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Data-Flow Modeling (A Practical Introduction to HW/SW Codesign, P. Schaumont)

As we discussed, hardware models are used to describe parallel systems while soft-

ware models target sequential systems

Fortunately, we can use concurrent models to describe systems that are potentially

parallel, and are not forced to opt at the start of a design for one or the other

Concurrent models can be implemented as either parallel or sequential processes

Data-flow models are introduced as a classic and often-used mechanism of concur-

rent application modeling

Sequential Model
E.g. a C program

Concurrent Model
E.g. Data-Flow Model

Sequential Arch.
E.g. a Microprocessor

Parallel Arch.
E.g. Custom Hardware

Sequential Mapping
E.g. Compile C to Assembly

Sequential Mapping
E.g. Data-Flow Simulation

Concurrent Mapping
Hardware Synthesis
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Data-Flow Modeling

Data-flow models have several nice features that are not offered by C:

• Data-flow models are concurrent

They can describe hardware and software and can be implemented in hardware

or in software

• Data-flow models are also distributed

Components are interconnected without the need for a centralized controller to

synchronize the individual components

• Data-flow models are modular

It is possible to develop a design library of data-flow components and to use that

library in a plug-and-play fashion to construct systems

• Data-flow models are well suited for regular data processing

They are often used in signal processing applications

Data Flow systems are easy to analyze, and properties such as deadlock and stability

can be evaluated based on inspection of the model

This is difficult to do with, e.g. C programs or HDLs
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Data-Flow Modeling

We first consider the elements that make up a data flow model, and discuss a tech-

nique for formal analysis of data flow models called SDF graphs

We then look into systematic conversion of SDF graphs into a hardware or software

implementation

Basics of Data-Flow Modeling

A simple example:

add
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queue

token
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5 8

= actor = queue = token

Fig. 2.3 Data flow model of
an addition

tools, but also computer architectures that implement data flow computing models.
The work from Arvind was seminal in this area, resulting in several different
computer architectures and tools (see Further Reading at the end of this chapter).

Today, data flow remains very popular to describe signal processing systems.
For example, commercial tools such as Simulink R⃝ are based on the ideas of data
flow. A interesting example of an academic environment is the Ptolemy project at
UC Berkeley (http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm). The Ptolemy
design environment can be used for many different types of system specification,
including data flow. The examples on the website can be run inside of a web browser
as Java applets.

In the following sections, we will consider the elements that make up a data
flow model. We will next discuss a particular class of data flow models called
Synchronous Data Flow Graphs (SDF). We will show how SDF graphs can be
formally analyzed. Later, we will discuss transformations on SDF graphs, and show
how transformations can lead to better, faster implementations.

2.1.1 Tokens, Actors, and Queues

Figure 2.3 shows the data flow model of a simple addition. This model contains the
following elements.

• Actors contain the actual operations. Actors have a bounded behavior (meaning
that they have a precise beginning and ending), and they iterate that behavior from
start to completion. One such iteration is called an actor firing. In the example
above, each actor firing would perform a single addition.

• Tokens carry information from one actor to the other. A token has a value, such
as ‘1’, ‘4’, ‘5’ and ‘8’ in Fig. 2.3.

Actors$contain$the$
actual$opera:ons:$
bounded$behavior$
with$beginning$
and$ending.$

Actors$iterate$the$
behavior$from$
beginning$to$the$
end.$

Each$itera:on$is$called$a$firing.$
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Basics of Data-Flow Modeling

When a data-flow model executes, actors read tokens from their queues and trans-

form input token values to output token values

The execution of a data-flow model is expressed as a sequence of possibly concurrent

actor firings

Data-flow models are untimed

The firing of an actor takes zero time (obviously a real implementation requires

a finite amount of time), i.e., time is irrelevant

The execution of data-flow models is guided only by the presence of data, i.e.,

an actor can not fire until data becomes available on its inputs

A data-flow graph with tokens is called a marking of a data-flow graph

A data-flow graph goes through a series of marking when it is executed
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Basics of Data-Flow Modeling

Each marking refers to a different state of the system

The conditions under which an actor fires are called the firing rule of that actor

add

1 4

5 8

fire add

1
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5

add

1

12

5

fire add
6 12

Actors'do'not'have'internal'states.

Text
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Basics of Data-Flow Modeling

Simple actors, e.g., the add actor, fire when there is a token on each of its queues

A firing rule involves testing the number of tokens present on the input queues

The required number of tokens consumed and produced can be annotated on the

actors inputs and outputs, respectively

With this information, it becomes clear whether or not an actor can fire under a given

marking

add

1

1

1

Inputs: consumption rate

Outputs: production rate

add

1 4

1

1

1

1

10

Firing&Rates,&Firing&Rules,&and&Schedules
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Synchronous Data-Flow Graphs

Data-flow actors can also consume more than one token per firing

This is referred to as a multi-rate data-flow graph

Synchronous data-flow (SDF) graphs refer to systems where the number of tokens

consumed/produced per actor firing is fixed and constant

SDFs are the most popular form of data-flowing modeling because of certain proper-

ties

• An admissible SDF is one that can run forever without deadlock or without storing

an infinite number of tokens on a communication queue

• An admissible SDF is determinate, which means the results produced are indepen-

dent of the actual firing order of the actors in the SDF graph

The dataflow computation is independent of the marking sequence

add
2 11 4

fire add
2 1 5
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Synchronous Data-Flow Graphs

An example:

add

1 4

plus
1

add plus
1

12

5 8

1

5

add plus
1

1

5

13
add plus

1

126

add plus
1

137
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Synchronous Data-Flow Graphs

The determinate property is very important, especially for safety-critical embedded

system applications

It makes the results independent of the implementation

Given the determinism property, it does not matter if, e.g., the ’add’ actor exe-

cutes on a fast processor and the ’plus 1’ actor on a slow processor

The first property, admissible, can be determined by looking only at the graph topol-

ogy and the actor production/consumption rates

There is also a systematic method to determine whether a graph is admissible

The method developed by Lee is called Periodic Admissible Schedules

E. Lee, "Static Scheduling of Synchronous Data Flow Graphs"

2 1 1 2

Graph is deadlocked Infinite # of tokens produced
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Synchronous Data-Flow Graphs

First some definitions:

• A schedule is the order in which the actors must fire

• An admissible schedule is a firing order that will not cause deadlock nor token

build-up

• A periodic admissible schedule is a schedule that can continue forever (is periodic

and therefore will restart)

We consider Periodic Admissible Sequential Schedules (PASS), which requires

that only one actor at a time fires

A PASS can be used to execute an SDF model on top of a microprocessor

There are four steps to creating a PASS for an SDF graph (this also tests to see if one

exists):

• Create the topology matrix G of the SDF graph

• Verify the rank of the matrix to be one less than the number of nodes in the graph

• Determine a firing vector

• Try firing each actor in a round robin fashion, until the firing count given by the fir-

ing vector is reached
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Synchronous Data-Flow Graphs

Consider the following example:

Step 1: Create a topology matrix for this graph:

The topology matrix has as many rows as there are edges (FIFO queues) and as

many columns as there are nodes

The entry (i,j) will be positive if the node j produces tokens onto the edge i and

negative if it consumes tokens

2

4

1

1

2

1

A

B

C

G
+2 4– 0

+1 0 2–

0 +1 1–

=

edge(A,B)

edge(A,C)

edge(B,C)

NOTE: This matrix
do NOT need to be
square
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Synchronous Data-Flow Graphs

Step 2: The condition for a PASS to exist is that the rank of G has to be one less than

the number of nodes in the graph (see Lee’s paper for proof)

The rank of the matrix is the number of independent equations in G

For our graph, the rank is 2 -- verify by multiplying the first column by -2 and

the second column by -1, and adding them to produce the third column

Given that there are three nodes in the graph and the rank of the matrix is 2, a

PASS is possible

This step effectively verifies that tokens canNOT accumulate on any edge of the

graph

A firing vector is used to produce/consume tokens

The tokens produced/consumed can be computed using matrix multiplication

G
+2 4– 0

+1 0 2–

0 +1 1–

= G
4– +4 0

2– 0 2–

0 1– 1–

=
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Synchronous Data-Flow Graphs

For example, the tokens produced/consumed by firing A twice and B and C zero

times is given by:

This vector produces 4 tokens on edge(A,B) and 2 tokens on edge(A,C)

Step 3: Determine a periodic firing vector

The firing vector given above is not a good choice to obtain a PASS because it

leaves tokens in the system

We are instead interested in a firing vector that leaves no tokens:

Note that since the rank is less than the number of nodes, there are an infinite

number of solutions to the matrix equation

Gq
+2 4– 0

+1 0 2–

0 +1 1–

2

0

0

4

2

0

= =q
2

0

0

=firing vector

GqPASS 0=
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Synchronous Data-Flow Graphs

Step 3: Determine a periodic firing vector (cont.)

This is true b/c, intuitively, if firing vector (a, b, c) is a PASS, then so should be

firing vectors (2a, 2b, 2c), (3a, 3b, 3c), etc.

Our task is to find the simplest one -- for this example, it is:

Note that the existence of a PASS firing vector does not guarantee that a PASS

will also exist

GqPASS

+2 4– 0

+1 0 2–

0 +1 1–

2

1

1

0

0

0

= =qPASS

2

1

1

=

2

4

1

1

2

1

A

B

C

Here, we reversed the (A,C) edge

We would find the same qPASS but
the resulting graph is deadlocked
-- all nodes are waiting for each other
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Synchronous Data-Flow Graphs

Step 4: Construct a valid PASS.

Here, we fire each node up to the number of times specified in qPASS

Each node that is able to fire, i.e., has an adequate number of tokens, will fire

If we find that we can fire NO more nodes, and the firing count is less than the

number in qPASS, the resulting graph is deadlocked

Trying this out on our graph, we fire A once, and then B and C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

Fire A (succeeds) Fire B (FAILS -- not enough tokens) Fire C (FAILS)
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Synchronous Data-Flow Graphs

Step 4: Construct a valid PASS.

So the PASS is (A, A, B, C)

Try this out on the deadlocked graph -- it aborts immediately on the first iteration

because no node is able to fire successfully

Note that the determinate property allows any ordering to be tried freely, e.g., B, C

and then A

In some graphs (not ours), this may lead to additional PASS solutions

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

Fire A AGAIN (succeeds) Fire B (succeeds) Fire C (succeeds)
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Example

Consider an SDF that models Euclid’s Greatest Common Divisor (GCD):

This SDF evaluates the GCD of two numbers, a and b

The sort actor reads two numbers, sorts them and copies them to the output

The diff actor subtracts the smaller number from the larger one (when they are

different)

After a couple of iterations, the value of the tokens converge to the GCD

sort

out1 = (a > b) ? a : b;
out2 = (a > b) ? b : a;

diff

out1 = (a != b) ? a-b: a;
out2 = b;

sort

1

diff

1

1

1

1

1

1

1

initial token

value = a

initial token

value = b
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Example

For example, the following sequence is produced when (a,b) = (16,12) are the initial

values:

(a,b) = (4,12)

(a,b) = (8,4)

(a,b) = (4,4)

(a,b) = (4,4)...

Yielding 4 as the GCD of 12 and 16

We will derive a PASS for this system:

It is easy to determine that the rank is 1 (columns complement each other), so we sat-

isfy condition 1, e.g., rank(G) = nodes - 1

G

1 1–

1 1–

1– 1

1– 1

=

edge(sort,diff)

edge(sort,diff)

edge(diff,sort)

edge(diff,sort)

left node right node
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Example

A valid firing vector is one in which each actor fires exactly once per iteration

A working schedule for this firing vector is to fire each of the actors in sequence

using the order (sort, diff)

Note that in the graph as shown, there is only a single, strictly sequential schedule

possible

For now, we will also ignore the stopping condition, i.e. detecting that a and b

are equal

In conclusion, SDFs have very powerful properties

They allow a designer to determine up-front certain important system proper-

ties, such as the determinism, deadlock, and storage requirements

Unfortunately, SDFs are not a universal specification mechanism, i.e., they are not a

good model for any possible hardware/software system.

q 1

1
=
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Control Flow Modeling: Limitations of Data-Flow Models

SDF systems are distributed, data-driven systems -- they execute when there is data

to process and remain idle otherwise

However, SDF have trouble modeling control mechanisms

Control appears in many different forms in system design:

• Stopping and re-starting: An SDF model never terminates -- it keeps running.

Stopping/re-starting is a control-flow property not addressed well with SDFs

• Mode-switching: When a cell-phone switches from one standard to the other, the

baseband processing (modeled as an SDF) needs to be reconfigured

The topology of an SDF graph is fixed and cannot be modified at runtime

• Exceptions: When catastrophic events happen, processing may need to be altered

SDFs cannot model exceptions that affect the entire graph, e.g., empty queues

• Run-time conditions: A simple if-then-else stmt cannot be modeled by SDFs

An SDF node cannot simply disappear or become inactive - it is always there
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Control Flow Modeling: Limitations of Data-Flow Models

There are two solutions to the problem of control flow modeling in SDFs

Solution 1: simulate control flow on top of the SDF semantics at the expense of add-

ing modeling overhead

Consider the stmt if (c) then A else B

The selector-actor on the right chooses either A or B to output

But note that this does NOT model the if-then-else in, for example, C because

BOTH the if branch (A) and the else (B) must execute

This approach models a multiplexer approach in hardware

1

1

1

1

1

Fork

A

B

input

1
Sel1

1

1 c(condition)

1
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Control Flow Modeling: Limitations of Data-Flow Models

Solution 2: extend SDF semantics -- Boolean Data Flow (BDF)

BDFs make the production and consumption rate of a token dependent on the value

of an external control token

The condition token is distributed to two BDF conditional fork and merge nodes, Fc

and Sc

Fork

c(condition)

p

1

1

1

1-p

Fc

A

B

input

1
Sc

1-p

p

1

1

if (condition)
then p = 1
else p = 0

11
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Control Flow Modeling: Limitations of Data-Flow Models

The rules are that the conditional fork will fire when there is an input token AND a

condition token

A token is produced on EITHER the upper or lower edge, dependent on the condition

token

This is indicated by the variable p -- a conditional production rate -- which can

ONLY be determined at runtime

The conditional merge works similarly -- it fires when there is a condition token and

will consume a token on EITHER the upper or lower edge

Unfortunately, using BDF jeopardizes the basic properties of SDFs

For example, we now have data-flow graphs that are conditionally admissible

Also, the topology matrix now includes symbolic values, p, and become quickly

impractical to analyze

For a graph with 5 conditions, we would have a matrix with 5 symbols or

expand the single matrix into 32 variants -- one for each combination
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Control Flow Modeling: Limitations of Data-Flow Models

Beyond BDF, other flavors of control-oriented data-flow graphs have been proposed,

such as:

• Dynamic Data Flow (DDF) which allows variable production and consumption

rates

• Cyclo-Static Data Flow (CSDF) which allows a fixed, iterative variation on produc-

tion and consumption rates

Unfortunately, these extensions reduce the elegance of SDF graphs

SDF remains very popular for modeling in DSP applications

BDF, DDF, etc. have not enjoyed widespread acceptance as alternatives
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