
CIS 4930 Digital System Testing
Built-In Self Test (BIST)

Dr Hao Zheng
Comp. Sci. & Eng.
U of South Florida 

0



1

Introduction



Built-In Self-Test (BIST)

• BIST is the capability of a circuit (chip, board, or 
system) to test itself

2

Generic Off-Line BIST Architectures

Chip, board, or system

D D
I I
S S
TTl

I
I

I I I I I
L L _, -.J -.J

I

Figure 11.18 Generic form of centralized and separate BIST architecture

481

3. Communicate with other test controllers, possibly using test busses.

4. Control the operation of a self-test, including seeding of registers, keeping track of
the number of shift commands required in a scan operation, and keeping track of
the number of test patterns that have been processed.

Further information on the design of controllers for BIST circuitry can be found in
[Breuer et al. 1988].

The distributed BIST architecture is shown in Figure 11.19. Here each CUT is associated
with its own TPG and ORA circuitry. This leads to more overhead but less test time and
usually more accurate diagnosis. The BIST control circuitry is not shown. The designs
shown in Figures 11.18 and 11.19 are examples of the separate BIST architecture, since
the TPG and ORA circuitry is external to the CUT and hence not part of the functional
circuitry.

Chip, board, or system

•••
•••

•••

Figure 11.19 Generic form of distributed and separate BIST architecture

11.1  Concepts



Forms of Built-In Self-Test (BIST)

311.1  Concepts



On-line BIST
• Testing occurs during normal functional  

operating conditions
– Circuit Under Test (CUT) is not put in test mode

• Concurrent online BIST 
– Testing occurs simultaneously with normal functional 

operation
• Non-concurrent online BIST
– Testing while system is in idle state
– Executing diagnostic software
– Test process can be interrupted so that normal 

operation can resume
411.1  Concepts



Off-line BIST

• Testing a system when the it is not carrying out its 
normal functions

• Systems, boards, and chips can be tested
• Applicable at the manufacturing, field, depot, and 

operational stages
• Usually employs test-pattern generators (TPGs) 

and output response analyzers (ORAs)
• Errors cannot be detected in real time

511.1  Concepts



Off-line BIST – cont’d

• Functional off-line BIST
– Test based on functional description
– Employs a functional fault model

• Structural off-line BIST
– Explicit structural fault model may be used
– Fault coverage based on structural fault detection
– Usually tests are generated and responses are 

compressed
Our discussion is primarily on Structural Off-line 

BIST
611.1  Concepts



Glossary of key BIST Architectures

711.1  Concepts



Hardcore

• Parts of circuit that must be operational (correct) 
to execute a self-test

• At a minimum it consists of Power, Ground, and 
Clock Distribution

• Easy to detect, but hard to diagnose
– Faults may be in CUT or hardcore

• Usually tested by external test equipment
• Designer attempts to minimize complexity of 

hardware

811.1  Concepts



Levels of Test

• Production Test
– Newly manufactured components
– Performed at Chip, Board, System levels
– Reduces the need for expensive ATE (Automated Test 

Equipment)
• Field Testing
– Eliminates the need for expensive special test 

equipment.
– Improve maintainability,
– Reduce life-cycle costs.

911.1  Concepts



10

Test-Pattern Generation for BIST



Test Pattern Generation for BIST
Assume CUT = n-input, m-output combinational circuit
• Exhaustive Testing
– Exhaustive test-pattern generators – expensive 

• Pseudo-random Testing
– Weighted test generator
– Adaptive test generator

• Pseudo-exhaustive testing (cf. 8.3)
– Syndrome driver counter
– Constant-weight counter
– Combined LFSR and shift register
– Combined LFSR and XOR gates
– Condensed LFSR
– Cyclic LFSR

1111.2  Test Pattern Generation for BIST



Linear Feedback Shift Register (LFSR)
• LFSRs used for pseudo-random test vector generation 

and signature analysis

12

01
State

S0

S1

S2 = S0
:
:

0 1

1 0

• Two states
• Cycles through states 01 and 10 repeatedly
• No inputs except clock



XOR Gates in Feedback

13

10 1

+ +

S0                  0                                  1                                 1
S1                  0                                  0                                 1
S2                  1                                  0                                 0
S3                  1                                  1                                 0
S4 = S0          0                                  1                                 1
:
:

1  

Cycles through 
4 states



XOR Gates in Feedback

14

00 1

+ +

S0                  0                                  1                                 1
S1                  0                                  0                                 1
S2                  1                                  0                                 0
S3                  1                                  1                                 0
S4 = S0          0                                  1                                 1
:
:

1  

Cycles through 
4 states



XOR Gates in Feedback

15

01 0

+ +

S0                  0                                  1                                 1
S1                  0                                  0                                 1
S2                  1                                  0                                 0
S3                  1                                  1                                 0
S4 = S0          0                                  1                                 1
:
:

0  

Cycles through 
4 states



XOR Gates in Feedback

16

11 0

+ +

S0                  0                                  1                                 1
S1                  0                                  0                                 1
S2                  1                                  0                                 0
S3                  1                                  1                                 0
S4 = S0          0                                  1                                 1
:
:

0  

Cycles through 
4 states



XOR Gates in Feedback

17

10 1

+ +

S0                  0                                  1                                 1
S1                  0                                  0                                 1
S2                  1                                  0                                 0
S3                  1                                  1                                 0
S4 = S0          0                                  1                                 1
:
:

1   0   0  1   1 

Cycles through 
4 states



Maximal Length LFSR

18

Signature Analysis

State

o

SI 0
---------

S2 = So 0

•
•
•

(a)

Output
sequence

o 1 0 1 •••
LJ

l Repeated
subsequence

433

1 1 1•••
U

(b)

So 0

SI 0 0

S2 0 0

S3 0
-------

S4 =So 0

•
•
•

(c)

11001100
L-J

SI 0 0

S2 0 0

S3 0 0

S4 0

Ss 0

S6
---------

S7 =So 0
•
•
•

(d)

11001011100···
I I

Figure 10.9 Feedback shift registers

In this section we will deal primarily with a class of linear circuits, known as autonomous
linear feedback shift registers, that have the canonical form shown in Figures 10.10 and
10.11. Here c, is a binary constant, and c, = 1 implies that a connection exists, while
c, =0 implies that no connection exists. When c, =0 the corresponding XOR gate can be
replaced by a direct connection from its input to its output.

Characteristic Polynomials

A sequence of numbers a 0, aI, a 2, ... , am, ... can be associated with a polynomial, called
a generating function G(x), by the rule

Generates a cyclic sequence of 
length 2n � 1

All-0 initial state leads to a 
sequence of length 1.



Exhaustive Testing

• Test the n-input comb. circuit with 2n inputs
• Binary counter can be used as TPG.
• Autonomous LFSR can also be used.
• Guarantees that all detectable faults that do not 

introduce sequential behavior will be detected
– i.e. no bridging faults.

• Depending on clock rate, n > 22 is impractical
• Not used for sequential circuits

1911.2  Test Pattern Generation for BIST



Pseudo-Random Testing

• Many characteristics of random patterns
• Generated deterministically => Repeatable
• With or without replacement
• With replacement = patterns can repeat
• Without replacement = unique patterns 

(autonomous LFSR can be a source)
• Applicable to both comb. and seq. circuits

2011.2  Test Pattern Generation for BIST



Bias in Pattern Generation
• Autonomous LFSR: 0’s and 1’s balanced in the output
• Sometimes we want a bias (say more 1’s than 0’s)
• Example: 4-input AND gate
– Probability of an input set to 0 is 15/16
– With random inputs, hard to test other input 

s-a-0 or s-a-1 fault

2111.2  Test Pattern Generation for BIST



Weighted & Adaptive Test Generation
• Weighted Test Generator
– Distribution of 0s an 1s -> not uniform
– Can be constructed by LFSR + a combl. Circuit
– When testing a circuit using WTG, preprocessing is 

carried out to determine weights
– Therefore, each part of circuit can be tested with 

different distributions
• Adaptive Test Generator
– Uses a WTG
– Results of fault simulation used to modify weights
– Efficient in terms of test length
– Requires complex TPG hardware

2211.2  Test Pattern Generation for BIST



Pseudo-Exhaustive Testing
• Achieves benefits of exhaustive testing but with 

far fewer test patterns
• Relies on circuit segmentation
• A segment = subcircuit of the CUT
• Attempts testing each segment exhaustively
• Segments need not be disjoint
• Forms of Segmentation

1. Logical Segmentation
a. Cone Segmentation
b. Sensitized Path Segmentation

2. Physical Segmentation
2311.2  Test Pattern Generation for BIST



Cone Segmentation

• Cone segmentation of a m output circuit is 
logically segmented into m cones

• Cone = all logic associated with one output
• Each cone tested exhaustively
• All cones tested concurrently

24

Test-Pattern Generation for BIST 463

Yl Y2 Y3 Y4

Figure 11.3 A (4,2)-CUT

c

F

Figure 11.4 Segmentation testing via path sensitization

lo ° 0]T= 0 1 1
110
101

If ITl mio is the smallest possible size for such a set T, then clearly 2k s ITlmio z-.
A binary n-tuple is said to be of weight k if it contains exactly k Is. There are binary

n-tuples having weight k.

The following results have been derived by [Tang and Woo 1983] and will be presented
here without proof.

Theorem 11.1: Given nand k, then T exhaustively covers all binary k-subspaces if it
contains all binary n-tuples of weight(s) w such that w = c mod (n-k + 1) for some integer
constant c, where 0 c n-k. D

11.2  Test Pattern Generation for BIST



• Example:
– C partitioned 

into C1 and C2

– Set inputs to B such that D=1 
and apply
2n1 patterns to  test C1

– Similarly test C2

– Need 2n1 + 2n2 + 1 patterns 
instead of 2n1 + n2

Sensitized Path Segmentation

2511.2  Test Pattern Generation for BIST



Physical Segmentation

• In large circuits, pseudo-exhaustive testing leads 
to large test sets

• Can employ physical segmentation
– Partitioning: Circuit is divided into sub-circuits
– Bypass Storage Cell
• Normal mode: acts as a wire
• Test mode: part of an LFSR

2611.2  Test Pattern Generation for BIST



Physical Segmentation by Partitioning

2711.2  Test Pattern Generation for BIST



Physical Segmentation by Storage Cells

28

• Let us say we want to segment the following 
such that no signal is a function of more than 4 
variables

478 BUILT-IN SELF-TEST

3

Xg

3

4

Yl Y2

(a)

5

3

Xg

3

4

4

Yl

4

(b)

Key

D - normal I/O storage cell g - bypass storage cell 0 - a logic block

Figure 11.16 Inserting bypass storage cells to achieve w = 4

11.2  Test Pattern Generation for BIST



478 BUILT-IN SELF-TEST

3

Xg

3

4

Yl Y2

(a)

5

3

Xg

3

4

4

Yl

4

(b)

Key

D - normal I/O storage cell g - bypass storage cell 0 - a logic block

Figure 11.16 Inserting bypass storage cells to achieve w = 4

29

Normal mode – a wire
Test mode – part of an LFSR

11.2  Test Pattern Generation for BIST



3011.2  Test Pattern Generation for BIST

Circuit segment C1



3111.2  Test Pattern Generation for BIST

Circuit segment C2



3211.2  Test Pattern Generation for BIST

Circuit segment C3



3311.2  Test Pattern Generation for BIST

Circuit segment C3



Identification of Test Signal Inputs

• f and g are functions of only two inputs each
• To exhaustively test the multiple function (f, g), we 

need 8 vectors
• Since no output is function of both x and z, same test 

data can be applied to both these lines
– 2 test signals
– 4 test vectors are sufficient 

3411.2  Test Pattern Generation for BIST



Maximal-Test-Concurrency (MTC) circuit

• A circuit is said to be a  maximal-test-concurrency 
(MTC) circuit, if the minimal number of required 
test signals is equal to the maximum number of 
inputs upon which any output depends.

3511.2  Test Pattern Generation for BIST



Non-MTC circuit

36

• All three signals are required, can still be 
tested exhaustively by just four test patterns

11.2  Test Pattern Generation for BIST



TPG – Syndrome-Driver Counter

• If (n-p) input share test signals with p other 
inputs, at most 2p tests are required.
– n: # of inputs

37

Test-Pattern Generation for BIST 463

Yl Y2 Y3 Y4

Figure 11.3 A (4,2)-CUT

c

F

Figure 11.4 Segmentation testing via path sensitization

lo ° 0]T= 0 1 1
110
101

If ITl mio is the smallest possible size for such a set T, then clearly 2k s ITlmio z-.
A binary n-tuple is said to be of weight k if it contains exactly k Is. There are binary

n-tuples having weight k.

The following results have been derived by [Tang and Woo 1983] and will be presented
here without proof.

Theorem 11.1: Given nand k, then T exhaustively covers all binary k-subspaces if it
contains all binary n-tuples of weight(s) w such that w = c mod (n-k + 1) for some integer
constant c, where 0 c n-k. D

• n = 4, p = 3, w=2
– w = # of inputs of a segment

• At most 8 tests are needed.
• 0000 & 1111 are not needed

11.2  Test Pattern Generation for BIST



TPG – Constant-Weight Counter

• A (n,w) circuit can be tested by a 
counter implementing by w-out-of-K

• Complexity of the counter can be 
high for  large w

38

1100 
1010 
1001 
o110 
010 1 
o011 

11.2  Test Pattern Generation for BIST



TPG – Combined LFSR/SR

• (n, w) circuit
• Lower cost
• May generate more 

tests 
• # of tests near 

minimal when w << 
n/2

39

474 BUILT-IN SELF-TEST

Figure 11.11 An LFSR/SR verification test generator

Q
Xl

1 1 1 0
o 1 1 1
1 0 1 1
o 1 0 1
o 0 1 0
1 0 0 1
1 1 0 0

-------------------------
111 0

Figure 11.12 A 4-stage LFSR/SR for a (4,2)-CUT

1985]. These designs require at most two seeds, and the number of test patterns needed
to ensure pseudoexhaustive testing is close to that required for LFSRlSR designs.

Figure 11.14 shows a combined LFSRlXOR TPG along with the patterns it produced.
This device can test a (4,2)-CUT.

Condensed LFSR

Another design approach, proposed by Wang and McCluskey [1984, 1986b] and referred
to as condensed LFSR, uses at most two seeds, leads to simple designs, and produces a
very efficient test set when w n/ 2. When w < n/ 2 this technique uses more tests
than the LFSRlSR approach. Condensed LFSRs are based on the concept of linear codes
[Peterson and Weldon 1972, Lin and Costello 1983]. An (n,k)-linear code over a Galois
field of 2 generates a set S of n-tuples containing 2k distinct code words, where if c I E S
and c 2 E S, then c I Ei1 c 2 E S.

Using a type 2 LFSR having a characteristic polynomial p(x), a condensed LFSR for a
(n, w)-CUT can be constructed as follows. Let k be the smallest integer such that

11.2  Test Pattern Generation for BIST



TPG – Condensed LFSR

• (n, w) circuit
• Can produce efficient test set when w >= n/2
• But produce more test than combined LFSR/SR
• What patterns does it generate?

40

476 BUILT-IN SELF-TEST

p(x) = (1+x)(1+x+x 3
) = 1 + X

2 + X
3 + x 4

Figure 11.15 shows the resulting design and initial seed. Although a condensed LFSR
has n stages, the feedback circuitry is usually simple.

Q 1 o

Figure 11.15 A condensed LFSR for a (4,2)-CUT

Cyclic LFSR

When w < n/2, condensed LFSR designs produce long tests for (n, w)-CUTs.
LFSRlXOR designs reduce this test length but have a high hardware overhead. For
w < n/2, cyclic LFSRs lead to both efficient tests and low hardware overhead. Cyclic
LFSRs are based on cyclic codes [Peterson and Weldon 1972, Lin and Costello 1983].
An (n,k)-cyclic code over the Galois field of 2 contains a set of 2k distinct codewords,
each of which is an n-tuple satisfying the following property: if c is a codeword, then the
n-tuple obtained by rotating c one place to the right is also a code word. Cyclic codes are
a subclass of linear codes. The design of cyclic LFSRs and details for obtaining the
characteristic polynomial for a cyclic LFSR are presented in [Wang 1982] and [Wang and
McCluskey 1986f, 1986g, 1987a, 1987c].

11.2.3.5 Physical Segmentation

For very large circuits, the techniques described for pseudoexhaustive testing often lead
to large test sets. In these cases, pseudoexhaustive testing can still be achieved by
employing the concept of physical segmentation. Here a circuit is divided or partitioned
into subcircuits by employing hardware-segmentation techniques.

One such technique is shown in Figure 9.11. Various ways for segmenting a circuit
based on this type of structure are presented in [Patashnik 1983], [Archambeau 1985],
and [Shperling and McCluskey 1987].

More details on this form of testing can be found in [McCluskey and Bozorgui-Nesbat
1981], [Chandra et al. 1983], [Udell 1986], [Chen 1987], and [Udell and McCluskey
1989].

Physical segmentation can also be achieved by inserting bypass storage cells in various
signal lines. A bypass storage cell is a storage cell that in normal mode acts as wire, but
in the test mode can be part of an LFSR circuit. It is similar to a cell used in boundary-
scan designs, such as the one shown in Figure 9.14. If inserted into line x, then the
associated LFSR can be used as a MISR and hence to detect errors occurring on line x, or
it can be used as a PRPG and hence to generate test patterns on line x.

Example 11.4: Consider the circuit C shown in Figure 11.16(a), where the logic blocks
G i » i = 1, 2, ..., 9 are represented by circles. Next to each block is an integer indicating
the number of primary inputs that can affect the output of the block. Assume it is desired

11.2  Test Pattern Generation for BIST



Generic Off-line BIST Architectures

• Off-line BIST Architectures
1. Centralized or Distributed
2. Embedded or Separate

• BIST architecture elements:
1. Test pattern generators
2. Output response analyzers
3. Circuit under test
4. Distribution system (DIST) for transmitting date from 

TPGs to CUTs and from CUTs to ORAs
5. BIST Controller

41



BIST Controller

During testing BIST Controller can carry out one or 
more functions:

1. Single-step the CUTs through some test 
sequence

2. Inhibit system clocks and control test clocks
3. Communicate with other test controllers
4. Control the operation of self-test (seeding of 

registers,  number of test patterns processed, 
etc.)

42



Centralized and BIST Architecture

43



Distributed and Separate BIST

44



Distributed and Embedded BIST

45

• TPG and ORA configured from within CUT
• Complex design to control



BIST Architecture
When choosing BIST architecture, following factors 

need to be considered:
1. Degree of test parallelism
2. Fault coverage
3. Level of packaging
4. Test time
5. Physical constraints
6. Complexity of replaceable units
7. Factory and field test-and-repair strategy
8. Performance degradation

46



Some Example BIST Architectures

47

1. Centralized and Separate Board-Level BIST

SISR: Single Input 
Signature Analyzer
PRPG: Pseudorandom
Pattern Generator



Some Example BIST Architectures

2. LSSD On-Chip Self-Test (LOCST)

48

Test Process
1. Initialize

Scan path loaded with
seed via Sin

2. Activate Self-test mode
a) Disable sys clks

on R1 and R2
b) Enable LFSR operation

3. Execute Self-test
4. Check Result

Compare final value of 
SISR with known good 
signature

LSSD: Level Sensitive 
Scan Design
SRSG: Shift Register
Sequence Generator



49

Some Example BIST Architectures
3. Random Test Data (RTD)  BIST
• Previous archs – entire scan path be loaded with new data to 

apply a single test pattern to CUT; RTD overcomes this
• Test process: 
a) R1, R2, and R3 

set to scan mode 
and a seed pattern 
is loaded

b) Registers put to test 
mode and held while 
circuit is tested

c) For each clock cycle, 
R1 and R2 generate a new 
test pattern, and R2 and R3 operate as a MISR



Built-In Logic Block Observation (BILBO) Register

50

Operates in four modes:
B1 = B2 =1  - Normal Mode (parallel load register)
B1 = B2 = 0 – Shift Register Mode
B1 = 1, B2 = 0  -- LFSR (test) mode
B1 = 0 , B2 = 1  -- all storage cells - reset



BIBLO Register Modes

51

B1 = B2 =1 
Normal Mode

B1 = B2 = 0 
Shift Register 

Mode

B1 = 1, B2 = 0 
LFSR Mode



BIST Design with BILBO Registers

52

• To test C1
1. R1 and R2 are seeded
2. R1 into PRPG mode, R2 into MISR 

mode
3. Hold inputs to R1 to value 0 so 

that LFSR (R1) acts as a PRPG
4. Run for N clock cycles

• If C1 is not too large, C1 can be tested 
exhaustively (except for all-zero 
pattern)

• At the end of test session, R2 scanned 
out and signature checked

• Need two test sessions, one for C1
and other for C2



Summary

• Built-In Self Test – can be offline or online
• Needs test pattern generators (TPGs) and output 

response analyzers (ORAs)
• Linear Feedback Shift Registers (LFSRs) can be 

used as both as a TPG and as an ORA
• Offline BIST architectures can be centralized or 

distributed, embedded or separate

53


