
	System-on-Chip	Design	
Data	Flow	hardware	Implementa8on	

Hao	Zheng	
Dept.	Comp	Sci	&	Eng	
U	of	South	Florida		
haozheng@usf.edu	
(813)	9744757	

1

Single-Rate	SDF	to	Hardware	

•  Single-rate	SDF:	all	producJon/consumpJon	
rates	are	a	fixed	number	=	1.	
– The	enJre	circuit	controlled	by	a	single	clock.	

•  ImplementaJon	
– Actors	->	combinaJon	circuits	
– Queues	->	wires	
– IniJal	tokens	->	registers.	

2

Single-Rate	SDF	to	Hardware	

3

78 3 Data Flow Implementation in Software and Hardware

diff

1

1

sort

1

1 1

1

1

1

initial token
value = a

initial token
value = b

out1 = (a > b) ? a : b;
out2 = (a > b) ? b : a;

out1 = (a !=b) ? a – b : a;
out2 = b;

sort

diff

Fig. 3.10 Euclid’s greatest common divisor as an SDF graph

are different. If this system runs for a while, the value of the tokens moving around
converge to the greatest common divisor of the two numbers a and b. For example,
assume

(a0,b0) = (16,12) (3.1)

then we see the following sequence of token values.

(a1,b1) = (4,12),(a2,b2) = (8,4),(a3,b3) = (4,4), . . . (3.2)

ai and bi are the token values upon iteration i of the PASS. Since this sequence
converges to the tuple (4,4), the greatest common divisor of 12 and 16 is 4.

We now demonstrate a PASS for this system. The topology matrix G for this
graph is shown below. The columns, left to right, correspond to each node from the
SDF graph, left to right.

G =

⎡

⎢⎢⎣

+1 −1
+1 −1
−1 +1
−1 +1

⎤

⎥⎥⎦

← edge(sort,di f f)
← edge(sort,di f f)
← edge(di f f ,sort)
← edge(di f f ,sort)

(3.3)

The rank of this matrix is one, since the columns complement each other. There
are two actors in the graph, so we conclude that the condition for PASS (i.e.
rank(G) = nodes− 1) is fulfilled. A valid firing vector for this system is one in which
each actor fires exactly once per iteration.

qPASS =

[
1
1

]
(3.4)

Single-Rate	SDF	to	Hardware	

4

3.2 Hardware Implementation of Data Flow 79

compare

1

1

0

0

compare

sub

SORT DIFF

SORT DIFF

REGISTER

Fig. 3.11 Hardware implementation of euclid’s algorithm

Based on this analysis, we can now proceed with the hardware implementation
of the Euclid design. As discussed earlier, we use the following transformation.

1. Map each communication queue to a wire.
2. Map each queue containing a token to a register. The initial value of the register

must equal the initial value of the token.
3. Map each actor to a combinational circuit, which completes a firing within a

clock cycle. Both the sort and diff actors require no more than a comparator
module, a few multiplexers and a subtractor.

Figure 3.11 illustrates how this works out for the Euclid example. In every single
clock cycle, the sort actor and the diff actor are computed. The speed of
computation of the overall circuit is determined by the combined computation speed
of sort and diff. Indeed, the critical path of this graph is a path starting at
sort and ending at diff. Assume that sort requires 40 ns of time to compute,
and diff requires 60 ns of time, then the critical path of this system is 100 ns.
Therefore, the maximum clock frequency of this design is 10 MHz.

3.2.2 Pipelining

It should be no surprise that some of the transformations, discussed earlier in
Sect. 2.5, can also be used to enhance the throughput of hardware implementations.
Pipelining is a very good example.

Can	lead	to	long	combinaJon	paths.		

SDF	HW	Implementa8on 		

•  CombinaJonal	path	is	a	sequence	of	actors	
s.t.	edges	between	these	actors	do	not	have	
iniJal	token.	
•  CriJcal	path	is	a	combinaJonal	path	s.t.	the	
sum	of	latencies	of	all	actors	on	that	path	is	
the	longest.	
•  CriJcal	path	delay	determines	the	clock	
frequency.	
– Should	be	minimized	to	increase	clock	speed.	

5

Pipelining:	Break	Long	Comb.	Paths	

6

80 3 Data Flow Implementation in Software and Hardware

c0 c1 c2

+

+

out

in

x0x1x2Fig. 3.12 SDF graph of a
simple moving-average
application

c0 c1 c2

+

+

out

in

x1x2x3

c2x0

c1x1c0x2

Fig. 3.13 Pipelining the
moving-average filter by
inserting additional tokens (1)

Figure 3.12 shows a data flow specification of a digital filter. It evaluates a
weighted sum of samples of an input stream, with the sum defined as out =
x0.c2+ x1.c1+ x2.x0.

It can be seen from this graph that the critical path is equal to a constant
multiplication (with c0 or c1) and two additions. We would like to ‘push down’
initial tokens into the adder tree. With the rules of data flow execution, this is
easy. Consider a few subsequent markings of the graph. Assume the in actor fires
additional tokens, and the c0, c1, c2 and add actors fire as well so that additional
tokens start to appear on queues that have no such tokens. For example, assume that
the in actor produces a single additional token x3. Then the resulting graph looks
as in Fig. 3.13.

In this graph, the critical path is reduced to only two additions. By letting the
in actor produce another token, we will be able to reduce the critical path to a
single addition, as shown in Fig. 3.14. The resulting pipelined SDF graph thus can
be implemented as shown in Fig. 3.15.

out = x0 · c2 + x1 · c1 + x2 · c0

Pipelining:	Break	Long	Comb.	Paths	

7

out = x0 · c2 + x1 · c1 + x2 · c0

80 3 Data Flow Implementation in Software and Hardware

c0 c1 c2

+

+

out

in

x0x1x2Fig. 3.12 SDF graph of a
simple moving-average
application

c0 c1 c2

+

+

out

in

x1x2x3

c2x0

c1x1c0x2

Fig. 3.13 Pipelining the
moving-average filter by
inserting additional tokens (1)

Figure 3.12 shows a data flow specification of a digital filter. It evaluates a
weighted sum of samples of an input stream, with the sum defined as out =
x0.c2+ x1.c1+ x2.x0.

It can be seen from this graph that the critical path is equal to a constant
multiplication (with c0 or c1) and two additions. We would like to ‘push down’
initial tokens into the adder tree. With the rules of data flow execution, this is
easy. Consider a few subsequent markings of the graph. Assume the in actor fires
additional tokens, and the c0, c1, c2 and add actors fire as well so that additional
tokens start to appear on queues that have no such tokens. For example, assume that
the in actor produces a single additional token x3. Then the resulting graph looks
as in Fig. 3.13.

In this graph, the critical path is reduced to only two additions. By letting the
in actor produce another token, we will be able to reduce the critical path to a
single addition, as shown in Fig. 3.14. The resulting pipelined SDF graph thus can
be implemented as shown in Fig. 3.15.

3.2 Hardware Implementation of Data Flow 81

c0 c1 c2

+

+

out

in

x2x3x4

c2x0

c1x2c0x3

C0x2+c1x1

c2x1

Fig. 3.14 Pipelining the
moving-average filter by
inserting additional tokens (2)

c0 c1 c2

+

+

out

in
Fig. 3.15 Hardware
implementation of the
moving-average filter

Remember that pipelining requires you to introduce additional tokens. This may
change the behavior of the dataflow graph. The change in behavior is obvious in the
case of feedback loops, such as shown in the accumulator circuit in Fig. 3.16. Using
a single token in the feedback loop of an add actor will accumulate all input samples.
Using two tokens in the feedback loop will accumulate the odd samples and even
samples separately. To avoid introducing accidental tokens in a loop, you can also
perform pipelining as follows: introduce initial tokens at the input or output of the

Pipelining:	Break	Long	Comb.	Paths	

8

out = x0 · c2 + x1 · c1 + x2 · c0

Pipelining:	Break	Long	Comb.	Paths	

9

3.2 Hardware Implementation of Data Flow 81

c0 c1 c2

+

+

out

in

x2x3x4

c2x0

c1x2c0x3

C0x2+c1x1

c2x1

Fig. 3.14 Pipelining the
moving-average filter by
inserting additional tokens (2)

c0 c1 c2

+

+

out

in
Fig. 3.15 Hardware
implementation of the
moving-average filter

Remember that pipelining requires you to introduce additional tokens. This may
change the behavior of the dataflow graph. The change in behavior is obvious in the
case of feedback loops, such as shown in the accumulator circuit in Fig. 3.16. Using
a single token in the feedback loop of an add actor will accumulate all input samples.
Using two tokens in the feedback loop will accumulate the odd samples and even
samples separately. To avoid introducing accidental tokens in a loop, you can also
perform pipelining as follows: introduce initial tokens at the input or output of the

3.2 Hardware Implementation of Data Flow 81

c0 c1 c2

+

+

out

in

x2x3x4

c2x0

c1x2c0x3

C0x2+c1x1

c2x1

Fig. 3.14 Pipelining the
moving-average filter by
inserting additional tokens (2)

c0 c1 c2

+

+

out

in
Fig. 3.15 Hardware
implementation of the
moving-average filter

Remember that pipelining requires you to introduce additional tokens. This may
change the behavior of the dataflow graph. The change in behavior is obvious in the
case of feedback loops, such as shown in the accumulator circuit in Fig. 3.16. Using
a single token in the feedback loop of an add actor will accumulate all input samples.
Using two tokens in the feedback loop will accumulate the odd samples and even
samples separately. To avoid introducing accidental tokens in a loop, you can also
perform pipelining as follows: introduce initial tokens at the input or output of the

Pipelining:	PiCall	

10

82 3 Data Flow Implementation in Software and Hardware

ADD

IN

ADD

IN

!=
accumulator double-accumulator

for odd/even samples

Fig. 3.16 Loops in SDF graphs cannot be pipelined

graph, outside of any loop. Next, retime the dataflow graph to reduce the critical
path.

3.3 Hardware/Software Implementation of Data Flow

The implementation techniques used to map data flow graphs in hardware or
software can be combined. A data flow system with multiple actors can be
implemented such that part of the actors are implemented in hardware, while the
other half are implemented in software. This section illustrates, by means of an
example, how the interface between hardware and software can be handled.

Figure 3.17 shows a single rate data flow system with two actors and an initial
token in between them. We map this system such that the first actor, ctr, is
implemented in hardware, while the second actor, snk, is implement in software.
We are using an 8051 microcontroller. Similar to the example of Sect. 1.1.3, we will
use microcontroller ports to connect hardware and software.

The interface between hardware and software physically consists of three
different connections: a data bus, a req connection (request) from hardware to
software, and an ack connection (acknowledge) from software to hardware. The
purpose of req and ack is to synchronize hardware and software when they
communicate a token. A communication queue in data flow also needs storage; this
storage is implemented on the 8051 processor as a FIFO queue.

Listing 3.5 shows a GEZEL system description of the data flow design of
Fig. 3.17. The hardware actor is included on lines 1–24; the rest of the listing
includes an 8051 processor, and communication ports to connect the hardware actor

Do	Not	add	iniJal	tokens	unless	they	can	be	injected	by	a	
sequence	of	actor	firings.	

Mul8-Rate	Expansion	(Sec.	2.5.1)	

11

2.5 Transformations 51

IN A B OUT
3 211 1 1

PASS
Firing Rate

2 2 3 3

Fig. 2.19 Multi-rate data flow-graph

• Pipeling introduces additional delay elements in a data flow graph, with the intent
of optimizing the iteration bound of the graph. Pipelining changes the throughput,
and the transient behavior of a data flow graph.

• Unfolding increases the computational parallelism in a data flow graph by
duplicating actors. Unfolding does not change the transient behavior of a data
flow graph, but may modify the throughput.

2.5.1 Multirate Expansion

It is possible to transform a multi-rate SDF graph systematically to a single-rate
SDF graph. The following steps to convert a multi-rate graph to a single-rate graph.

1. Determine the PASS firing rates of each actor
2. Duplicate each actor the number of times indicated by its firing rate. For example,

given an actor A with a firing rate of 2, we create A0 and A1. These actors are
two identical copies of the same generic actor A.

3. Convert each multi-rate actor input/output to multiple single-rate input/outputs.
For example, if an actor input has a consumption rate of 3, we replace it with
three single-rate inputs.

4. Re-introduce the queues in the data flow system to connect all actors. Since we
are building a PASS system, the total number of actor inputs will be equal to the
total number of actor outputs.

5. Re-introduce the initial tokens in the system, distributing them sequentially over
the single-rate queues.

Consider the example of a multirate SDF graph in Fig. 2.19. Actor A produces
three tokens per firing, actor B consumes two tokens per firing. The resulting firing
rates are 2 and 3, respectively.

After completing steps 1–5 discussed above, we obtain the SDF graph shown in
Fig. 2.20. The actors have duplicated according to their firing rates, and all multi-
rate ports were converted to single-rate ports. The initial tokens are redistributed
over the queues connecting instances of A and B. The distribution of tokens follows
the sequence of queues between A,B (ie. follows the order a, b, etc.).

Multi-rate expansion is a convenient technique to generate a specification in
which every actor needs to run at the same speed. For example, in a hardware

52 2 Data Flow Modeling and Transformation

IN0 A0

IN1 A1

B0 OUT0

B1 OUT1

B2 OUT2

a

b

c

d

e

f

Fig. 2.20 Multi-rate SDF graph expanded to single-rate

implementation of data flow graphs, multi-rate expansion will enable all actors to
run from the same clock signal.

2.5.2 Retiming

Retiming is a transformation on data flow graphs which doesn’t change the
total number of delays between input and output of a data flow graph. Instead,
retiming is the redistribution the delays in the data flow graph. This way, the
immediate dependency between actors can be broken, allowing them to operate in
parallel. A retimed graph may have an increased system throughput. The retiming
transformation is easy to understand. The transformation is obtained by evaluating
the performance of successive markings of the data flow graph, and then selecting
the one with the best performance.

Figure 2.21 illustrates retiming using an example. The top data flow graph,
Fig. 2.21a, illustrates the initial system. This graph has an iteration bound of 8.
However, the actual data output period of Fig. 2.21a is 16 time units, because actors
A, B, and C need to execute as a sequence. If we imagine actor A to fire once, then
it will consume the tokens (delays) at its inputs, and produce an output token. The
resulting graph is shown in Fig. 2.21b. This time, the data output period has reduced
to 11 time units. The reason is that actor A and the chain of actors B and C, can each
operate in parallel. The graph of Fig. 2.21b is functionally identical to the graph of
Fig. 2.21a: it will produce the same identical stream of output samples when given
the same stream of input samples. Finally, Fig. 2.21c shows the result of moving the
delay across actor B, to obtain yet another equivalent marking. This implementation
is faster than the previous one; as a matter of fact, this implementation achieves the
iteration bound of 8 time units per sample. No faster implementation exists for the
given graph and the given set of actors.

This	single-rate	DFG	
can	be	mapped	to	
HW	as	shown	
previously.	

HW/SW	Hybrid	Implementa8on	

12

3.3 Hardware/Software Implementation of Data Flow 83

ctr snk
1 1

data

req

ack

P0

P1

P2

ctr

8051
Microcontroller

FIFO snk

Hardware
Design

Fig. 3.17 Hybrid
hardware/software
implementation of a dataflow
graph

Listing 3.5 GEZEL hardware description of data flow example of Fig. 3.17

1 dp send_token(out dout : ns(8);
2 out req : ns(1);
3 in ack : ns(1)) {
4 reg ctr : ns(8);
5 reg rack : ns(1);
6 reg rreq : ns(1);
7 always {
8 rack = ack;
9 rreq = rack ? 0 : 1;

10 ctr = (rack & rreq) ? ctr + 1 : ctr;
11 dout = ctr;
12 req = rreq;
13 }
14 sfg transfer {
15 $display($cycle, " token ", ctr);
16 }
17 sfg idle {}
18 }
19 fsm ctl_send_token(send_token) {
20 initial s0;
21 state s1;
22 @s0 if (rreq & rack) then (transfer) -> s0;
23 else (idle) -> s0;
24 }
25
26 ipblock my8051 {
27 iptype "i8051system";
28 ipparm "exec=df.ihx";
29 ipparm "verbose=1";
30 ipparm "period=1";

Interface	btw.	
HW	&	CPU	

Interface	btw.	
SW	&	CPU	

Reading	Guide	

•  SecJon	3.2	-	3.3,	the	CoDesign	book.	

13

