CIS 4930 Digital System Testing
Testing for Single Stuck-at Faults (SSFs)

Dr Hao Zheng
Comp. Sci. & Eng.
U of South Florida

Testing Generation

Testing Generation (TG) is a complex problem
We are interested in:

- The cost of generating the test

- The quality (fault coverage) of the test

- The cost of applying the test

6.1 Basic Issues

Types of Test Generation

Function and

Test Generation :.:': Structure of circuit

D .
-~ - -
. . .
o | CEEmmmsEEEEEEEEEEEEsEEEEEEEEEEssssssssese’
-
.
L
~
L
L
L
L
.

Random Deterministic

T

Manual Automatic

7\

Fault Oriented Fault Independent

6.1 Basic Issues

Deterministic TG System

R
M~ A
Model ATG

_/
* Model is analyzed to
generate test &

TN T
expected responses 3 7
. . Fault Diagnostic

* Diagnostic data can be data
saved for fault location L

Figure 6.1 Deterministic test generation system

6.1 Basic Issues

Tests

6.2.1 Fault-oriented ATG

- Circuit model — gate-level combinational circuit
-> Basic Algorithm — Fanout Free

-> Backtracking Algorithm

- D Algorithm

— PODEM (Path Oriented Decision Making)

-

6.2 ATG for SSFs in Combinational Circuits

Line Justification

- To detect a fault

- Activate the fault
- Propagate the fault to a PO

Activating a fault a / s-a-v:
-> Determine Pl values that force value on line /to v

This is known as the line-justification problem

6.2 ATG for SSFs in Combinational Circuits

Composite Logic Values

Let D represent 1/0 and D represent 0/1

v/ AND |0 |1 |D|D |X
0/0 5 o |olo|o 9 0
1 |o|l1|D|D]|X
1/1 1
D |o|D|D| O |X
1/0 D D |lo|lp|o|D]|x
0/1 D X o] X | x| X]|X

6.2 ATG for SSFs in Combinational Circuits

OR (0|1 |D|D |X
0 (0|1 |D|D|O
1 |11 (1]1]1
D [D|1|D|1]X
D |D|1|1|D|X
X [X]1|X|X]|X

Fig 6.3 TG for / s-a-v in Fanout Free circuit

begin
set all values to x //initialization of all wires to X
Justify(l, v) // justification of line /

if v =0 then Propagate (1, D)
else Propagate (I, D)
end

6.2 ATG for SSFs in Combinational Circuits

. o . Justify (1, val)
Line Justification begin
set [/ to val
if / 1s a PI then return

1 /* | 1s a gate (output) */
0]
1] ¢ = controlling value of /
1 = 1nversion of /

inval = valPi
if (inval = ¢)
then for every input j of /
Justify (j, inval)

[S—

else
X begin
j O)O 1 select one input (j) of /
X ! Justify (j, inval)
end

. L o end
6.2 ATG for SSFs in Combinational Circuits

Error Propagation — Fanout Free circuit

Propagate (1, err)
[* erris D or D */

begin 1
set [to err) err err
if / is PO then return 1 k

k = the fanout of /
¢ = controlling value of &
I = inversion of k
for every input j of k other than /
Justify (j, ¢)
Propagate (k, err®i)
end
6.2 ATG for SSFs in Combinational Circuits 10

Example 6.1

h

—p

e > J

B

Find an input vector such that f s-a-0 is observable on j

6.2 ATG for SSFs in Combinational Circuits

11

Example 6.1

Justify (f, 1)

h

—

B

e > !

6.2 ATG for SSFs in Combinational Circuits

12

Example 6.1
Justify (f, 1)

1a s-a-0

I

: P

6.2 ATG for SSFs in Combinational Circuits

Example 6.1 Propagate (f, D)

1 a :@_&S-a-o

Justify (g, 0)

B

e > "

6.2 ATG for SSFs in Combinational Circuits

Example 6.1 Propagate (h, D)

!

Justify (7, 1)

1 a
1 b D
o B
d
1

6.2 ATG for SSFs in Combinational Circuits

15

Example 6.1

1a .‘ s-a-0

10 —

0c¢ =\ ¢ 0
d—t

0 e >:

6.2 ATG for SSFs in Combinational Circuits

A

D
[7
l

Propagate (j, D)

16

Example 6.1

fs—a-0
Justify (f, 1) Propagate (f, D)
a=1,b=1 Justify(g’(\

Propagate (h, D)

c=o,\Ld=x /\

Justify (7, 1) Propagate(j, D)

‘l’ Error reaches PO!
e=0

6.2 ATG for SSFs in Combinational Circuits 17

Fanout Free vs. Fanout

-> For Fanout Free circuit
— Line justification problems are independent

— Sets of PI’s assigned to justify required values are
mutually disjoint

- Circuits with Fanout
— Several ways to propagate error to PO
- Fundamental difficulty:

resulting line justification problems are no longer
independent

6.2 ATG for SSFs in Combinational Circuits

18

Example 6.2

G
d : Gs
—) >) ;
G,
D
¥
1¢ s-a-1

s

6.2 ATG for SSFs in Combinational Circuits

f2

19

Example 6.2

R

6.2 ATG for SSFs in Combinational Circuits

f2

20

Example 6.2

G,

S SR
’
»)

R

0 €

6.2 ATG for SSFs in Combinational Circuits

fi

f2

21

Example 6.2

6.2 ATG for SSFs in Combinational Circuits

f2

22

Example 6.2

R
o SR

0 é€

6.2 ATG for SSFs in Combinational Circuits

23

Example 6.2
G; s —a-1

— /

Justify (G1, 0) Propagate (G11, D’)

| /

a=1b=1,c=1 Justify (G2, 1)

/

a=0,d=0
>
Conflict!

6.2 ATG for SSFs in Combinational Circuits

24

Example 6.2

G; s —a-1
Justify (G1, 0) Propagate (G12, D)
a=1,b=1,c=1 Justify (G4, 1) Propagate (G6, D)

Justify(G3, 0) Justify(e, 0) l

l, l Error reaches PO!
c=1 e=0

6.2 ATG for SSFs in Combinational Circuits 25

Backtracking Strategy

—> Search for a test vector — decision process

-> Several alternatives for a line justification problem
— Pick one alternative
— |f it leads to an inconsistency, then backtrack!

—> Backtracking Strategy

— Systematic exploration

— Recovery from incorrect decisions
* |Invert all values assigned since last decision

6.2 ATG for SSFs in Combinational Circuits

26

Example 6.3

]
v

6.2 ATG for SSFs in Combinational Circuits

27

Example 6.3

ORR
SN0

=

s-a-

6.2 ATG for SSFs in Combinational Circuits

28

Example 6.3

5
.

6.2 ATG for SSFs in Combinational Circuits

& o

DI

[=1I=I=3
SN0

s-a-1

29

Example 6.3

ORR

s-a-1

6.2 ATG for SSFs in Combinational Circuits

30

Example 6.3

6.2 ATG for SSFs in Combinational Circuits

31

Example 6.3

ORR
SN0

s-a-1

6.2 ATG for SSFs in Combinational Circuits

32

Example 6.3

ORR
SN0

s-a-1

6.2 ATG for SSFs in Combinational Circuits

33

Example 6.3

ORR
SN0

s-a-1

6.2 ATG for SSFs in Combinational Circuits

34

Decisions | Implications Remarks
Decision: choose one alternative if h =D’ Initial
there are multiple alternatives to e=1 Implications
justify() or propagate() f=1
p=D’
Implication: compute new values as a r=1
result of decision, and check q=1
inconsistencies. © 'O,
s=D
[=1 c=1 To justify g=1
d=1
m=0
n=0
r=0 Contradiction
k=1 a=1 Tojustifyg=1
b=1
m=1 c=0 To justify r=1
[=0
6.2 ATG for SSFs in Combinational Circuits

Fig 6.10 TG Algorithm Outline

Solve()
begin
if Imply and check() = FAILURE then return FAILURE
if (error at PO and all lines are justified)
then return SUCCESS
if (no error can be propagated to a PO)
then return FAILURE
select an unsolved problem
repeat
begin
select one untried way to solve it
if Solve() = SUCCESS then return SUCCESS
end
until all ways to solve it have been tried
return FAILURE
end

6.2 ATG for SSFs in Combinational Circuits

36

Problem
1

Decision Tree

Decision
1.2

Decision
1.1

Decision
2.2

Decision
2.1

Decision
4.1

6.2.1.1 Common Concepts (@)

TG Failure for an Undetectable Fault

— Solve() is exhaustive — guarantee to find a test if one exists.
— worst case complexity is exponential

-
b—¢
xf @_h— b= c=0
s-a-0 E F
c—t
g
d |

(@) (b)

Figure 6.12 TG failure for an undetectable fault (a) Circuit (b) Decision tree
6.2.1.1 Common Concepts

38

D-Frontier

- D-frontier — all gates whose output value is currently x
but have one or more error signals on their inputs.

-+ D-drive operation — X .
Pick a gate and try to propagate error }13 }
- |f D-frontier becomes empty

= No error can be propagated to PO
= Backtracking should occur

Gates in D-frontier indicate necessary decisions in order to proceed.

6.2.1.1 Common Concepts 39

J-Frontier

- J-frontier — all gates whose output value is
<nown, but not implied by its input values

- Helps keep track of currently unsolved line-
justification problems

X | |
X — [X /
All inputs are implied to be 1. No implications on x-inputs.

6.2.1.1 Common Concepts 40

Implication Process

3 Steps:
1. Compute all values that can be uniquely
determined by implication

2. Check for consistency and assign values
3. Maintain the D-frontier and J-frontier

Implication can be forward or backward.

6.2.1.1 Common Concepts

41

Backward Implication Propagation

Before After
Gate g gets
)g.__j: 1 — 13_ added to J- (a)
P — 1 frontier
aftera=0
X — 0
)= =
1 1
X o J-frontier=1{ ..} § X J-frontier ={ ..., a }
p =n
X X
1 1
x] b
D, — @
42

6.2.1.1 Common Concepts

Forward Implication Propagation

Figure 6.15

Before After

e
D

|
10

6.2.1.1 Common Concepts 43

Forward Implication Propagation

Before

waw

0 =

6.2.1.1 Common Concepts

J frontier = {...

J frontier = {...
D -frontier = {...
D -frontier = {...

, a}

, a}

j__
D_
}
}

Ob»—th—*k
I

After

Figure 6.15

J-frontier = {...}

(c)
J-frontier = {...}

(d)
D-frontier = {...}

(e)
D-frontier = {...}

H

44

Forward Implication Propagation — cont’d

Before

D—> X D-frontier = {...}
=1

B
} D-frontier = {..., a}

TW 1]

6.2.1.1 Common Concepts

D

X
D |
i
D

' D
D
D

D } D-frontier = {..., a} !
D— 1 E

After

Tk

—_—

v

Figure 6.16

D-frontier = {..., a}
(a)

(b)

D-frontier = {...}
(c)

D-frontier = {...}
(d)

45

Figure 6.17 Unique D-Drive

- When only gate remains in the D-frontier.
— There is only one way to propagate D.

Before After

D D-frontier = {a} D D D-frontier = { }
X ——
D+ =

6.2.1.1 Common Concepts 46

Figure 6.18 Future Unique D-drive

» D-frontier ={d, e}
- Eventually we end up unique D-drive with gate g
only

Before After

d x ' D D~
B e E e
C e I

This type of propagations is global implication.

6.2.1.1 Common Concepts 47

Reversing Incorrect Decisions

- Assume that g = O failed irrespective of b and ¢
—> a must be 1!

o O
o
O = -

SRS

= ||
Hg
.

Figure 6.21 Reversing incorrect decisions
6.2.1.1 Common Concepts 48

Look-Ahead in Error Propagation

- No matter how we propagate, D-frontier will be empty!
— Look-ahead: Error propagation is possible only if there is at

least one x-path from gate G in D-frontier to at least one PO.

(a necessary condition)
- X-paths used to avoid failed decisions.

gy g

€

6.2.1.1 Common Concepts Figure 6.22 The need for look-ahead in error propagation

49

D-Algorithm

- Ability to propagate errors on several
reconvergent fanouts

->We assume error propagation is given priority
over justification problems (simplifying
assumption)

- “assign” means “add the value to the assignment
queue”

= Imply _and check() handles the assignments

6.2.1.2 Algorithms

50

© O N U R WDNR

N ROk Rk R Rk
L h W N RO

16.

D-alg()
begin
if Imply_and_check() = FAIL then return FAIL
if (error not at PO) then /* error propagation */
begin
if D-frontier = &7 then return FAIL
repeat
begin
select an untried gate (G) from D-frontier
¢ = controlling value of G
assign ¢’ to every input of G with input x
if D-alg() = SUCCESS then return SUCCESS
end
until all gates from D-frontier have been tried
return FAIL

end
Continued...

6.2.1.2 Algorithms 51

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

/* error propagated to a PO */

if J-frontier = & then return SUCCESS

select a gate (G) from the J-frontier

¢ = controlling value of G

repeat

begin

select an input (j) of G with value x
assignctoj
if D-alg() = SUCCESS then return SUCCESS
assign ¢’ toj /* reverse decision */

end
until all inputs of G are specified
return FAIL

end

6.2.1.2 Algorithms

52

s-a-1

e

Example 6.6

6.2.1.2 Algorithms

RRO
o>
L
»
=

Example 6.6 —

6.2.1.2 Algorithms

DF={i, k, m}

54

DI

RRO
o>
L
»
=

Example 6.6 —

6.2.1.2 Algorithms

DF={n, k, m}

55

Example 6.6

6.2.1.2 Algorithms

DI

RRO
o>
O

=

QO
=~
O
Y

’. | | L DF={n, k, m}
Example 6.6 —

6.2.1.2 Algorithms 57

Example 6.6

6.2.1.2 Algorithms

Example 6.6

6.2.1.2 Algorithms

Example 6.6

6.2.1.2 Algorithms

Decisions | Implications
a=0 Activate the fault
h=1
b=1 Unique D-drive through g
c=1
g=D
=1 _ Propagate through i
i=D
d’=0
=1 Propagate through n
=1
=1
m=1
n=D
e':
e=1
k=D Contradiction
e=1 Propagate through &
k=D
e’=0
=1
=1 Propagate through »
m=1
n=D
=0
/=1
m=D Contradiction
=1 Propagate through m
m=D
=0
=1
n=D

6.2.1.2 Algorithms

{i,k,m}
[
{kém,n}
n k
m,n}
n m

Each node is a D-frontier.

61

PODEM - Path Oriented Decision Making

—> Direct search process
— Decisions only about Pl assighments.
- In D-algorithm, decisions on Pls are indirect.

->Value v, to be justified on line £
= Objective (k, v,) to achieve via Pl assignments.
—> Backtracing of an objective
— Maps a desired objective into a Pl assignment
- Note that no values are assigned during
backtracing

6.2.1.2 Algorithms

62

Backtrace (k,v;)

map objective into PI assignment */

begin
V=V,
while & is a gate output //Recursive generating
begin // objectives until it reaches Pl
| = inversion of k
select an input (j) of k£ with value x
v =v®i
k=j
end

/* k1s a PI */
return (k,v)

end
6.2.1.2 Algorithms

63

Backtrace — An Example

° ObjECtiVE(ﬁ 1) Figure 6.28
* First Backtrace (f, 1) call:
 Path (f, d, b)is tried with b=1 as Pl assighment
 But b=1is not enough to achieve objective (f, 1)
* Second Backtrace (f, 1) call:
 Path(f, d, c a) istried witha=0
 Now with a=0, we can achieve objective (f, 1)

6.2.1.2 Algorithms 64

Selecting an Objective

Objective() |
begin Activate fault
/* the target fault is [/ s-a-v */ /

if (the value of / 1s x) then return (/,v)
select a gate (G) from the D-frontier 4 Find the
select an input (j) of G with value x L f‘ecetssjry
¢ = controlling value of G npHEs o
J propagate fault
return (j,c)
end

6.2.1.2 Algorithms 65

PODEM () // All lines are initialized to x
begin
if (error at PO) then return SUCCESS
if (test not possible) then return FAILURE
(k,vy) = Objective()
(J,v;) = Backtrace(k,vy) [* jis a P1 */
I mply (j, V;) //5-value simulation with Pl assignments
if PODEM() = SUCCESS then return SUCCESS
/* reverse decision */
if PODEM() = SUCCESS then return SUCCESS
Imply (j.x)
return FAILURE //D-frontier becomes empty

end
6.2.1.2 Algorithms 66

Objective: F_—{>OL

d=1 d —3

RRO
o>
L
»
=

Example 6.9]

6.2.1.2 Algorithms

DF={i, k, m}

67

Objective:
=1

X-path check

Failed!

0 ko1
Oa D 0O
{E=Ip
T 1 ,
}.] s DF={n, k, m,}
Example 6.9]
D m

6.2.1.2 Algorithms 68

Backtrack

RRO
gl als)

Example 6.9

6.2.1.2 Algorithms

DF={n, k, m,}

69

Objective:
=1
Success!

RRO
gl als)

Example 6.9

6.2.1.2 Algorithms

DF={n, k, m,}

70

Objective | PI Assignment | Implications | D-frontier
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D Lkm
d=1 d=1 d’ =0
i=D k,m,n
k=1 e= e'=1
Jj=0
k=1
n=1 m x-path check fails
e=1 e’=0 reversal
j=1
k=D
n=x mn
=1 f=1 f'=0
I=1
m=D
n=D

6.2.1.2 Algorithms

71

D-Algorithm vs PODEM

- PODEM does not need

— Consistency check
— J-frontier

— Backward implication propagation
- Backtracking in PODEM is more simplified.

-+ QOverall, PODEM is more efficient.

6.2.1.2 Algorithms

72

Selection Criteria

—> Search process involves decisions

-> Decisions on how to:
— Select one of several unsolved problems: fault
propagation/line justification.
— Select one possible way to solved the selected

problem: several possible inputs to justify output O of
AND gate.

What are the selection criteria?
Some principles to speed up the search process.

6.2.1.3 Selection Criteria 73

Selection Criteria - Principles

- Among different unsolved problems, first attack
the most difficult one

— Thus avoid useless time spent in solving the easier
problems when a harder one cannot be solved

- Among different solutions of a problem, first try
the easiest one

- Difficulty is measured by cost functions.

6.2.1.3 Selection Criteria 74

Cost Functions

-> Controllability measures
— Related to the Line Justification problem
— Relative difficulty of setting a line to a value
Ex: select most difficult line-justification problem
-> Observability measures
— Related to the Error Propagation problem
— Relative difficulty of propagating an error from a line to a PO

Ex: select the gate from D-frontier whose input error is easiest to
observe

Important: Must be relative measures and easy to compute.

6.2.1.3 Selection Criteria

75

Distance Based Cost Functions

- Any cost function should show that
- Pls are the easiest to control
- POs are the easiest to observe

- Therefore

- Difficulty of controlling a line increases with its distance
from Pls

—> Line Level can be used as a controllability measure!

- Difficulty of observing a line increases with its distance
from POs

— Shortest distance of a line to PO can be used as a
observability measure!

Main Drawback: Does not take into account the logic function

6.2.1.3 Selection Criteria 76

Controllability Measure C(/)

For every signal we want to compute:
CO(/) = Relative difficulty of setting line /to O
C1(/) = Relative difficulty of setting line/to 1
Assume we know CO and C1 costs of all inputs of the AND gate,

To set Xto O:

CO(X) = min {CO(A), CO(B), CO(C) } A — .
To set X to 1: ?; B

C1(X) = C1(A) + C2(B) + C3(C)
assuming A, B, C are independent (i.e., do not depend on
common Pls)

We can develop similar cost functions for other gates. OR gate?

6.2.1.3 Selection Criteria 77

Controllability Measure Computation

- Set CO and C1 for every primary input to 1

- Compute CO’s and C1’ level by level

— Cost are computed only after predecessor costs are
known

- Costs can be computed in one forward traversal
- Linear in number of gates

6.2.1.3 Selection Criteria 78

Issues

If inputs of a gate are not independent, it can lead to incorrect
results

In (a) cost of controlling B and C is the same

In (b) B and C cannot be set to 1 simultaneously, so C1(X) should
show that setting X=1 is impossible

o Copt
- B -

() (b)

6.2.1.3 Selection Criteria 79

Observability Measure O(/)

Cost of observing the input A?)
- We must set Band Cto 1 g____}x
— Propagate error from X to a PO
O(A) = C1(B) + C1(C) + O(X) ... Eg(3)
Assuming controlling B=1, C=1, and propagating

Err(X) to PO are independent problems

What about OR gate?

6.2.1.3 Selection Criteria

80

Observability of a Stem X
X1

X
X2

X3

O(X) = min { O(X1), O(X2), O(X3)} ... Eq(4)
Assuming single path propagation is possible

6.2.1.3 Selection Criteria

81

Observability Measure Computation

- Set observability cost of every PO to O

- Compute observabilities level by level backward
manner using eq 3 and 4.

— Cost are computed only after successor costs are
known

—> Costs can be computed in one backward traversal
- Linear in number of lines
- Assume controllability measure is known.

6.2.1.3 Selection Criteria

82

Fanout-Based Cost Functions

- Reconvergent fanout makes TG difficult.
- A line with fanout has high potential causing

conflict.

A
Oo———

Setting B = 0 is better
thanA=0

6.2.1.3 Selection Criteria

X “an
B o——

D=

O_____.

O

B

&

Not enough to just
look at lines
themselves (A and B)!!

83

Fanout-Based Controllability Measure

- C(/) depends on
- Fanout count of /
- Fanout count of predecessors of [

Cl)=)_ CE)+ fi—1 (6.5)

Where f; is the fanout count of /

A line [with C(l) = 0 means it does not depend on any fanout lines.

6.2.1.3 Selection Criteria

84

Example

C(A)=0

C(B) = 2 —)4
C(X) = 2 %?} [

Therefore, select A=0 .
to justify X=0. C=1

6.2.1.3 Selection Criteria 85

CO(/) and C1(/) — More Accurate Cost Func.

- Eq (6.5) does not distinguish between setting a
linetoO0andto 1

For the AND gate we have:
CO(/) = min {CO(i)} + f, -1
and
CL(l)=>)» C1(i)+ fi—1
What about OR gaite?

6.2.1.3 Selection Criteria

86

Example o) - min (co(iy + £, -1

C(l) = Z(J(z’) +fi—1

CO(A) = C1(A) = 1

CO(B) = C1(B) = 0 >— 1
CO(X) =0, ’
C1(X) = 1.

6.2.1.3 Selection Criteria

87

Side Effects — Example .
>t

—_—

—_—

Baa
L. ‘\ D -

e —

 CO(A) and C1(A) both have corrective terms =1

A =0 has greater potential of conflicts than A=1

* A=0resultsinB, C, D, E being set to binary values
e Less x-paths for error propagation.

6.2.1.3 Selection Criteria

88

Side Effects Cost Function

— Side-Effects Cost Functions: CSO(/) and CS1(/) to
account for relative potential for conflicts caused by
setting /to0and 1

- Computed by simulating / = v (v €{0, 1}) in a circuit
initialized with all-x state, and then
- A gate whose output is set to a binary value increases cost

by 1
- A gate with n inputs whose output remains at x but which

has m inputs set to a binary value, increases the cost by
m/n

6.2.1.3 Selection Criteria 89

Side Effect Function — Example

——{>O“E'
=

D

—] =

* CSO(A) =4(1/2)

* CS1(A)=(1/3)+(1/2)=5/6

6.2.1.3 Selection Criteria

)
v

90

Cost Functions with Side-Effects

CO(/) = min {CO(i)} + CSO(/)

201 + CS1(1

* Require circuit simulation after assigning /to O or 1
e Cause additional complexity

6.2.1.3 Selection Criteria

91

Cost Functions: Summary

— Complexity of cost function computation must be
low.

-+ Cost functions are based heuristics.

- Dynamic cost functions may lead to better
performance.

6.2.1.3 Selection Criteria

92

Backup

93

Fault Independent ATG

- Fault-oriented algorithm targets a given fault and
generate a test vector
- Fault-independent algorithm’s goal:

- Derive a set of test that detect a large set of SSFs w/o
targeting individual faults

- CPT -- Half of the SSFs on a path critical in a test t

are detected by t
= Generate tests that produce long critical paths
= Critical path TG algorithm

6.2.2 Fault Independent ATG 94

Critical Paths — Basic Concept

D —
o

o
(a»))

°

S

The input vector detects output s-a-0 fault and other faults on the

critical nath 95

Critical-path TG Algorithm

Basic Steps

1. Select a PO and assign it a critical O-value or 1-
value (Recall that a PO is always critical)

2. Recursively justify the PO value, trying to justify

any critical value on a gate output by critical
values on the gate inputs

96

Line Justification — 3 Input AND gate

By Primitive Cubes

ABC

Z

By Critical Cubes

Z

< = O
< O =
S = =

1 1 1

s B e) o B

S & & -

(a)

97

Critical-path TG - Example

- e
0

(a) (b)

What SSFs can be detected by this input vector?

98

Critical-path TG — Example ...contd.

P

0 B

1)
)

< ©Q
&)
MI
— O
€Y LS
D
o[-k

99

CPTGFF()
begin
while (Critical # @)
begin
remove one entry (/,val) from Critical
set / to val
mark [/ as critical
if / is a gate output then
begin
¢ = controlling value of /
i = inversion of /
inval = val ® i
if (inval = ¢)
then for every input j of /
add (j,¢) to Critical
else
begin
for every input j of /
begin
add (j,¢) to Critical
for every input k of / other than j
Justify (k,c)
CPTGFF()
end
return
end
end
end
/* Critical = & */
record new test
return
end

* Critical Path TG Fanout Free
* To generate complete test set
for a FF circuit whose PO is Z,

add (Z, 0) to Critical
CPTGFF()
add (Z, 1) to Critical
CPTGFF()

100

Decision Tree

=0

(E, F) =01 (E,F)=10 (A, B) =01 (A, B)=10

=0

(C,D)=10 (C, D) =01

Figure 6.47 Decision trees for Example 6.1%
The number of terminal nodes equals the number of tests generated,

ATG for SSFs in Sequential Circuits

- TG using lterative Array Model

- Extends TG methods of combinational circuits to
sequential circuits

- Transform Synchronous sequential circuit into an
iterative combinational array.
- Unroll the circuit for k times.
— One cell in the array -> time frame

- Assume all FFs are driven by a fault-free clock line.

= An input vector for the array is a sequence of k input
vectors for the synchronous circuit.

102

Synchronous State m/c model

PIs POs

Clock

103

Model for one time frame

__

* Since the circuit is same for every frame, we do
not have to generate n copies

* However, we should separately maintain signal
values of each time frame

104

Some observations

- C’ is a combinational circuit, so any combinational TG
algorithm (D, PODEM, CPTG, etc.) can be applied

— A test vector t for C’, may specify Pl and g values
- g values must be justified in previous timeframe

— t may not propagate an error to a PO but to a g+
variable
— Error must be propagated to next time frame

- In general, search process

- May span multiple time frames
- Going backward and forward in time

105

Fault Propagation

- Target fault can be present in every time frame!
- Error value (D or D’) may propagate onto the faulty

line itself
Value prgpagated Fault of line / Resultipg value
onto line / of line /
D s-a-0 D
D s-a-1 1
D s-a-0 0
D s-a-1 D

Figure 6.73 Result of a fault effect propagating to a faulty line

106

TG from a Known Initial State

F=l
repeat
begin
build model with r time frames
ignore the POs in the first r—1 frames
ignore the ¢* outputs in the last frame
g(1) = given initial state
if (test generation is successful) then return SUCCESS
/* no solution with xframes */

p=F

Once circuit is unrolled, we can use
any of the test generation algorithm
we studied for combinational

circuits, such as D-alg(), PODEM, etc.

Maximum Unroll factor

107

Iterative Array Model

t(1) t(2) ((r)
| | | |
PI
q(l) -] 1 2 S S— r —q i q+_
g (1)=q(2) PO

lgnore POs in
r-1 slices

108

Example

—Assume q;=0d-.=0

<
D)
< |

109

Time Frame

TPERT

& X

110

Time Frame 1

* With q; =q, =0, fault is activat
 With I=1, error |s propag but does not

reach Z I

041

=
Do e

0 DO—‘} D,=gq5 D
O

o
>
n o
Q
—+

"

111

* D-frontier = {G1, G3, G4}
* IfG1lor G4ischosen,thenl=1gives q,*=D"and q,*=D’
* If G3isselected with =0 gives q;"=0and q,*=D

3

Z
0

L |

EPERT

112

 D-frontier ={Z, G1, G2, G3, G4}
 With I=1, we get Z =D, error propagated to a PO!
* Desired test sequenceis|=(1,1, 1)

—D%}Z
1
=
Dof G,
0
Gz)
D, Sy e
——
D’ 113

Generation of Self-initializing Test Sequences

r=1
p=0
repeat
begin
build model with p + r time frames
ignore the POs in the first p + r — 1 frames
ignore the g™ outputs in the last frame
if (test generation is successful and every ¢ input in the first frame has
value x) then return SUCCESS
increment 7 or p
end
until (r+p=fax)
return FAILURE

114

Generation of Self-initializing Test Sequences
(a)

t(=(p-1)) 1(0) 1(1) 1(r)

J | |

o 1ad),

x — —(p-1) b—— 900 — 0

1. Activate fault in frame 1, and propagate it to PO using r frames.

2. 1f g(0) is not all x, justify q(0) by backward propagation of p frames.

115

R
Y2 — % Jq
J y Y1
K
Y2 —
] —
| Ja
J y Y2
\ K, K
5, —— c 3 2
Y1 7
(a) clock

r >

qi

—118

Example: Iterative Arrayv: Detect Z s-a-0

0 Il Z+— 0 0 —1 Z+— 0 1 — 1 Z+— D
X 0
X q1 1 q1 1 qd1 —
X q> q>2 q> —
Time frame 1 Time frame 2 Time frame 3
— N
—
q >0 }
@—51— —q + . S
s e U gt = Jqg+ Kq
T,
- 1 K, _ 117

Example: lterative Array: Detect Z s-a-0

Time frame O

K1=1
g, =1

Time frame —1

118

