CDCL SAT Solvers \& SAT-Based Problem Solving

Joao Marques-Silva ${ }^{1,2}$ \& Mikolas Janota ${ }^{2}$

${ }^{1}$ University College Dublin, Ireland
${ }^{2}$ IST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013
Aalto University, Espoo, Finland

The Success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science - Hundreds (even more?) of practical applications

Part I

CDCL SAT Solvers

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$
- Formula can be SAT/UNSAT

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x)(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers
- Self-subsuming resolution (with $\alpha^{\prime} \subseteq \alpha$):

$$
\frac{(\alpha \vee x) \quad\left(\alpha^{\prime} \vee \bar{x}\right)}{(\alpha)}
$$

- (α) subsumes $(\alpha \vee x)$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$

- Additional definitions:
- Antecedent (or reason) of an implied assignment
- $(\bar{b} \vee \bar{c} \vee d)$ for d
- Associate assignment with decision levels
- $w=1 @ 1, x=1 @ 2, y=1 @ 3, z=1 @ 4$
- $r=1 @ 0, d=1 @ 4, \ldots$

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

The DPLL Algorithm

- Optional: pure literal rule

The DPLL Algorithm

- Optional: pure literal rule

The DPLL Algorithm

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

What is a CDCL SAT Solver?

- Extend DPLL SAT solver with:
- Clause learning \& non-chronological backtracking
- Exploit UIPs
[MSS96,SSS12]
- Minimize learned clauses
[SB09,VG09]
- Opportunistically delete clauses
- Search restarts
- Lazy data structures
- Watched literals
[MMZZM01]
- Conflict-guided branching
- Lightweight branching heuristics
[MMZZM01]
- Phase saving

How Significant are CDCL SAT Solvers?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs \& Minimization Search Restarts \& Lazy Data Structures

What Next in CDCL Solvers?

Clause Learning

Level Dec. Unit Prop.
$0 \quad \emptyset$
1

2

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning - After Bracktracking

Clause Learning - After Bracktracking

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow \bar{z}$	
2	y				
3	z				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow \bar{z}$	
2	y				
3	z				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1
- Learned clauses are always asserting
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

