
!System(on(Chip!Design!
Data!Flow!So5ware!Implementa8on!

(Based!on!slides!at!ECE!522!at!UNM)!

Hao$Zheng$
CompSci&Eng
UofSouth$Florida$$

1

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 1 (9/23/13)

Software Implementation (A Practical Introduction to HW/SW Codesign, P. Schau-

mont)

There are several different approaches of mapping software into hardware:

We will first focus on implementing dataflow on single-processor systems

This requires a sequential scheduling of dataflow actors

There are two methods to implement a sequential schedule

Software Mapping
of SDF

Sequential
(on a single CPU)

Parallel
(on a multiple CPUs)

*Processor Networks

Using a Static
Schedule

*Single-thread executive
*Inlined

Using a Dynamic
Schedule

*Single-thread executive
*Multithreading

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 2 (9/23/13)

Software Implementation of Data-Flow

•Using a dynamic schedule

Here, the CPU determines the order in which actors should execute at runtime

by testing firing rules to evaluate which actor can run

Dynamic scheduling of an SDF system can be done using a single-thread execu-

tive or multi-threading

•Using a static schedule

Here, we need to determine upfront the order of actor firing

Allows for a single-threaded execution and an optimization in which the entire

dataflow graph is ’inlined’ into a single function

Recall the essential features of SDF graphs:

SDF graphs represent concurrent systems, and use actors and FIFO queues to

communicate

Firing only depends on the availability of data (tokens) in the FIFO queues

The amount of tokens produced/consumed per firing is given by labels

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 3 (9/23/13)

Software Implementation of Data-Flow

FIFO Queues:

In principle, SDF systems require infinite FIFO queues

In practice, queues have a limited # of positions, and need overflow detection

Another approach is to create a FIFO that grows dynamically each time the

FIFO overflows

However, if we know a PASS, we know the maximum number of tokens on each

queue and can set the queue size accordingly

void Q.put(element &) void Q.get()

N

unsigned Q.getsize()

Software object Q

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 4 (9/23/13)

Software Implementation of Data-Flow

A typical software interface of a FIFO queue has two parameters and three methods

• The number of elements N that can be stored by the queue

• The data type element of queue components

• A method to put elements into the queue

• A method to get elements from the queue

• A method to test the number of elements in the queue

A standard data structure such as a circular queue can be used

A circular queue consists of an array, a write-pointer and a read-pointer, and

use modulo addressing, i.e., element I at (Rptr + I) mod array_size.

Queue
Wprt Rprt

Queue

Wprt

Rprt
5

Queue

Wprt

Rprt
5

6

Init After ’put(5)’ After ’put(6)’

Queue

Wprt

Rprt
5

6

’put(2)’ -- NO!
Queue is Full

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 5 (9/23/13)

Software Implementation of Data-Flow Model

Example fifo in C:

#define MAXFIFO 1024

typedef struct fifo {

int data[MAXFIFO]; // array

unsigned wptr; // write pointer

unsigned rptr; // read pointer

} fifo_t;

void init_fifo(fifo_t *F);

void put_fifo(fifo_t *F, int d);

int get_fifo(fifo_t *F);

unsigned fifo_size(fifo_t *F);

int main()

 {

 fifo_t F1;

 init_fifo(&F1); // resets wptr, rptr

Queue storage can either be
fixed statically

or growable dynamically

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 6 (9/23/13)

Software Implementation of Data-Flow Model

 put_fifo(&F1, 5);

 put_fifo(&F1, 6); // prints: 2 5

 printf("%d %d\n", fifo_size(&F1), get_fifo(&F1));

 printf("%d\n", fifo_size(&F1)); // prints: 1

 }

Actors:

A dataflow actor can be represented as a function, with an interface to FIFOs

The firing of an actor can be implemented as a simple C function

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 7 (9/23/13)

Software Implementation of Data-Flow Model

The function checks the firing rules and manipulates the input and output queue

Think of this as a small controller that controls its execution

The local controller of an actor has three states

In the read state, it remains idle until a token arrives at the input queue

In the work state, the controller reads one token and runs the function, produc-

ing an output token which is put on the output queue in the write state

We must make sure the firing rule is implemented correctly

When an SDF actor fires, it reads all input queues and writes into all output

queues according to the specified production and consumption rates

A C implementation:

typedef struct actorio {

fifo_t *in1, *in2;

 fifo_t *out1, *out2;

} actorio_t;

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 8 (9/23/13)

Software Implementation of Data-Flow Model

void sort_actor(actorio_t *g)

 {

int r1, r2;

while((fifo_size(g->in1) > 0) &&

 (fifo_size(g->in2) > 0))

 {

 r1 = get_fifo(g->in1);

 r2 = get_fifo(g->in2);

 put_fifo(g->out1, (r1 > r2) ? r1 : r2);

 put_fifo(g->out2, (r1 > r2) ? r2 : r1);

 }

 }

Sequential Targets with a Dynamic Schedule:

In a dynamic system schedule, the firing rules of the actors will be tested at runt-

ime

GCD	Example	

14

HW/SW Codesign w/ FPGAs Data-Flow Modeling ECE 522

ECE UNM 18 (9/9/13)

Example

Consider an SDF that models Euclid’s Greatest Common Divisor (GCD):

This SDF evaluates the GCD of two numbers, a and b

The sort actor reads two numbers, sorts them and copies them to the output

The diff actor subtracts the smaller number from the larger one (when they are

different)

After a couple of iterations, the value of the tokens converge to the GCD

sort

out1 = (a > b) ? a : b;
out2 = (a > b) ? b : a;

diff

out1 = (a != b) ? a-b: a;
out2 = b;

sort

1

diff

1

1

1

1

1

1

1

initial token

value = a

initial token

value = b

F1	

F2	

F3	

F4	

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 9 (9/23/13)

Software Implementation: Single-Thread Dynamic Schedules

In a single-thread dynamic schedule, we implement the system schedule as a function

that instantiates all actors and queues

And then it calls the actors in a round-robin fashion

void main() {

 fifo_t F1, F2, F3, F4;

 actorio_t sort_io;

 ...

 sort_io.in1 = &F1;

 sort_io.in2 = &F2;

 sort_io.out1 = &F3;

 sort_io.out2 = &F4;

while (1)

 {

 sort_actor(&sort_io);

 // .. call other actors

 }

 }

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 10 (9/23/13)

Software Implementation: Single-Thread Dynamic Schedules

But what is the most appropriate call order of the actors in the system schedule?

Remember that it is impossible to call the actors in the wrong order,

This is true b/c each of them still has a firing rule that prevents them from run-

ning when there is no data available

Even though snk will be called as often as src, the firing rule of snk will only allow

that actor to run when there is sufficient data available

In Figure 2.19a, this means that the snk actor will fire ONLY every other time it is

called

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 11 (9/23/13)

Software Implementation: Single-Thread Dynamic Schedules

While this type of dynamic scheduling prevents actors from running prematurely,

some actors will produce tokens and cause queues to grow

In Figure 2.19b, the src actor produces two tokens per invocation while the snk

actor reads ONLY one per invocation

The basic problem with the system schedule in Figure 2.19 is that the system sched-

ule firing rate differs from the firing rate for a PASS

For example, the PASS for this system would be (src, snk, snk)

Two solutions:

• Solution 1: Adjust the system schedule to match the PASS

void main() {

 ..

 while (1) {

 src_actor(&src_io);

 snk_actor(&snk_io);

 snk_actor(&snk_io);

 } }

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 12 (9/23/13)

Software Implementation: Single-Thread Dynamic Schedules

Unfortunately, this solution is not elegant, because it voids the purpose of having a

dynamic scheduler

• Solution 2: Adjust the snk actor code to continue execution as long as there are

tokens present

void snk_actor(actorio_t *g) {

 int r1, r2;

 while ((fifo_size(g->in1) > 0)) {

 r1 = get_fifo(g->in1);

 ... // do processing

 }

}

Multi-Thread Dynamic Schedules

The actor functions as described are captured as real functions which exit in between

invocations

This prevents them from maintaining local state, and forces global variables

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 13 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

In multi-threaded programming, each actor lives in a separate thread

For example, in a C program with two functions, each thread is executing one of

the functions

In a single CPU scenario, the threads are time-interleaved by a scheduler and the

threads voluntarily release control back to the scheduler

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 14 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

Two functions are needed to build a threading system: create() and yield()

The scheduler can apply different strategies to schedule thread execution, with the

simplest one shown above as a round-robin schedule

Quickthreads is a cooperative multithreading library

The quickthreads API (Application Programmers Interface) consists of 4 functions

• spt_init(): initializes the threading system

• spt_create(stp_userf_t *F, void *G) creates a thread that will start execution with

user function F, and will be passed a single argument G

• stp_yield() releases control over the thread to the scheduler

• stp_abort() terminates a thread (prevents it from being scheduled)

Here’s an example

#include "../qt/stp.h"

#include <stdio.h>

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 15 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

void hello(void *null)

 {

int n = 3;

while (n-- > 0)

 {

 printf("hello\n");

 stp_yield();

 }

 }

void world(void *null)

 {

int n = 5;

while (n-- > 0)

 {

 printf("world\n");

 stp_yield();

 } }

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 16 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

int main(int argc, char **argv)

 {

 stp_init();

 stp_create(hello, 0);

 stp_create(world, 0);

 stp_start();

return 0;

 }

To compile and execute:

gcc -c ex1.c -o ex1 ../qt/libstp.a ../qt/libqt.a

./ex1

hello

world

hello

world

hello

world\nworld\nworld

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 17 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

A multi-threaded version of the SDF scheduler, using the sort_actor

void sort_actor(actorio_t *g) {

int r1, r2;

while (1) {

if ((fifo_size(g->in1) > 0) &&

 (fifo_size(g->in2) > 0)) {

 r1 = get_fifo(g->in1);

 r2 = get_fifo(g->in2);

 put_fifo(g->out1, (r1 > r2) ? r1 : r2);

 put_fifo(g->out2, (r1 > r2) ? r2 : r1);

 }

 stp_yield();

void main()

 {

 fifo_t F1, F2, F3, F4;

 actorio_t sort_io;

 ...

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 18 (9/23/13)

Software Implementation: Multi-Thread Dynamic Schedules

 sort_io.in1 = &F1; // connect queues to actor

 sort_io.in2 = &F2;

 sort_io.out1 = &F3;

 sort_io.out2 = &F4;

 stp_create(sort_actor, &sort_io); // create thread

 stp_start(); // start system scheduler

 }

Note, that as before, the execution rate of the actor code must be equal to the PASS

firing rate in order to avoid unbounded growth of tokens

Thus we use Solution 2 above, from the single-thread executive method

described earlier

Sequential Targets with Static Schedule

From the PASS analysis of an SDF graph, we know at least one solution for a feasible

sequential schedule

This solution can be used to optimize the implementation in several ways

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 19 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

• We can remove the firing rules since we know the exact sequential schedule

This will yield a small performance advantage (NOTE: it also prevents the use

of dynamic scheduler)

•We can also determine an optimal interleaving of the actors to minimize the storage

requirements for the queues

•We can create a fully inlined version of the SDF graph which will allow us to get rid

of the queues entirely

Here, the relative firing rates of A, B, and C must be 4, 2, and 1 to yield a PASS

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 20 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

Given the interleaving schedule on the right, it can be seen that queue AB will carry a

max of four tokens and queue BC will carry a max of two tokens in steady-state

However, there is a BETTER interleaving schedule, i.e., by calling the actors in the

sequence (A,A,B,A,A,B,C)

Here, the maximum # of tokens on any queue is reduced to two

Therefore, the schedule determined using PASS is not necessarily the optimal (find-

ing the optimal is an optimization problem)

As noted, implementing a truly static schedule means we do NOT need to check fir-

ing rules since the required tokens are quaranteed to be present

Consider optimizing GCD using a single-thread SDF system with a static schedule

Recall that a valid PASS requires firing each node once

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 21 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

void sort_actor(actorio_t *g) {

int r1, r2;

if ((fifo_size(g->in1) > 0) &&

 (fifo_size(g->in2) > 0)) {

 r1 = get_fifo(g->in1);

 r2 = get_fifo(g->in2);

 put_fifo(g->out1, (r1 > r2) ? r1 : r2);

 put_fifo(g->out2, (r1 > r2) ? r2 : r1);

 }}

void diff_actor(actorio_t *g) {

int r1, r2;

if ((fifo_size(g->in1) > 0) &&

 (fifo_size(g->in2) > 0)) {

 r1 = get_fifo(g->in1);

 r2 = get_fifo(g->in2);

 put_fifo(g->out1, (r1 != r2) ? r1 - r2 : r1);

 put_fifo(g->out2, r2);

 }}

// firing rule testing

// firing rule testing

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 22 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

void main() {

 fifo_t F1, F2, F3, F4;

 actorio_t sort_io, diff_io;

 sort_io.in1 = &F1;

 sort_io.in2 = &F2;

 sort_io.out1 = &F3;

 sort_io.out2 = &F4;

 diff_io.in1 = &F3;

 diff_io.in2 = &F4;

 diff_io.out1 = &F1;

 diff_io.out2 = &F2;

 // initial tokens

 put_fifo(&F1, 16);

 put_fifo(&F1, 12);

 // system schedule

while (1) {

 sort_actor(&sort_io);

 diff_actor(&diff_io); }}

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 23 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

There are two simple optimizations that can be applied here

• The firing schedule is static and fixed, and therefore the access order of queues is

also fixed

 This allows the queues to be optimized out and replaced with fixed variables

For example, assume that we have determined that the access sequence on a particu-

lar FIFO queue will always be as follows:

loop {

 ...

 F1.put(value1);

 F1.put(value2);

 ...

 .. = F1.get();

 .. = F1.get();

 }

// actor body

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 24 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

Given that only two positions of the FIFO F1 are occupied at a time, it can be

replaced by two variables.

 loop {

 ...

 r1 = value1;

 r2 = value2;

 ...

 .. = r1;

 .. = r2;

 }

• A second optimization involves inline’ing actor code in the main program

In combination with the above optimization, this eliminates the firing rules and

reduces the entire dataflow graph to a single function

For the GCD example, each queue (F1, F2, F3, and F4) will contain no more than a

single token, which means that each queue can be replaced by an integer

// Optimized actor body

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 25 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

void main() {

int f1, f2, f3, f4;

 // initial token

 f1 = 16;

 f2 = 12;

 // system schedule

while (1) {

 // code for actor 1

 f3 = (f1 > f2) ? f1 : f2;

 f4 = (f1 > f2) ? f2 : f1;

 // code for actor 2

 f1 = (f3 != f4) ? f3 - f4: f3;

 f2 = f4;

 }

 }

HW/SW Codesign Data-Flow Software Implementation ECE 522

ECE UNM 26 (9/23/13)

Software Implementation: Sequential Targets with Static Schedule

These optimizations reduce the runtime of the program significantly

For example, we have dropped testing of the firing rules and manipulating the

FIFOs

This is possible here because we have determined a valid PASS for the initial

data-flow system, and determined a fixed schedule to implement that PASS

Note that we have traded some of the runtime flexibility for improved efficiency

