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Introduction



Built-In Self-Test (BIST)

• BIST is the capability of a circuit (chip, board, or 
system) to test itself
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Generic Off-Line BIST Architectures
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Figure 11.18 Generic form of centralized and separate BIST architecture
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3. Communicate with other test controllers, possibly using test busses.

4. Control the operation of a self-test, including seeding of registers, keeping track of
the number of shift commands required in a scan operation, and keeping track of
the number of test patterns that have been processed.

Further information on the design of controllers for BIST circuitry can be found in
[Breuer et al. 1988].

The distributed BIST architecture is shown in Figure 11.19. Here each CUT is associated
with its own TPG and ORA circuitry. This leads to more overhead but less test time and
usually more accurate diagnosis. The BIST control circuitry is not shown. The designs
shown in Figures 11.18 and 11.19 are examples of the separate BIST architecture, since
the TPG and ORA circuitry is external to the CUT and hence not part of the functional
circuitry.
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Figure 11.19 Generic form of distributed and separate BIST architecture
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Forms of Built-In Self-Test (BIST)

311.1  Concepts



On-line BIST
• Testing occurs during normal functional  

operating conditions
– Circuit Under Test (CUT) is not put in test mode

• Concurrent online BIST 
– Testing occurs simultaneously with normal functional 

operation
• Non-concurrent online BIST
– Testing while system is in idle state
– Executing diagnostic software
– Test process can be interrupted so that normal 

operation can resume
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Off-line BIST

• Testing a system when the it is not carrying out its 
normal functions

• Systems, boards, and chips can be tested
• Applicable at the manufacturing, field, depot, and 

operational stages
• Usually employs test-pattern generators (TPGs) 

and output response analyzers (ORAs)
• Errors cannot be detected in real time
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Off-line BIST – cont’d

• Functional off-line BIST
– Test based on functional description
– Employs a functional fault model

• Structural off-line BIST
– Explicit structural fault model may be used
– Fault coverage based on structural fault detection
– Usually tests are generated and responses are 

compressed
Our discussion is primarily on Structural Off-line 

BIST
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Glossary of key BIST Architectures
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Hardcore

• Parts of circuit that must be operational (correct) 
to execute a self-test

• At a minimum it consists of Power, Ground, and 
Clock Distribution

• Easy to detect, but hard to diagnose
– Faults may be in CUT or hardcore

• Usually tested by external test equipment
• Designer attempts to minimize complexity of 

hardware
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Levels of Test

• Production Test
– Newly manufactured components
– Performed at Chip, Board, System levels
– Reduces the need for expensive ATE (Automated Test 

Equipment)
• Field Testing
– Eliminates the need for expensive special test 

equipment.
– Improve maintainability,
– Reduce life-cycle costs.
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Test-Pattern Generation for BIST



Test Pattern Generation for BIST
Assume CUT = n-input, m-output combinational circuit
• Exhaustive Testing
– Exhaustive test-pattern generators – expensive 

• Pseudo-random Testing
– Weighted test generator
– Adaptive test generator

• Pseudo-exhaustive testing (cf. 8.3)
– Syndrome driver counter
– Constant-weight counter
– Combined LFSR and shift register
– Combined LFSR and XOR gates
– Condensed LFSR
– Cyclic LFSR

1111.2  Test Pattern Generation for BIST



Linear Feedback Shift Register (LFSR)
• LFSRs used for pseudo-random test vector generation 

and signature analysis
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XOR Gates in Feedback
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XOR Gates in Feedback
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XOR Gates in Feedback
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XOR Gates in Feedback
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Maximal Length LFSR
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Signature Analysis
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Figure 10.9 Feedback shift registers

In this section we will deal primarily with a class of linear circuits, known as autonomous
linear feedback shift registers, that have the canonical form shown in Figures 10.10 and
10.11. Here c, is a binary constant, and c, = 1 implies that a connection exists, while
c, =0 implies that no connection exists. When c, =0 the corresponding XOR gate can be
replaced by a direct connection from its input to its output.

Characteristic Polynomials

A sequence of numbers a 0, aI, a 2, ... , am, ... can be associated with a polynomial, called
a generating function G(x), by the rule

Generates a cyclic sequence of 
length 2n � 1

All-0 initial state leads to a 
sequence of length 1.



Exhaustive Testing

• Test the n-input comb. circuit with 2n inputs
• Binary counter can be used as TPG.
• Autonomous LFSR can also be used.
• Guarantees that all detectable faults that do not 

introduce sequential behavior will be detected
– i.e. no bridging faults.

• Depending on clock rate, n > 22 is impractical
• Not used for sequential circuits
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Pseudo-Random Testing

• Many characteristics of random patterns
• Generated deterministically => Repeatable
• With or without replacement
• With replacement = patterns can repeat
• Without replacement = unique patterns 

(autonomous LFSR can be a source)
• Applicable to both comb. and seq. circuits
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Bias in Pattern Generation
• Autonomous LFSR: 0’s and 1’s balanced in the output
• Sometimes we want a bias (say more 1’s than 0’s)
• Example: 4-input AND gate
– Probability of an input set to 0 is 15/16
– With random inputs, hard to test other input 

s-a-0 or s-a-1 fault
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Weighted & Adaptive Test Generation
• Weighted Test Generator
– Distribution of 0s an 1s -> not uniform
– Can be constructed by LFSR + a combl. Circuit
– When testing a circuit using WTG, preprocessing is 

carried out to determine weights
– Therefore, each part of circuit can be tested with 

different distributions
• Adaptive Test Generator
– Uses a WTG
– Results of fault simulation used to modify weights
– Efficient in terms of test length
– Requires complex TPG hardware

2211.2  Test Pattern Generation for BIST



Pseudo-Exhaustive Testing
• Achieves benefits of exhaustive testing but with 

far fewer test patterns
• Relies on circuit segmentation
• A segment = subcircuit of the CUT
• Attempts testing each segment exhaustively
• Segments need not be disjoint
• Forms of Segmentation

1. Logical Segmentation
a. Cone Segmentation
b. Sensitized Path Segmentation

2. Physical Segmentation
2311.2  Test Pattern Generation for BIST



Cone Segmentation

• Cone segmentation of a m output circuit is 
logically segmented into m cones

• Cone = all logic associated with one output
• Each cone tested exhaustively
• All cones tested concurrently
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If ITl mio is the smallest possible size for such a set T, then clearly 2k s ITlmio z-.
A binary n-tuple is said to be of weight k if it contains exactly k Is. There are binary

n-tuples having weight k.

The following results have been derived by [Tang and Woo 1983] and will be presented
here without proof.

Theorem 11.1: Given nand k, then T exhaustively covers all binary k-subspaces if it
contains all binary n-tuples of weight(s) w such that w = c mod (n-k + 1) for some integer
constant c, where 0 c n-k. D

11.2  Test Pattern Generation for BIST



• Example:
– C partitioned 

into C1 and C2

– Set inputs to B such that D=1 
and apply
2n1 patterns to  test C1

– Similarly test C2

– Need 2n1 + 2n2 + 1 patterns 
instead of 2n1 + n2

Sensitized Path Segmentation

2511.2  Test Pattern Generation for BIST



Physical Segmentation

• In large circuits, pseudo-exhaustive testing leads 
to large test sets

• Can employ physical segmentation
– Partitioning: Circuit is divided into sub-circuits
– Bypass Storage Cell
• Normal mode: acts as a wire
• Test mode: part of an LFSR
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Physical Segmentation by Partitioning
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Physical Segmentation by Storage Cells
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• Let us say we want to segment the following 
such that no signal is a function of more than 4 
variables
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Normal mode – a wire
Test mode – part of an LFSR
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Circuit segment C1
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Circuit segment C2
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Circuit segment C3
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Circuit segment C3



Identification of Test Signal Inputs

• f and g are functions of only two inputs each
• To exhaustively test the multiple function (f, g), we 

need 8 vectors
• Since no output is function of both x and z, same test 

data can be applied to both these lines
– 2 test signals
– 4 test vectors are sufficient 
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Maximal-Test-Concurrency (MTC) circuit

• A circuit is said to be a  maximal-test-concurrency 
(MTC) circuit, if the minimal number of required 
test signals is equal to the maximum number of 
inputs upon which any output depends.
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Non-MTC circuit
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• All three signals are required, can still be 
tested exhaustively by just four test patterns
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TPG – Syndrome-Driver Counter

• If (n-p) input share test signals with p other 
inputs, at most 2p tests are required.
– n: # of inputs

37
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If ITl mio is the smallest possible size for such a set T, then clearly 2k s ITlmio z-.
A binary n-tuple is said to be of weight k if it contains exactly k Is. There are binary

n-tuples having weight k.

The following results have been derived by [Tang and Woo 1983] and will be presented
here without proof.

Theorem 11.1: Given nand k, then T exhaustively covers all binary k-subspaces if it
contains all binary n-tuples of weight(s) w such that w = c mod (n-k + 1) for some integer
constant c, where 0 c n-k. D

• n = 4, p = 3, w=2
– w = # of inputs of a segment

• At most 8 tests are needed.
• 0000 & 1111 are not needed
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TPG – Constant-Weight Counter

• A (n,w) circuit can be tested by a 
counter implementing by w-out-of-K

• Complexity of the counter can be 
high for  large w

38

1100 
1010 
1001 
o110 
010 1 
o011 

11.2  Test Pattern Generation for BIST



TPG – Combined LFSR/SR

• (n, w) circuit
• Lower cost
• May generate more 

tests 
• # of tests near 

minimal when w << 
n/2
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Figure 11.11 An LFSR/SR verification test generator
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Figure 11.12 A 4-stage LFSR/SR for a (4,2)-CUT

1985]. These designs require at most two seeds, and the number of test patterns needed
to ensure pseudoexhaustive testing is close to that required for LFSRlSR designs.

Figure 11.14 shows a combined LFSRlXOR TPG along with the patterns it produced.
This device can test a (4,2)-CUT.

Condensed LFSR

Another design approach, proposed by Wang and McCluskey [1984, 1986b] and referred
to as condensed LFSR, uses at most two seeds, leads to simple designs, and produces a
very efficient test set when w n/ 2. When w < n/ 2 this technique uses more tests
than the LFSRlSR approach. Condensed LFSRs are based on the concept of linear codes
[Peterson and Weldon 1972, Lin and Costello 1983]. An (n,k)-linear code over a Galois
field of 2 generates a set S of n-tuples containing 2k distinct code words, where if c I E S
and c 2 E S, then c I Ei1 c 2 E S.

Using a type 2 LFSR having a characteristic polynomial p(x), a condensed LFSR for a
(n, w)-CUT can be constructed as follows. Let k be the smallest integer such that

11.2  Test Pattern Generation for BIST



TPG – Condensed LFSR

• (n, w) circuit
• Can produce efficient test set when w >= n/2
• But produce more test than combined LFSR/SR
• What patterns does it generate?
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p(x) = (1+x)(1+x+x 3
) = 1 + X

2 + X
3 + x 4

Figure 11.15 shows the resulting design and initial seed. Although a condensed LFSR
has n stages, the feedback circuitry is usually simple.

Q 1 o

Figure 11.15 A condensed LFSR for a (4,2)-CUT

Cyclic LFSR

When w < n/2, condensed LFSR designs produce long tests for (n, w)-CUTs.
LFSRlXOR designs reduce this test length but have a high hardware overhead. For
w < n/2, cyclic LFSRs lead to both efficient tests and low hardware overhead. Cyclic
LFSRs are based on cyclic codes [Peterson and Weldon 1972, Lin and Costello 1983].
An (n,k)-cyclic code over the Galois field of 2 contains a set of 2k distinct codewords,
each of which is an n-tuple satisfying the following property: if c is a codeword, then the
n-tuple obtained by rotating c one place to the right is also a code word. Cyclic codes are
a subclass of linear codes. The design of cyclic LFSRs and details for obtaining the
characteristic polynomial for a cyclic LFSR are presented in [Wang 1982] and [Wang and
McCluskey 1986f, 1986g, 1987a, 1987c].

11.2.3.5 Physical Segmentation

For very large circuits, the techniques described for pseudoexhaustive testing often lead
to large test sets. In these cases, pseudoexhaustive testing can still be achieved by
employing the concept of physical segmentation. Here a circuit is divided or partitioned
into subcircuits by employing hardware-segmentation techniques.

One such technique is shown in Figure 9.11. Various ways for segmenting a circuit
based on this type of structure are presented in [Patashnik 1983], [Archambeau 1985],
and [Shperling and McCluskey 1987].

More details on this form of testing can be found in [McCluskey and Bozorgui-Nesbat
1981], [Chandra et al. 1983], [Udell 1986], [Chen 1987], and [Udell and McCluskey
1989].

Physical segmentation can also be achieved by inserting bypass storage cells in various
signal lines. A bypass storage cell is a storage cell that in normal mode acts as wire, but
in the test mode can be part of an LFSR circuit. It is similar to a cell used in boundary-
scan designs, such as the one shown in Figure 9.14. If inserted into line x, then the
associated LFSR can be used as a MISR and hence to detect errors occurring on line x, or
it can be used as a PRPG and hence to generate test patterns on line x.

Example 11.4: Consider the circuit C shown in Figure 11.16(a), where the logic blocks
G i » i = 1, 2, ..., 9 are represented by circles. Next to each block is an integer indicating
the number of primary inputs that can affect the output of the block. Assume it is desired
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Generic Off-line BIST Architectures

• Off-line BIST Architectures
1. Centralized or Distributed
2. Embedded or Separate

• BIST architecture elements:
1. Test pattern generators
2. Output response analyzers
3. Circuit under test
4. Distribution system (DIST) for transmitting date from 

TPGs to CUTs and from CUTs to ORAs
5. BIST Controller

41



BIST Controller

During testing BIST Controller can carry out one or 
more functions:

1. Single-step the CUTs through some test 
sequence

2. Inhibit system clocks and control test clocks
3. Communicate with other test controllers
4. Control the operation of self-test (seeding of 

registers,  number of test patterns processed, 
etc.)
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Centralized and BIST Architecture
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Distributed and Separate BIST
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Distributed and Embedded BIST
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• TPG and ORA configured from within CUT
• Complex design to control



BIST Architecture
When choosing BIST architecture, following factors 

need to be considered:
1. Degree of test parallelism
2. Fault coverage
3. Level of packaging
4. Test time
5. Physical constraints
6. Complexity of replaceable units
7. Factory and field test-and-repair strategy
8. Performance degradation
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Some Example BIST Architectures
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1. Centralized and Separate Board-Level BIST

SISR: Single Input 
Signature Analyzer
PRPG: Pseudorandom
Pattern Generator



Some Example BIST Architectures

2. LSSD On-Chip Self-Test (LOCST)
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Test Process
1. Initialize

Scan path loaded with
seed via Sin

2. Activate Self-test mode
a) Disable sys clks

on R1 and R2
b) Enable LFSR operation

3. Execute Self-test
4. Check Result

Compare final value of 
SISR with known good 
signature

LSSD: Level Sensitive 
Scan Design
SRSG: Shift Register
Sequence Generator
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Some Example BIST Architectures
3. Random Test Data (RTD)  BIST
• Previous archs – entire scan path be loaded with new data to 

apply a single test pattern to CUT; RTD overcomes this
• Test process: 
a) R1, R2, and R3 

set to scan mode 
and a seed pattern 
is loaded

b) Registers put to test 
mode and held while 
circuit is tested

c) For each clock cycle, 
R1 and R2 generate a new 
test pattern, and R2 and R3 operate as a MISR



Built-In Logic Block Observation (BILBO) Register
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Operates in four modes:
B1 = B2 =1  - Normal Mode (parallel load register)
B1 = B2 = 0 – Shift Register Mode
B1 = 1, B2 = 0  -- LFSR (test) mode
B1 = 0 , B2 = 1  -- all storage cells - reset



BIBLO Register Modes
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B1 = B2 =1 
Normal Mode

B1 = B2 = 0 
Shift Register 

Mode

B1 = 1, B2 = 0 
LFSR Mode



BIST Design with BILBO Registers
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• To test C1
1. R1 and R2 are seeded
2. R1 into PRPG mode, R2 into MISR 

mode
3. Hold inputs to R1 to value 0 so 

that LFSR (R1) acts as a PRPG
4. Run for N clock cycles

• If C1 is not too large, C1 can be tested 
exhaustively (except for all-zero 
pattern)

• At the end of test session, R2 scanned 
out and signature checked

• Need two test sessions, one for C1
and other for C2



Summary

• Built-In Self Test – can be offline or online
• Needs test pattern generators (TPGs) and output 

response analyzers (ORAs)
• Linear Feedback Shift Registers (LFSRs) can be 

used as both as a TPG and as an ORA
• Offline BIST architectures can be centralized or 

distributed, embedded or separate
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