CIS 4930 Digital System Testing Testing for Single Stuck-at Faults (SSFs)

Dr Hao Zheng Comp. Sci. & Eng. U of South Florida

Testing Generation

- Testing Generation (TG) is a complex problem We are interested in:
- → The cost of generating the test
- → The **quality** (fault coverage) of the test
- → The cost of applying the test

6.1 Basic Issues

6.1 Basic Issues

.

Deterministic TG System

- Model Tests ATG Model is analyzed to generate test & expected responses Fault Diagnostic • Diagnostic data can be universe data saved for fault location
 - Figure 6.1 Deterministic test generation system

6.2.1 Fault-oriented ATG

- → Circuit model gate-level combinational circuit
- → Basic Algorithm Fanout Free
- → Backtracking Algorithm
- → D Algorithm
- → PODEM (Path Oriented Decision Making)
- → FAN extends PODEM

Line Justification

→ To detect a fault

- → Activate the fault
- → **Propagate** the fault to a PO

Activating a fault a *l s*-*a*-*v*:

 \rightarrow Determine PI values that force value on line *l* to \bar{v}

This is known as the **line-justification** problem

Composite Logic Values

Let *D* represent 1/0 and \overline{D} represent 0/1

v/v _f	
0/0	0
1/1	1
1/0	D
0/1	\overline{D}

AND	0	1	D	\overline{D}	X
0	0	0	0	0	0
1	0	1	D	D	Х
D	0	D	D	0	Х
\overline{D}	0	D'	0	\overline{D}	Х
Х	0	Х	Х	Х	Х

OR	0	1	D	\overline{D}	X
0	0	1	D	D'	0
1	1	1	1	1	1
D	D	1	D	1	Х
\overline{D}	\overline{D}	1	1	D	Х
Х	Х	1	Х	Х	Х

Fig 6.3 TG for *I s-a-v* in Fanout Free circuit

begin set all values to x // initialization of all wires to X Justify (l, \overline{v}) // justification of line / if v = 0 then Propagate (l, D)else Propagate (l, D) end

Line Justification

Justify (l, val)begin set l to val if l is a PI then return /* l is a gate (output) */ c = controlling value of l i = inversion of l inval = val $\oplus i$

if
$$(inval = \overline{c})$$

then for every input j of l Justify (j, inval)

else

end

begin

select one input (j) of l Justify (j, inval)

end

Error Propagation – Fanout Free circuit

Propagate (l, err) /* err is D or \overline{D} */

begin

set l to err

if *l* is PO then return

k = the fanout of l

- c =controlling value of k
- i =inversion of k

for every input j of k other than l

Justify (j, \overline{c}) Propagate $(k, err \oplus i)$

end

Find an input vector such that *f s*-*a*-*0* is observable on *j*

a

Propagate (*j*, D)

Fanout Free vs. Fanout

→ For Fanout Free circuit

- Line justification problems are independent
- Sets of PI's assigned to justify required values are mutually disjoint

→ Circuits with Fanout

- → Several ways to propagate error to PO
- Fundamental difficulty: see following examples resulting line justification problems are no longer independent

Backtracking Strategy

- \rightarrow Search for a test vector \rightarrow decision process
- -> Several alternatives for a line justification problem
 - → Pick one alternative
 - → If it leads to an inconsistency, then backtrack!
- → Backtracking Strategy
 - → Systematic exploration
 - → Recovery from incorrect decisions
 - Invert all values assigned since last decision

Decision: choose one alternative if there are multiple alternatives to justify() or propagate()

Implication: compute new values as a result of **decision**, and check inconsistencies.

Decisions	Implications	Remarks
	h = D'	Initial
	e = 1	Implications
	f = 1	
	p = D'	
	r = 1	
	q = 1	
	o = 0	
	s = D'	
<i>l</i> =1	c = 1	To justify q=1
	d = 1	
	m = 0	
	n = 0	
	r = 0	Contradiction
k = 1	a = 1	To justify q = 1
	b = 1	
m = 1	c = 0	To justify r=1
	l = 0	

Fig 6.10 TG Algorithm Outline

Solve() begin if Imply and check() = FAILURE then return FAILURE if (error at PO and all lines are justified) then return SUCCESS if (no error can be propagated to a PO) then return FAILURE select an unsolved problem repeat begin select one untried way to solve it if Solve() = SUCCESS then return SUCCESS end **until** all ways to solve it have been tried return FAILURE end
Decision Tree

6.2.1.1 Common Concepts

(a)

TG Failure for an Undetectable Fault

- → Solve() is exhaustive guarantee to find a test if one exists.
 - → worst case complexity is exponential

Figure 6.12 TG failure for an undetectable fault (a) Circuit (b) Decision tree **6.2.1.1 Common Concepts**

D-Frontier

- → D-frontier all gates whose output value is currently x but have one or more error signals on their inputs.
- → *D-drive* operation –

Pick a gate and try to propagate error

→ If **D-frontier** becomes empty

- \Rightarrow No error can be propagated to PO
- ⇒ Backtracking should occur

Gates in D-frontier indicate necessary decisions in order to proceed.

J-Frontier

→ J-frontier – all gates whose output value is known, <u>but not implied</u> by its input values → Helps keep track of *currently unsolved* linejustification problems

All inputs are implied to be 1.

6.2.1.1 Common Concepts

No implications on x-inputs.

Implication Process

- 3 Steps:
- Compute all values that can be uniquely determined by implication
- 2. Check for consistency and assign values
- 3. Maintain the *D*-frontier and J-frontier

Implication can be forward or backward.

Backward Implication Propagation

Forward Implication Propagation

Figure 6.15

Forward Implication Propagation Figure 6.15

Forward Implication Propagation – cont'd

Figure 6.16

Before

After

Figure 6.17 Unique D-Drive

→ When only gate remains in the *D*-frontier. → There is only one way to propagate *D*.

Before

Figure 6.18 Future Unique *D***-drive**

- *D*-frontier = {d, e}
- Eventually we end up unique *D*-drive with gate *g* only

After

This type of propagations is *global implication*.

Reversing Incorrect Decisions

→ Assume that a = 0 failed *irrespective* of b and c ⇒ a must be 1!

Figure 6.21 Reversing incorrect decisions

Look-Ahead in Error Propagation

- → No matter how we propagate, D-frontier will be empty!
- → Look-ahead: Error propagation is possible only if there is at least one *x-path* from gate *G* in *D*-frontier to at least one PO. (a necessary condition)
- → X-paths used to avoid failed decisions.

6.2.1.1 Common Concepts

Figure 6.22 The need for look-ahead in error propagation

D-Algorithm

- Ability to propagate errors on several reconvergent fanouts
- We assume error propagation is given priority over justification problems (simplifying assumption)
- → "assign" means "add the value to the assignment queue"
- Imply_and_check() handles the assignments

- 1. D-alg()
- 2. begin

6.

8.

9.

10.

11.

12.

13.

- **3. if** *Imply_and_check() = FAIL* **then return** *FAIL*
- 4. **if** (error not at PO) **then** /* error propagation */
- 5. begin
 - **if** *D-frontier = Ø* **then return** FAIL
- 7. repeat

begin

- select an untried gate (G) from *D-frontier c* = controlling value of G
- assign c' to every input of G with input x if D alg() = SUCCESS then return SUCCES
 - if D-alg() = SUCCESS **then return** SUCCESS

end

14.until all gates from D-frontier have been tried15.return FAIL

16. end

/* error propagated to a PO */ 17. **if** *J*-frontier = \emptyset **then return** SUCCESS 18. select a gate (G) from the *J*-frontier 19. c = controlling value of G *20*. repeat 21. begin 22. select an input (*j*) of G with value x 23. assign c to j 24. if *D*-alg() = SUCCESS then return SUCCESS 25. assign c' to j /* reverse decision */ 26. end 27. **until** all inputs of G are specified 28. return FAIL 29. end **30**.

Decisions	Implications	
	<i>a</i> =0	Activate the fault
	h=1	
	<i>b</i> =1	Unique D -drive through g
	<i>c</i> =1	
	g=D	
<i>d</i> =1		Propagate through <i>i</i>
	i=D	
	<i>d′</i> =0	
<i>j</i> =1		Propagate through n
k=1		
<i>l</i> =1		
<i>m</i> =1		
	n=D	
	e'=0	
	<i>e</i> =1	
	$k=\overline{D}$	Contradiction
e=1		Propagate through k
	$k=\overline{D}$	
	e'=0	
	<i>j</i> =1	
<i>l</i> =1		Propagate through <i>n</i>
<i>m</i> =1		
	n=D	
	f'=0	
	<i>f</i> =1	
	$m=\overline{D}$	Contradiction
<i>f</i> =1	_	Propagate through m
	$m=\overline{D}$	
	f'=0	
	<i>l</i> =1	
	n=D	

Each node is a D-frontier.

PODEM – Path Oriented Decision Making

→ Direct search process

- → Decisions only about PI assignments.
- → In *D*-algorithm, decisions on PIs are indirect.
- \rightarrow Value v_k to be justified on line k
 - = Objective (k, v_k) to achieve via PI assignments.
- → Backtracing of an objective
 - → Maps a desired objective into a PI assignment
- Note that no values are assigned during backtracing

Backtrace (k, v_k)

/* map objective into PI assignment */ **begin**

```
v = v_k
    while k is a gate output
                               // Recursive generating
       begin
                                  // objectives until it reaches PI
           i = inversion of k
           select an input (j) of k with value x
           v = v \oplus i
           k=j
       end
   /* k is a PI */
   return (k,v)
end
```

Backtrace – An Example

Objective(f, 1)

Figure 6.28

- First Backtrace (*f*, 1) call:
 - Path (*f*, *d*, *b*) is tried with b=1 as PI assignment
 - But b=1 is not enough to achieve objective (f, 1)
- Second Backtrace (*f*, 1) call:
 - Path (*f*, *d*, *c*, *a*) is tried with a = 0
 - Now with a=0, we can achieve *objective (f, 1)*

Selecting an Objective

Objective() Activate fault begin /* the target fault is *l s-a-v* */ if (the value of l is x) then return (l, \overline{v}) select a gate (G) from the *D*-frontier Find the select an input (j) of G with value x necessary inputs to c =controlling value of Gpropagate fault return (j,\overline{c})

end

PODEM() // All lines are initialized to x
begin

if (error at PO) then return SUCCESS if (test not possible) then return FAILURE $(k,v_k) = Objective()$ $(j,v_i) = Backtrace(k,v_k) /* j$ is a PI */ Imply (j, v_i) // 5-value simulation with PI assignments if *PODEM()* = SUCCESS then return SUCCESS /* reverse decision */ Imply (j, \overline{v}_i) if *PODEM()* = SUCCESS then return SUCCESS Imply (j,x)**return** FAILURE // D-frontier becomes empty end

Objective	PI Assignment	Implications	D-frontier	
<i>a</i> =0	<i>a</i> =0	<i>h</i> =1	g	
<i>b</i> =1	<i>b</i> =1		g	
<i>c</i> =1	<i>c</i> =1	g=D	i,k,m	
<i>d</i> =1	<i>d</i> =1	<i>d</i> ′=0		
		$i=\overline{D}$	k,m,n	
k=1	<i>e</i> =0	e'=1		
		<i>j</i> =0		
i		<i>k</i> =1		
		<i>n</i> =1	m	<i>x</i> -path check fails
	<i>e</i> =1	e'=0		reversal
		<i>j</i> =1		
		$k=\overline{D}$		
		n=x	m,n	
<i>l</i> =1	<i>f</i> =1	f'=0	i	
		<i>l</i> =1		
		$m=\overline{D}$		
		n=D		

D-Algorithm vs PODEM

- → PODEM does not need
 - → Consistency check
 - → J-frontier
 - → Backward implication propagation
- → Backtracking in PODEM is more simplified.
- → Overall, PODEM is more efficient.
Selection Criteria

- Search process involves decisions
- → Decisions on how to:
 - → Select one of several unsolved problems: fault propagation/line justification.
 - → Select one possible way to solved the selected problem: several possible inputs to justify output 0 of AND gate.

What are the selection criteria? Some principles to speed up the search process.

Selection Criteria - Principles

 Among different unsolved problems, first attack the most difficult one

→ Thus avoid useless time spent in solving the easier problems when a harder one cannot be solved

 Among different solutions of a problem, first try the easiest one

→ Difficulty is measured by *cost functions*.

Cost Functions

→ Controllability measures

- → Related to the Line Justification problem
- → Relative difficulty of setting a line to a value
- Ex: select most difficult line-justification problem

→ Observability measures

- → Related to the Error Propagation problem
- → Relative difficulty of propagating an error from a line to a PO
 Ex: select the gate from *D*-frontier whose input error is easiest to observe

Important: Must be relative measures and easy to compute.

Distance Based Cost Functions

Any cost function should show that

- Pls are the easiest to control
- → POs are the easiest to observe

→ Therefore

→ Difficulty of controlling a line *increases* with its distance from PIs

 \Rightarrow Line Level can be used as a controllability measure!

→ Difficulty of observing a line increases with its distance from POs

 \Rightarrow Shortest distance of a line to PO can be used as a observability measure!

Main Drawback: Does not take into account the logic function

Controllability Measure C(*l***)**

For every signal we want to compute:

CO(l) = Relative difficulty of setting line l to 0

C1(l) = Relative difficulty of setting line l to 1

Assume we know CO and C1 costs of all inputs of the AND gate,

To set X to 0:

```
CO(X) = min {CO(A), CO(B), CO(C) }
To set X to 1:
```

C1(X) = C1(A) + C2(B) + C3(C)

assuming A, B, C are independent (i.e., do not depend on common PIs)

We can develop similar cost functions for other gates. OR gate?

Controllability Measure Computation

- → Set CO and C1 for every primary input to 1
- → Compute C0's and C1' level by level
 - Cost are computed only after predecessor costs are known
- → Costs can be computed in one forward traversal
 → Linear in number of gates

If inputs of a gate are not independent, it can lead to incorrect results

- In (a) cost of controlling B and C is the same
- In (b) B and C cannot be set to 1 simultaneously, so C1(X) should show that setting X=1 is impossible

Observability Measure O(*l***)**

Cost of observing the input A?

- → We must set B and C to 1
- Propagate error from X to a PO

$$D(A) = C1(B) + C1(C) + O(X) \dots Eq$$

(3)

Assuming controlling B=1, C=1, and propagating Err(X) to PO are independent problems

What about OR gate?

Observability of a Stem X

$O(X) = \min \{ O(X1), O(X2), O(X3) \}$... Eq (4) Assuming single path propagation is possible

Observability Measure Computation

- → Set observability cost of every PO to 0
- Compute observabilities level by level backward manner using eq 3 and 4.
 - Cost are computed only after successor costs are known
- Costs can be computed in one backward traversal
 Linear in number of lines
- → Assume controllability measure is known.

Fanout-Based Cost Functions

→ Reconvergent fanout makes TG difficult.
 → A line with fanout has high potential causing conflict.

Fanout-Based Controllability Measure

- \rightarrow C(*l*) depends on
 - \rightarrow Fanout count of l
 - → Fanout count of predecessors of *l*

$$C(l) = \sum_{i} C(i) + f_{l} - 1 \tag{6.5}$$
 Where f_{l} is the fanout count of l

A line *I* with *C*(*I*) = 0 means it does not depend on any fanout lines.

$$C(l) = \sum_{i} C(i) + f_l - 1$$

C(A) = 0C(B) = 2C(X) = 2

Therefore, select A=0 to justify X=0.

CO(*l*) and C1(*l*) – More Accurate Cost Func.

→ Eq (6.5) does not distinguish between setting a line to 0 and to 1

For the AND gate we have: $CO(l) = min \{CO(i)\} + f_l - 1$ and $C1(l) = \sum_{i} C1(i) + f_l - 1$ What about OR gate?

Example
$$CO(l) = min \{CO(i)\} + f_l - 1$$

 $C(l) = \sum_i C(i) + f_l - 1$

$$CO(A) = C1(A) = 1$$

 $CO(B) = C1(B) = 0$
 $CO(X) = 0,$
 $C1(X) = 1.$

- CO(A) and C1(A) both have corrective terms =1
- A = 0 has greater potential of conflicts than A = 1
 - A = 0 results in B, C, D, E being set to binary values
 - Less x-paths for error propagation.

Side Effects Cost Function

- → Side-Effects Cost Functions: CSO(l) and CS1(l) to account for relative potential for conflicts caused by setting l to 0 and 1
- → Computed by simulating l = v (v ∈ {0, 1}) in a circuit initialized with all-x state, and then
 - → A gate whose output is set to a binary value increases cost by 1
 - → A gate with n inputs whose output remains at x but which has m inputs set to a binary value, increases the cost by m/n

Side Effect Function – Example

- CSO(A) = 4(1/2)
- CS1(A) = (1/3) + (1/2) = 5/6

Cost Functions with Side-Effects

$$CO(l) = min \{CO(i)\} + CSO(l)$$
$$C1(l) = \sum_{i} C1(i) + CS1(l)$$

- Require circuit simulation after assigning *I* to 0 or 1
 - Cause additional complexity

Cost Functions: Summary

Complexity of cost function computation must be low.

→ Cost functions are based heuristics.

→ Dynamic cost functions may lead to better performance.

Fault Independent ATG

→ Fault-oriented algorithm targets a given fault and generate a test vector

→ Fault-independent algorithm's goal:

- → Derive a set of test that detect a large set of SSFs w/o targeting individual faults
- → CPT -- Half of the SSFs on a path critical in a test t are detected by t
 - \Rightarrow Generate tests that produce **long** critical paths
 - \Rightarrow Critical path TG algorithm

Critical Paths – Basic Concept

The input vector detects output s-a-0 fault and other faults on the critical path

Critical-path TG Algorithm

Basic Steps

- 1. Select a PO and assign it a critical 0-value or 1value (Recall that a PO is always critical)
- 2. Recursively justify the PO value, trying to justify any critical value on a gate output by critical values on the gate inputs

Line Justification – 3 Input AND gate

By Primitive Cubes

By Critical Cubes

(b)

(a)

Critical-path TG - Example

What SSFs can be detected by this input vector?

Critical-path TG – Example ...contd.

(c)

(d)

0

- G

```
CPTGFF()
begin
    while (Critical \neq \emptyset)
       begin
           remove one entry (l,val) from Critical
           set l to val
           mark l as critical
           if l is a gate output then
               begin
                   c = controlling value of l
                   i = inversion of l
                   inval = val \oplus i
                   if (inval = \overline{c})
                       then for every input j of l
                           add (j,\overline{c}) to Critical
                       else
                           begin
                               for every input j of l
                                   begin
                                       add (j,c) to Critical
                                       for every input k of l other than j
                                           Justify (k, \overline{c})
                                       CPTGFF()
                                   end
                               return
                           end
               end
        end
    /* Critical = Ø */
    record new test
    return
```

Critical Path TG Fanout Free
To generate complete test set for a FF circuit whose PO is Z,

> add (Z, 0) to *Critical CPTGFF()* add (Z, 1) to *Critical CPTGFF()*

Decision Tree

Figure 6.47 Decision trees for Example 6.12 The number of terminal nodes equals the number of tests generated.

ATG for SSFs in Sequential Circuits

→ TG using Iterative Array Model

- → Extends TG methods of combinational circuits to sequential circuits
- → Transform Synchronous sequential circuit into an iterative combinational array.

→ Unroll the circuit for *k* times.

→ One cell in the array -> *time frame*

→ Assume all FFs are driven by a fault-free clock line.

→ An input vector for the array is a sequence of k input vectors for the synchronous circuit.

Synchronous State m/c model

Model for one time frame

- Since the circuit is same for every frame, we do not have to generate n copies
- However, we should separately maintain signal values of each time frame

Some observations

- → C' is a combinational circuit, so any combinational TG algorithm (D, PODEM, CPTG, etc.) can be applied
- → A test vector *t* for *C*′, may specify PI and q values
 - → q values must be justified in previous timeframe
- → t may not propagate an error to a PO but to a q+ variable
 - → Error must be propagated to next time frame
- → In general, search process
 - → May span multiple time frames
 - → Going backward and forward in time

Fault Propagation

- Target fault can be present in every time frame!
 - → Error value (D or D') may propagate onto the faulty line itself

Value propagated onto line <i>1</i>	Fault of line l	Resulting value of line <i>l</i>
D	<i>s-a-</i> 0	D
D	<i>s-a-</i> 1	1
\overline{D}	<i>s-a-</i> 0	0
\overline{D}	<i>s-a-</i> 1	\overline{D}

Figure 6.73 Result of a fault effect propagating to a faulty line

TG from a Known Initial State

r=1repeat begin build model with r time frames ignore the POs in the first r-1 frames ignore the q^+ outputs in the last frame q(1) = given initial state if (test generation is successful) then return SUCCESS /* no solution with r frames */ r = r + 1end Once circuit is unrolled, we can use until r =any of the test generation algorithm return FAILURE we studied for combinational circuits, such as D-alg(), PODEM, etc. Maximum Unroll factor

Iterative Array Model

Time Frame 1

- With q₁ = q₂ = 0, fault is activated (D')
- With I=1, error is propagated to q_2^+ but does not reach Z $I = \frac{1}{1}$ o

- D-frontier = {G1, G3, G4}
- If G1 or G4 is chosen, then I = 1 gives $q_1^+ = D'$ and $q_2^+ = D'$
- If G3 is selected with I = 0 gives $q_1^+ = 0$ and $q_2^+ = D$

112

- D-frontier = {Z, G1, G2, G3, G4}
- With I=1, we get Z = D, error propagated to a PO!
- Desired test sequence is I = (1, 1, 1)

Generation of Self-initializing Test Sequences

r = 1

$$p = 0$$

repeat

begin

build model with p + r time frames ignore the POs in the first p + r - 1 frames ignore the q^+ outputs in the last frame

if (test generation is successful and every q input in the first frame has

value x) then return SUCCESS

increment r or p

end

until (*r*+*p*=*f*_{max}) return FAILURE

Generation of Self-initializing Test Sequences

(a)

Activate fault in frame 1, and propagate it to PO using r frames.
If q(0) is not all x, justify q(0) by backward propagation of p frames.

Example: Iterative Array: Detect Z s-a-0

Time frame 1

Time frame 2

Time frame 3

Example: Iterative Array: Detect Z s-a-0

