
	System-on-Chip	Design	
On-Chip	Buses	

Hao	Zheng	
Comp	Sci	&	Eng	
U	of	South	Florida		

1

Elements	of	a	Shared	Bus	

•  Segments	connected	by	bridges.	
•  Bridges	convert	transac?ons	on	one	segment	to	transac?ons	on	another	

segment	
•  Masters	ini?ate	transac?ons	that	slaves	respond.	
•  Arbiter	selects	a	master	to	control	the	bus	fairly.	
•  Address	space	assigns	an	unique	address	to	each	device.	

2

Elements	of	a	Shared	Bus	

•  Address	wires	carry	memory	addresses	of	the	target	slaves.	
•  Data	wires	carry	data	to	or	from	slaves.	
•  Command	wires	carry	opera?ons	to	be	performed	by	slaves.	
•  Synchroniza@on	wires	are	used	for	synchroniza?on.	

3

Elements	of	a	P2P	Bus	

4

Channels	allow	simula?on	of	mul?ple	ports	using	a	single	port.	

No	need	for	address	wires.	

Physical	Connec@on	of	Buses	

5

Write:	data	flow	from	a	master	to	a	slave.	
Read:		data	flow	from	a	slave	to	a	master.	

Separate	read	&	write	channels	allow	concurrent	
opera?ons.		

Bus	Timing	Diagrams	

6

clock	edges	vs	

clock	cycles	

For	input	i,	it’s	high	in	cycle	n	if	i	is	high	before	the	clock	edge	n.		
For	output	o,	it’s	low	in	cycle	n	if	o	is	low	aJer	the	clock	edge	n.		

Basic	Write	Transfers	(10.2.1)	

7

wait	state:	hurt	bus	performance	

m_sel:	transfer	validity	signal	

Time-out	is	needed	for	slow	slaves.	

Basic	Read	Transfers	(10.2.1)	

8

Improved	Bus	Transfers	(10.2.3)	

•  Each	data	transfer	has	mul?ple	phases	in	
sequence.	
– Master	gets	bus	access	by	nego?a?ng	with	bus	
arbiter.	

– Master	issues	address/data/command/control.	
– Slave	acknowledges	the	transfer.	
– Master	releases	the	bus.	

•  	Op?miza?ons:	
– Transac3on	spli5ng	and	pipelining	transfers	
– Burst-mode	opera3on	

9

Transac@on	SpliNng	and	Pipelining	Transfers	

10

addr/	
ctrl	

Write	

Read	

Burst-Mode	Transfers	

11
One	communica3on,	mul3ple	data	transfers,	reduced	overhead.	

Mul@-Master	Bus	Systems	(10.3)	

12

A	master	must	talk	to	the	arbiter	first	before	it	can	communicate	
with	a	slave.		

Mul@-Master	Bus	Systems:	Timing	

13

Bus	priority:	should	prevent	starva?on.		

Mul@-Master	Bus	Systems:	Bus	Locking	

•  Locking	ensures	exclusive	access	of	bus	for	
certain	dura?on	of	?me.	
– Transfer	of	low	priority	master	cannot	be	
interrupted	by	the	request	from	a	high	priority	
master.	
– Need	of	an	atomic	sequence	of	transfers.	
– Ensure	latency	requirements.	

14

Mul@-Master	Bus	Systems:	Bus	Locking	

15

int	*mutex	=	(int*)	0x8000;	
	
int	test_and_set()	{	
			int	a;	
			lock_bus();	
			a	=	*mutex;	
			*mutex	=	1;	
			unlock_bus();	
			return	a;	
}	

void	leave()	{	
			*mutex	=	0;	
}	
	
void	enter()	
			while	(test_and_set());	
}	

test_and_set():	 	lock	mutex	
leave(): 	 	unlock	mutex	

Mul@-Master	Bus	Systems:	Bus	Locking	

16

Bus	Topologies	(10.4)	

17

•  Organiza?on	of	bus	components	and	their	connec?ons.	
•  Parallel	transfers	on	a	bus	must	be	sequen?alized.	
•  Bus	segments	cannot	be	too	long	

Bus	Topologies:	Switches	

•  Masters	can	transfer	to	different	slaves	concurrently.	
•  Transfers	to	the	same	slaves	are	sequen?alized.	

18

Bus	Topologies:	Crossbar	

•  Highly	parallel.	
•  expensive	to	implement,	
•  Not	scalable.	

19

 2

Architecturally, busses have several limitations. Latency issues arise when high priority

accesses are stalled by transactions in progress on the bus. Bandwidth is limited by

clock-frequency, which itself is limited by physical design parameters such as the length of the

wires. It is very difficult to overcome such physical limitation as pipelining a bus interconnect

is very challenging. Faced with increasing IC performance requirements, designers started to

implement cross-bar structures (Figure 2). These structures improve latency predictability and

significantly increase aggregate bandwidth, at a not-insignificant cost, of course, of a much

larger number of wires

Figure 2:Traditional Crossbar Interconnect

“Decoupled” Busses and Crossbars

The advent of the SoC, incorporating tens to hundreds of IP cores created a significant

integration challenge. The above described busses and cross-bars are “coupled” solutions. The

interfaces of all IP cores connected to a single bus or cross-bar must all be exactly the same,

both logically (signals) and in physical design parameters (clock-frequency, timing margins).

This turned out to be significant obstacle to rapid integration and re-use of existing IP into

increasingly complex SoCs. The ad-hoc solution was to either change the IP core socket to

make it compliant to the latest choices of bus specifications, or, to develop set of bridges and

protocol converters. This integration challenge was architecturally addressed by decoupling the

Bus	Topologies:	Network-on-Chip	

20

The	route	between	
nodes	are	not	unique.	

Transfer	delay	less	
predictable.	

Each	node	
implements	a	rou?ng	
algorithm	to	find	such	
a	route	and	reduce	
conges?on.	

Much	more	scalable	
and	parallel.	

Reading	Guide	

•  Chapter	10,	the	CoDesign	book.	
– Skip	10.2.2	

21

