	0;	
y	=	0;	
z	=	10;	



•  Func=on	Specializa=on	
- Create	specialized	code	for	common	inputs	
+ 	Treat	common	inputs	as	constants	
+ 	If	inputs	not	known	sta=cally,	must	include	if	statement	for	
each	call	to	specialized	func=on	

Data	Flow	Op%miza%ons	

int f (int x) { 
   y = x * 15; 
   return  y + 10; 
} 

for (I=0; I < 1000; I++) 
   f(0); 
   … 
} 

int f_opt () { 
   return 10; 
} 

for (I=0; I < 1000; I++) 
   f_opt(); 
   … 
} 

Treat 
frequent 
input as a 
constant  

int f (int x) { 
   y = x * 15; 
   return  y + 10; 
} 



Data	Flow	Op%miza%ons	
•  Common	sub-expression	elimina=on	
-  If	expression	appears	more	than	once,	repe==ons	can	
be	replaced	

			a	=	x	+	y;	
			.	.	.	.	.	.	
			.	.	.	.	.	.	
			b	=	c	*	25	+	x	+	y;	

  	a	=	x	+	y;	
			.	.	.	.	.	.	
			.	.	.	.	.	.	
			b	=	c	*	25	+	a;	

x + y already determined 



Data	Flow	Op%miza%ons	
•  Dead	code	elimina=on	
- Remove	code	that	is	never	executed	
+ 	May	seem	like	stupid	code,	but	oien	comes	from	constant	
propaga=on	or	func=on	specializa=on	

int f (int x) { 
   if (x > 0 ) 
      a = b * 15; 
   else 
      a = b / 4; 
   return  a; 
} 

int f_opt () { 
   a = b * 15; 
   return  a; 
} 

Specialized version for x > 0 
does not need else branch - 
“dead code” 



Data	Flow	Op%miza%ons	
•  Code	mo=on	(hois=ng/sinking)	
- Avoid	repeated	computa=on	

for	(I=0;	I	<	100;	I++)	{	
			z	=	x	+	y;	
			b[i]	=	a[i]	+	z	;	
}	

z	=	x	+	y;	
for	(I=0;	I	<	100;	I++)	{	
			b[i]	=	a[i]	+	z	;	
}	



Control	Flow	Op%miza%ons	
•  Loop	Unrolling	
- Replicate	body	of	loop	
+ 	May	increase	parallelism	

for	(i=0;	i	<	128;	i++)		
			a[i]	=	b[i]	+	c[i];	

for	(i=0;	i	<	128;	i+=2)	{		
			a[i]	=	b[i]	+	c[i];	
			a[i+1]	=	b[i+1]	+	c[i+1]	
}	



Control	Flow	Op%miza%ons	
•  Func=on	inlining	–	replace	func=on	call	with	body	
of	func=on	
- Common	for	both	SW	and	HW	
- SW:	Eliminates	func=on	call	instruc=ons	
- HW:	Eliminates	unnecessary	control	states	

for	(i=0;	i	<	128;	i++)		
			a[i]	=	f(	b[i],	c[i]	);	
.	.	.	.	
int	f	(int	a,	int	b)	{	
		return	a	+	b	*	15;	
}	

for	(i=0;	i	<	128;	i++)		
			a[i]	=	b[i]	+	c[i]	*	15;	
	



•  Condi=onal	Expansion	–	replace	if	with	logic	
expression	
- Execute	if/else	bodies	in	parallel	

Control	Flow	Op%miza%ons	

y	=	ab	
if	(a)	
			x	=	b+d	
else	
			x	=	bd	

y	=	ab	
x	=	a(b+d)	+	a‘bd	

y	=	ab	
x	=	y	+	d(a+b)	

[DeMicheli] 

Can be further optimized to: 



Example	
•  Op=mize	this	

x	=	0;	
y	=	a	+	b;	
if	(x	<	15)	
			z	=	a	+	b	-	c;	
else	
			z	=	x	+	12;	
output	=	z	*	12;	



Scheduling/Resource	Alloca%on	



Scheduling 
•  Scheduling	assigns	a	start	=me	to	each	opera=on	in	DFG	
-  Start	=mes	must	not	violate	dependencies	in	DFG	
-  Start	=mes	must	meet	performance	constraints	

+ Alterna=vely,	resource	constraints	

•  Performed	on	the	DFG	of	each	CFG	node	
-  	Cannot	execute	mul=ple	CFG	nodes	in	parallel	
	



Examples 

+ 

+ 

+ 

+ + 

+ 

a b c d 
a b c d 

+ + 

+ 

a b c d 

Cycle1 

Cycle2 

Cycle3 
Cycle3 

Cycle1 Cycle2 

Cycle1 

Cycle2 



Scheduling	Problems	
•  Several types of scheduling problems 

-  Usually some combination of performance and resource constraints 
•  Problems: 

-  Unconstrained 
+ Not very useful, every schedule is valid 

-  Minimum latency 
-  Latency constrained 
-  Mininum-latency, resource constrained 

+ i.e. find the schedule with the shortest latency, that uses less than a 
specified # of resources 

+ NP-Complete 
-  Mininum-resource, latency constrained 

+ i.e. find the schedule that meets the latency constraint (which may be 
anything), and uses the minimum # of resources 

+ NP-Complete 



Minimum Latency Scheduling 
•  ASAP (as soon as possible) algorithm 

-  Find a candidate node 
+ Candidate is a node whose predecessors have been scheduled and completed (or 

has no predecessors) 
-  Schedule node one cycle later than max cycle of predecessor 
-  Repeat until all nodes scheduled 

+ + 

* 

a b c d 

* 

- < 

e f g h 

Cycle1 

Cycle2 

Cycle3 

+ Cycle4 

Minimum possible latency - 4 cycles  



Minimum Latency Scheduling 
•  ALAP (as late as possible) algorithm 

-  Run ASAP, get minimum latency L  
-  Find a candidate 

+ Candidate is node whose successors are scheduled (or has none) 
-  Schedule node one cycle before min cycle of successor 

+ Nodes with no successors scheduled to cycle L 
-  Repeat until all nodes scheduled 

+ + 

* 

a b c d 

* - 

< 

e f g h 

Cycle1 

Cycle2 

Cycle3 

+ Cycle4 

L = 4 cycles  



Latency-Constrained Scheduling 
•  Instead of finding the minimum latency, find 

latency less than L
•  Solutions: 
- Use ASAP, verify that minimum latency less than 

L. 
- Use ALAP starting with cycle L instead of 

minimum latency (don’t need ASAP) 



•  Schedule	must	use	less	than	specified	number	of	
resources	

Scheduling	with	Resource	Constraints	

+ 

* 

a b c d 

+ 

- 

e f g 

Cycle1 

Cycle3 

Cycle4 
+ Cycle5 

 + 
* 

Cycle2 

Constraints: 1 ALU (+/-), 1 Multiplier 



Scheduling with Resource Constraints 
•  Schedule must use less than specified 

number of resources 

+ + 

* 

a b c d 

+ 

- 

e f g 

Cycle1 

Cycle2 

Cycle3 
+ Cycle4 

* 

Constraints: 2 ALU (+/-), 1 Multiplier 



•  Defini=on:	Given	resource	constraints,	find	
schedule	that	has	the	minimum	latency	
- Example: 

Mininum-Latency,	Resource-Constrained	
Scheduling	

a b c d e f 
g 

+ + 

Constraints: 1 ALU (+/-), 1 Multiplier 

+ 

- 

* 

+ 



•  Defini=on:	Given	resource	constraints,	find	
schedule	that	has	the	minimum	latency	
- Example: 

Mininum-Latency,	Resource-Constrained	
Scheduling	

a b c d e f g 

+ + 

Constraints: 1 ALU (+/-), 1 Multiplier 

+ 

- 

* 

+ 



•  Defini=on:	Given	resource	constraints,	find	
schedule	that	has	the	minimum	latency	
- Example: 

Mininum-Latency,	Resource-Constrained	
Scheduling	

a b c d e f g 

+ + 

Constraints: 1 ALU (+/-), 1 Multiplier 

+ 

- 

* 

+ 



Binding/Resource	Sharing	



Binding 
•  During scheduling, we determined: 
- When operations will execute 
- How many resources are needed 

•  We still need to decide which operations 
execute on which resources – binding 
-  If multiple operations use the same resource, we 

need to decide how resources are shared -
resource sharing. 



Binding 
•  Map operations onto resources such that 

operations in same cycle do not use same 
resource 

* + + 

* * 

+ 

- 

- 

1 2 3 

4 5 6 

7 
8 

Cycle1 

Cycle2 

Cycle3 

Cycle4 

2 ALUs (+/-), 2 Multipliers 

Mult1 ALU1 ALU2 Mult2 



Binding 
•  Many possibilities 
-  Bad binding may increase resources, require huge 

steering logic, reduce clock, etc. 

* + + 

* * 

+ 

- 

- 

1 2 3 

4 5 6 

7 
8 

Cycle1 

Cycle2 

Cycle3 

Cycle4 

2 ALUs (+/-), 2 Multipliers 

Mult1 ALU1 ALU2 Mult2 



Binding 
•  Can’t do this 
-  1 resource can’t perform multiple ops simultaneously! 

* + + 

* * 

+ 

- 

- 

1 2 3 

4 5 6 

7 
8 

Cycle1 

Cycle2 

Cycle3 

Cycle4 

2 ALUs (+/-), 2 Multipliers 



Translation to Datapath 

* + + 

* * 

+ 

- 

- 

1 2 3 

4 5 6 

7 
8 

Cycle1 

Cycle2 

Cycle3 

Cycle4 

Mult(1,5) Mult(6) ALU(2,7,8,4) ALU(3) 

Mux Mux 

Reg 

Mux Mux 

a b c h

Reg Reg Reg 

a b c d e f g h i 

d e i g e f 
1)  Add resources and 

registers 

2)  Add mux for each input 

3)  Add input to left mux for 
each left input in DFG 

4)  Do same for right mux 

5)  If only 1 input, remove 
mux 



Summary	



Main Steps 
•  Front-end (lexing/parsing) converts code into intermediate representation 

-  We looked at CDFG 
•  Scheduling assigns a start time for each operation in DFG 

-  CFG node start times defined by control dependencies 
-  Resource allocation determined by schedule 

•  Binding maps scheduled operations onto physical resources 
-  Determines how resources are shared 

•  Big picture: 
-  Scheduled/Bound DFG can be translated into a datapath 
-  CFG can be translated to a controller 
-  => High-level synthesis can create a custom circuit for any CDFG! 



Limitations 
•  Task-level parallelism 
-  Parallelism in CDFG limited to individual control states 

+ Can’t have multiple states executing concurrently 
-  Potential solution: use model other than CDFG 

+ Kahn Process Networks 
n  Nodes represents parallel processes/tasks 
n  Edges represent communication between processes 

+ High-level synthesis can create a controller+datapath for each 
process 

n  Must also consider communication buffers 

-  Challenge:  
+ Most high-level code does not have explicit parallelism 

n  Difficult/impossible to extract task-level parallelism from code 



Limitations 
•  Coding practices limit circuit performance 
-  Very often, languages contain constructs not appropriate 

for circuit implementation 
+ Recursion, pointers, virtual functions, etc. 

•  Potential solution: use specialized languages 
-  Remove problematic constructs, add task-level parallelism 

•  Challenge: 
-  Difficult to learn new languages 
- Many designers resist changes to tool flow 



Limitations 
•  Expert designers can achieve better circuits 
-  High-level synthesis has to work with specification in code 

+ Can be difficult to automatically create efficient pipeline 
+ May require dozens of optimizations applied in a particular order 

-  Expert designer can transform algorithm 
+ Synthesis can transform code, but can’t change algorithm 

•  Potential Solution: ??? 
-  New language? 
-  New methodology? 
-  New tools? 


