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Testing Generation

Testing Generation (TG) is a complex problem
We are interested in:
➺The cost of generating the test
➺The quality (fault coverage) of the test
➺The cost of applying the test

26.1  Basic Issues 
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Deterministic TG System
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both the stimuli to be applied and the expected response of the fault-free circuit. Some
TG systems also produce diagnostic data to be used for fault location.
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Figure 6.1 Deterministic test generation system

6.2 ATG for SSFs in Combinational Circuits
In this section we consider only gate-level combinational circuits composed of AND,
NAND, OR, NOR, and NOT gates.

6.2.1 Fault-Oriented ATG
Fanout-Free Circuits

We use fanout-free circuits only as a vehicle to introduce the main concepts of ATG
for general circuits. The two fundamental steps in generating a test for a fault I s-a-v
are first, to activate (excite) the fault, and, second, to propagate the resulting error to a
primary output (PO). Activating the fault means to set primary input (PI) values that
cause line I to have value v. This is an instance of the line-justification problem,
which deals with finding an assignment of PI values that results in a desired value
setting on a specified line in the circuit. To keep track of error propagation we must
consider values in both the fault-free circuit N and the faulty circuit Nt defined by the
target fault f. For this we define composite logic values of the form v/Vt, where v and
Vt are values of the same signal in N and Nt. The composite values that
represent errors - 1/0 and 0/1 - are denoted by the symbols D and D [Roth 1966].

•Model is analyzed to 
generate test & 
expected responses
• Diagnostic data can be 
saved for fault location

6.1  Basic Issues 



6.2.1  Fault-oriented ATG

➺Circuit model – gate-level combinational circuit 
➺Basic Algorithm – Fanout Free
➺Backtracking Algorithm 
➺D Algorithm
➺PODEM (Path Oriented Decision Making)
➺FAN extends PODEM

56.2 ATG for SSFs in Combinational Circuits



Line Justification

➺To detect a fault
➺ Activate the fault
➺ Propagate the fault to a PO

Activating a fault a l s-a-v:
➺ Determine PI values that force value on line l to "̅

This is known as the line-justification problem

66.2 ATG for SSFs in Combinational Circuits



Composite Logic Values

Let D represent 1/0 and !" represent 0/1
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v/vf
0/0 0

1/1 1

1/0 D

0/1 !#

AND 0 1 D !# X
0 0 0 0 0 0
1 0 1 D !# X
D 0 D D 0 X
!# 0 D’ 0 !# X
X 0 X X X X

OR 0 1 D !# X
0 0 1 D D’ 0
1 1 1 1 1 1
D D 1 D 1 X
!# !# 1 1 !# X
X X 1 X X X

6.2 ATG for SSFs in Combinational Circuits



Fig 6.3 TG for l s-a-v in Fanout Free circuit
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The other two composite values - % and 1/1 - are denoted by 0 and 1. Any logic
operation between two composite values can be done by separately the
fault-free and faulty values, then composing the results. For example, D + 0 =
0/1 + % = 0+0/1+0 = 0/1 = D. To these four binary composite values we add a fifth
value (:9 to denote an unspecified composite value, that is, any value in the set
{0,1,D,D}. In practice, logic operations using composite values are defined by tables
(see Figure 6.2). It is to that D behaves rules of
Boolean algebra, i.e., D+D = 1, D.D = 0, D+D = D.D = D, D.D = D+D =D.

V/Vf

0/0 0

1/1 1

1/0 D

-
0/1 D

(a)

-
AND 0 1 D D x

0 0 0 0 0 0

-
1 0 1 D D x

D 0 D D 0 x

- - -
D 0 D 0 D x

x 0 x x x x

(b)

-
OR 0 1 D D x

-
0 0 1 D D x

1 1 1 1 1 1

D D 1 D 1 x

- - -
D D 1 1 D x

x x 1 x x x

(c)

Figure 6.2 Composite logic values and 5-valued operations

Figure 6.3 shows the structure of an algorithm for generating a test for I s-a-v. It
initializes all values to x and it performs the two basic steps, represented by the
routines Justify and Propagate.

begin
set all values to x
Justify(l, v)
if v = 0 then PropC!Jate (I, D)
else Propagate (I, D)

end

Figure 6.3 Test generation for the fault I s-a-v in a fanout-free circuit

Line justification (Figure 6.4) is a recursive process in which the value of a gate output
is justified by values of the gate inputs, and so on, until PIs are reached. Let us
consider a NAND gate with k inputs. There is only one way to justify a 0 output

6.2 ATG for SSFs in Combinational Circuits

// initialization of all wires to X
// justification of line l
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Line Justification
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value, but to justify a 1 value we can select anyone of the 2k-l input combinations
that produce 1. The simplest way is to assign the value °to only one (arbitrarily
selected) input and to leave the others unspecified. This corresponds to selecting one
of the k primitive cubes of the gate in which the output is 1.

1
I

°I-I )f-----1
1
1

)-

Justify (I, val)
begin

set I to val
if I is a PI then return
/* I is a gate (output) */
c = controlling value of I
i = inversion of I
inval = val@i
if (inval = C)

then for every input j of I
Justify (j, inval)

else
begin

select one input (j) of I
Justify (j, inval)

end
end

Figure 6.4 Line justification in a fanout-free circuit

To propagate the error to the PO of the circuit, we need to sensitize the unique path
from I to the PO. Every gate on this path has exactly one input sensitized to the fault.
According to Lemma 4.1, we should set all the other inputs of G to the noncontrolling
value of the gate. Thus we transform the error-propagation problem into a set of
line-justification problems (see Figure 6.5).

Example 6.1: Let us generate a test for the faultf s-a-O in the circuit of Figure 6.6(a).
The initial problems are Justify(f,I) and Propagate(f,D). Justify(f,I) is solved by
a=b=l. Propagate(f,D) requires Justify(g,O) and Propagate(h,D). We solve
Justify(g,O) by selecting one input of g - say, c - and setting it to 0.
Propagate(h,D) leads to Justifyii.t), which results in e=O. Now the error reaches the
PO j. Figure 6.6(b) shows the resulting values. The generated test is 110xO (d can be
arbitrarily assigned °or 1). 0

It is important to observe that in a fanout-free circuit every line-justification problem
can be solved independently of all the others, because the sets of PIs that are
eventually assigned to justify the required values are mutually disjoint.

Circuits with Fanout

Now we consider the general case of circuits with fanout and contrast it with the
fanout-free case. We must achieve the same two basic goals - fault activation and
error propagation. Again, fault activation translates into a line-justification problem. A
first difference caused by fanout is that now we may have several ways to propagate an
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Error Propagation – Fanout Free circuit
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Propagate (I, e.!..r)
/* err is D or D */
begin

set I to err
if I is PO then return
k = the fanout of I
c = controlling value of k
i = inversion of k
for every input j of k other than I

Justify (j, c)
Propagate (k, err@i)

end

1
err

k

Figure 6.5 Error propagation in a fanout-free circuit
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Figure 6.6

error to a PO. But once we select a path, we again reduce the error-propagation
problem to a set of line-justification problems. The fundamental difficulty caused by
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error to a PO. But once we select a path, we again reduce the error-propagation
problem to a set of line-justification problems. The fundamental difficulty caused by

Find an input vector such that f s-a-0 is observable on j
6.2 ATG for SSFs in Combinational Circuits
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Justify (f, 1)

6.2 ATG for SSFs in Combinational Circuits
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Justify (f, 1)
1
1
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Example 6.1 Propagate ( f, D) 

1
1

Justify ( g, 0)

0
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Example 6.1 Propagate ( h, D) 
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Example 6.1 Propagate ( j, D) 

1
1

0

0

DD

1
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Example 6.1
f s –a-0

Justify (f, 1) Propagate ( f, D) 

Justify ( g, 0) Propagate (h, D)

Propagate(j, D)Justify ( i , 1)

a = 1, b = 1

c = 0, d = X

e = 0
Error reaches PO!

6.2 ATG for SSFs in Combinational Circuits



Fanout Free vs. Fanout
➺For Fanout Free circuit

➺ Line justification problems are independent
➺ Sets of PI’s assigned to justify required values are 

mutually disjoint

➺Circuits with Fanout
➺ Several ways to propagate error to PO
➺ Fundamental difficulty: see following examples

resulting line justification problems are no longer 
independent

186.2 ATG for SSFs in Combinational Circuits
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(reconvergent) fanout is that, in general, the resulting line-justification problems are
no longer independent.

Example 6.2: In the irredundant circuit of Figure 6.7 consider the fault G 1 s-a-l. To
activate it we need to justify G 1=0. Now we have a choice of propagating the error
via a path through G s or through G6 • Suppose we decide to select the former, Then
we need to justify G 2 =1. The resulting set of problems - Justify(G 1,0) and
Justify(G 2, 1) - cannot be solved simultaneously, because their two unique solutions,
a=b=c=1 and a=d=O, require contradictory values for a. This shows that the decision
to propagate the error through Gs was wrong. Hence we have to try an alternative
decision, namely propagate the error through G 6 • This requires G 4 = 1, which is
eventually solved by c=1 and e=O. The resulting test is lllxO. D

G2 G sd

11
G1

a
b
c s-a-l

G6

f2

G3

e

Figure 6.7

This example shows the need to explore alternatives for error propagation. Similarly,
we may have to try different choices for line justification.

Example 6.3: Consider the fault h s-a-l in the circuit of Figure 6.8. To activate this
fault we must set h=O. There is a unique path to propagate the error, namely through p
and s. For this we need e=f=1 and q=r=l. The value q=1 can be justified by 1=1 or
by k=l. First, let us try to set 1=1. This leads to c=d=l. However, these two
assignments, together with the previously specified e=l, would imply r=0, which leads
to an inconsistency. Therefore the decision to justify q=1 by 1=1 has been incorrect.
Hence we must choose the alternative decision k=l, which implies a=b=l. Now the
only remaining line-justification problem is r=1. Either m=1 or n=1 leads to consistent
solutions. D

Backtracking

We have seen that the search for a solution involves a decision process. Whenever
there are several alternatives to justify a line or to propagate an error, we choose one
of them to try. But in doing so we may select a decision that leads to an inconsistency

1
1
1

D

6.2 ATG for SSFs in Combinational Circuits
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assignments, together with the previously specified e=l, would imply r=0, which leads
to an inconsistency. Therefore the decision to justify q=1 by 1=1 has been incorrect.
Hence we must choose the alternative decision k=l, which implies a=b=l. Now the
only remaining line-justification problem is r=1. Either m=1 or n=1 leads to consistent
solutions. D

Backtracking

We have seen that the search for a solution involves a decision process. Whenever
there are several alternatives to justify a line or to propagate an error, we choose one
of them to try. But in doing so we may select a decision that leads to an inconsistency

1
1
1

0 1

0

D
D
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Example 6.2
G1 s –a-1

Justify (G1, 0) Propagate (G11, D’) 

Justify (G2, 1) Propagate (G6, D)

Justify(G3, 0)

Propagate (G12, D) 

Justify (G4, 1)

Justify(e, 0)

a = 1, b = 1, c=1

a = 0, d = 0
Error reaches PO!

c = 1 e = 0
Conflict!
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Backtracking Strategy

➺Search for a test vector  ® decision process
➺Several alternatives for a line justification problem

➺ Pick one alternative
➺ If it leads to an inconsistency, then backtrack!

➺Backtracking Strategy
➺ Systematic exploration
➺ Recovery from incorrect decisions

• Invert all values assigned since last decision
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Figure 6.8

(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,

6.2 ATG for SSFs in Combinational Circuits
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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(also termed contradiction or conflict). Therefore in our search for a test we should
use a backtracking strategy that allows a systematic exploration of the complete
space of possible solutions and recovery from incorrect decisions. Recovery involves
restoring the state of the computation to the state existing before the incorrect decision.

Usually the assignments performed as a result of a decision uniquely determine (imply)
other values. The process of computing these values and checking for their
consistency with the previously determined ones is referred to as implication.
Figure 6.9 shows the progression of value computation for Example 6.3, distinguishing
between values resulting from decisions and those generated by implication. The
initial implications follow from the unique solutions to the fault-activation and
error-propagation problems.

In most backtracking algorithms we must record all values assigned as a result of a
decision, to be able to erase them should the decision lead to an inconsistency. In
Example 6.3 all values resulting from the decision 1=1 are erased when backtracking
occurs.

Figure 6.10 outlines a recursive scheme of a backtracking TG algorithm for a fault.
(This description is quite abstract, but more details will be provided later.) The
original problems to be solved in generating a test for the fault I s-a-v are to justify a
value v on I and to propagate the error from I to a PO. The basic idea is that if a
problem cannot be directly solved, we recursively transform it into subproblems and
try to solve these first. Solving a problem may result in SUCCESS or FAILURE.

First the algorithm deals with all the problems that have unique solutions and hence
can be solved by implication. These are processed by the procedure Imply_and_check,
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Decisions Implications Remarks

h = D’
e = 1
f = 1

p = D’
r = 1
q = 1
o = 0
s = D’

Initial
Implications

l =1 c = 1
d = 1
m = 0
n = 0
r = 0

To  justify q=1

Contradiction
k = 1 a = 1

b = 1
To justify q = 1

m = 1 c = 0
l = 0

To justify r=1

6.2 ATG for SSFs in Combinational Circuits

Decision: choose one alternative if 
there are multiple alternatives to 
justify() or propagate()

Implication: compute new values as a 
result of decision, and check 
inconsistencies. 
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Fig 6.10  TG Algorithm Outline
ATG for SSFs in Combinational Circuits

Solve()
begin

if Imply_and_check() =FAILURE then return FAILURE
if (error at PO and all lines are justified)

then return SUCCESS
if (no error can be propagated to a PO)

then return FAILURE
select an unsolved problem
repeat

begin
select one untried way to solve it
if Solve() = SUCCESS then return SUCCESS

end
until all ways to solve it have been tried
return FAILURE

end

Figure 6.10 General outline of a TG algorithm
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will generate a test for it independent of the order in which problems and solutions are
attempted. However, the selection process may greatly affect the efficiency of the
algorithm as well as the test vector generated. Selection criteria are discussed in
Section 6.2.1.3.

There are several fault-oriented TG algorithms whose structure is similar to that of
Solve. In the following we first analyze concepts common to most of them, then we
discuss specific algorithms in more detail.

6.2.1.1 Common Concepts

Decision Tree

The execution of the backtracking TG algorithm can be visualized with the aid of a
decision tree (see Figure 6.11). A decision node (shown as a circle) denotes a problem
that the algorithm is attempting to solve. A branch leaving a decision node
corresponds to a decision, i.e., trying one of the available alternative ways to solve the
problem. A FAILURE terminal node of' the tree (shown as a square labeled F)
indicates the detection of an inconsistency or encountering a state that precludes further
error propagation. A SUCCESS terminal node (shown as a square labeled S)
represents finding a test. The execution of the algorithm can be traced by a depth-first
traversal of the associated decision tree. For example, in Figure 6.11(b), starting at the
decision node q=l, we first follow the branch 1=1 which reaches an F terminal node.
Then we backtrack to the last decision node and take the other branch (k=I), which
leads to a new decision node (r=I). Here the first decision (m=l) reaches an S
terminal node.

6.2 ATG for SSFs in Combinational Circuits
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Decision Tree
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Figure 6.11 Decision trees (a) General structure (b) Decision tree for
Example 6.3

Implicit Enumeration

An important property of the algorithm of Figure 6.10 is that it is exhaustive, that is, it
is guaranteed to find a solution (test) if one exists. Thus if the algorithm fails to
generate a test for a specified fault, then the fault is undetectable.

Example 6.4: Let us try to generate a test for the fault f s-a-O in the circuit of
Figure 6.12(a). To justify jel we first try b=O (see the decision tree in Figure 6.12(b)).
But this implies e=l, which precludes error propagation through gate h. Trying c=O
results in a similar failure. We can conclude that no test exists for f s-a-O. D

The algorithm is guaranteed to find a test, if one exists, because it can implicitly
enumerate all possible solutions. The concept of implicit enumeration is best
understood by contrasting it to explicit enumeration, which (in this context) means to
repeatedly generate an input vector and to check whether it detects the target fault.
Using implicit enumeration we direct the search toward vectors that can satisfy the set

6.2.1.1 Common Concepts



TG Failure for an Undetectable Fault
➺ Solve() is exhaustive – guarantee to find a test if one exists.

➺ worst case complexity is exponential
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(a) (b)

Figure 6.12 TG failure for an undetectable fault (a) Circuit (b) Decision tree
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of constraints imposed by the set of lines whose values must be simultaneously
justified. As the set of constraints grows during the execution of the algorithm, the set
of vectors that can satisfy them becomes smaller and smaller. The advantage of
implicit enumeration is that it bounds the search space and begins to do so early in the
search process.

Let us compare implicit and explicit enumeration for Example 6.4. Using implicit
enumeration, we start by limiting the search to the set of vectors that satisfy 1=1.
From this set, we first reject the subset of all vectors with b=O. Then we reject the
subset of all vectors with c=O, and this concludes the search. Using explicit
enumeration; we would generate and simulate all 24 input vectors.

Complexity Issues

Because of the exhaustive nature of the search process, the worst-case complexity of
the algorithm in Figure 6.10 is exponential; i.e., the number of operations performed is
an exponential function of the number of gates in the circuit. The worst-case behavior
is characterized by many remade decisions; that is, much searching is done before a
test is found or the target fault is recognized as undetectable. To minimize the total
TG time, any practical TG algorithm is allowed to do only a limited amount of search;
namely, the search is abandoned when the number of incorrect decisions (or the CPU
time) reaches a specified limit. This may result in not generating tests for some
detectable faults. The worst-case behavior has been observed mainly for undetectable
faults [Cha et ale 1978].

The best-case behavior occurs when the result - generating a test or recognizing
redundancy - is obtained without backtracking. This means either that the result is
found only by implications (then the decision tree degenerates to one terminal node),
or that only correct decisions are taken. Then the number of operations is a linear
function of the number of gates. This is always the case for fanout-free circuits and
for circuits without reconvergent fanout, because in these types of circuits no decision
can produce a conflict. (Furthermore in such circuits all faults are detectable).

6.2.1.1 Common Concepts



D-Frontier
➺ D-frontier – all gates whose output value is currently x

but have one or more error signals on their inputs.
➺ D-drive operation –

Pick a gate and try to propagate error
➺ If D-frontier becomes empty

Þ No error can be propagated to PO
Þ Backtracking should occur
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D
x

Gates in D-frontier indicate necessary decisions in order to proceed.
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J-Frontier

➺J-frontier – all gates whose output value is 
known, but not implied by its input values

➺Helps keep track of currently unsolved line-
justification problems
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All inputs are implied to be 1. No implications on x-inputs.
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Implication Process

3 Steps:
1. Compute all values that can be uniquely 

determined by implication
2. Check for consistency and assign values
3. Maintain the D-frontier and J-frontier

41

Implication can be forward or backward.
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Figure 6.14 Backward implications

(d)

predecessors, the implication illustrated in Figure 6.18 can be characterized as global,
since it involves a larger area of the circuit and reconvergent fanout.

Next we analyze other global implications used in the SOCRATES system [Schulz
et al. 1988, Schulz and Auth 1989]. Consider the circuit in Figure 6.19. Assume that
F = 1 has just been assigned by backward propagation. No other values can be
determined by local implications. But we can observe that, no matter how we decide
to justify F = 1 (by D = 1 or E = 1), in either case we will imply B = 1. Thus we can
conclude that F = 1 implies B = 1. This implication is "learned" during the
preprocessing phase of SOCRATES by the following analysis. Simulating B = 0, we
determine that it implies F = O. Then (F =0) implies (B =0), that is, F = 1 implies
B = 1.

The type of learning illustrated above is called static, because the implications
determined are valid independent of other values in the circuit. SaCRATES also
performs dynamic learning to determine global implications enabled by previously
assigned values. For example, in the circuit in Figure 6.20, F = 0 implies B = 0 when
A = 1 (because B = 1 implies F = 1 when A = 1).

Reversing Incorrect Decisions

Consider the problem of justifying a 0 on the output of an AND gate with three
inputs - a, b, and c - all currently with value x (see Figure 6.21). Let us assume
that the first decision - a=O - has been proven incorrect. This shows that,
independent of the values of b and c, a cannot be O. Therefore, we can conclude that
a must be 1. Then before we try the next decision - b=O - we should set a=1

Backward Implication Propagation

42

Gate a gets 
added to J-

frontier 
after a = 0 
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Figure 6.15 Forward implications (binary values)

(rather than leave a=x) and process a=1 as an implication. Similarly, if the decision
b=O fails as well, we should set both a=1 and b=1 before trying c=O. The benefit of
this technique of reversing incorrect decisions [Cha et ale 1978] is an increase in the
number of implications.

Error-Propagation Look-Ahead

Consider the circuit and the values shown in Figure 6.22. The D-frontier is {a,b}.
We can observe that, independent of the way we may try to propagate the errors,
eventually the D-frontier will become empty, as Ds cannot be driven through e or f
This future state can be identified by checking the following necessary condition for
successful error propagation.

Let an x-path denote a path all of whose lines have value x. Let G be a gate on the
D-frontier. The error(s) on the input(s) of G can propagate to a PO Z only if there
exists at least one x-path between G and Z [Goel 1981].

Clearly, none of the gates on the D-frontier in Figure 6.22 satisfies this condition. The
benefit of identifying this situation is that we can avoid all the decisions that are bound

Forward Implication Propagation
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Figure 6.15
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Figure 6.15 Forward implications (binary values)

(rather than leave a=x) and process a=1 as an implication. Similarly, if the decision
b=O fails as well, we should set both a=1 and b=1 before trying c=O. The benefit of
this technique of reversing incorrect decisions [Cha et ale 1978] is an increase in the
number of implications.

Error-Propagation Look-Ahead

Consider the circuit and the values shown in Figure 6.22. The D-frontier is {a,b}.
We can observe that, independent of the way we may try to propagate the errors,
eventually the D-frontier will become empty, as Ds cannot be driven through e or f
This future state can be identified by checking the following necessary condition for
successful error propagation.

Let an x-path denote a path all of whose lines have value x. Let G be a gate on the
D-frontier. The error(s) on the input(s) of G can propagate to a PO Z only if there
exists at least one x-path between G and Z [Goel 1981].

Clearly, none of the gates on the D-frontier in Figure 6.22 satisfies this condition. The
benefit of identifying this situation is that we can avoid all the decisions that are bound

Forward Implication Propagation
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Forward Implication Propagation – cont’d
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eventually to fail and their associated backtracking. Thus by using this look-ahead
technique we may prune the decision tree by recognizing states from which any further
decision will lead to a failure.

6.2.1.2 Algorithms

Many of the concepts presented in the previous section are common to a class of TG
algorithms generally referred to as path-sensitization algorithms. In this section we
discuss specific algorithms of this class.

Figure 6.16
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Figure 6.17 Unique D-Drive

➺When only gate remains in the D-frontier.
➺ There is only one way to propagate D.
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• D-frontier = {d, e}
• Eventually we end up unique D-drive with gate g
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Figure 6.20 Global implication: F = 0 implies B = 0 when A = 1

The D-Algorithm

Figure 6.23 presents our version of the classical D-algorithm [Roth 1966,
Roth et ale 1967]. It follows the general outline shown in Figure 6.10. For the sake of

Figure 6.18 Future Unique D-drive
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This type of propagations is global implication.
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Reversing Incorrect Decisions

➺Assume that a = 0 failed irrespective of b and c
Þ a must be 1!
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Figure 6.22 The need for look-ahead in error propagation

simplicity, we assume that error propagation is always given priority over justification
problems; however, this assumption is not essential (see Section 6.2.1.3).

The term "assign" should be understood as "add the value to be assigned to the
assignment queue" rather than an immediate assignment. Recall that all the
assignments are made and further processed by Imply_and_check.

A characteristic feature of the D-algorithm is its ability to propagate errors on several
reconvergent paths. This feature, referred to as multiple-path sensitization, is required
to detect certain faults that otherwise (i.e., sensitizing only a single path) would not be
detected [Schneider 1967].

Example 6.6: Let us apply the D-algorithm for the circuit and the fault shown in
Figure 6.24(a). Figure 6.24(b) traces the value computation and Figure 6.24(c) depicts
the decision tree. The content of a decision node corresponding to an error
propagation problem shows the associated D-frontier. A branch emanating from such
a decision node shows the decision taken, that is, the gate selected from the D-frontier
for error propagation. (Remember that when backtracking occurs, the D-frontier
should be restored to its state before the incorrect decision.) Note how the
D-algorithm first tried to propagate the error solely through i, then through both i and

6.2.1.1 Common Concepts



Look-Ahead in Error Propagation
➺ No matter how we propagate, D-frontier will be empty!
➺ Look-ahead:  Error propagation is possible only if there is at 

least one x-path from gate G in D-frontier to at least one PO. 
(a necessary condition)

➺ X-paths used to avoid failed decisions.
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the decision tree. The content of a decision node corresponding to an error
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D-Algorithm

➺Ability to propagate errors on several 
reconvergent fanouts

➺We assume error propagation is given priority 
over justification problems (simplifying 
assumption)

➺“assign” means “add the value to the assignment 
queue”

➺ Imply_and_check() handles the assignments
506.2.1.2  Algorithms



1. D-alg()
2. begin
3. if Imply_and_check() = FAIL then return FAIL
4. if (error not at PO) then   /* error propagation */
5. begin
6. if D-frontier = Æ then return FAIL
7. repeat
8. begin
9. select an untried gate (G) from D-frontier
10. c = controlling value of G
11. assign c’ to every input of G with input x
12. if D-alg() = SUCCESS then return SUCCESS
13. end
14. until all gates from D-frontier have been tried
15. return FAIL
16. end

51Continued…6.2.1.2  Algorithms



17. /* error propagated to a PO */
18. if J-frontier = Æ then return SUCCESS
19. select a gate (G) from the J-frontier
20. c = controlling value of G
21. repeat
22. begin
23. select an input (j) of G with value x
24. assign c to j
25. if D-alg() = SUCCESS then return SUCCESS
26. assign c’ to j /* reverse decision */
27. end
28. until all inputs of G are specified
29. return FAIL
30. end

526.2.1.2  Algorithms
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Figure 6.24

specified composite values and the sets of completely specified composite they
represent. The totally unspecified value x is u/u and represents the set {0,1,D,D}.

A logic operation between two composite values can be carried out by separately
processing the good and the faulty circuit values, and then composing the results. For
example D.x = 1/0 . u/u = (l.u)/(O.u) = ufO. (In practice, logic operations using the
nine composite values are defined by tables.) Note that using only the five values of
the D-algorithm the result of D.x is x. The 9-valued system provides more information
as D.x = ufO shows that the result is 0 or D.

When the 9-V algorithm tries to drive a D through a gate G with controlling value c,
the value it assigns to the un!pecified inputs of G corresponds to the set {c,Q}.
Similarly, the of a D is enabled by values corresponding to the set {c,D}.
For example, to drive a D through an AND gate, the unspecified inputs are assigned a
u/I value (which is I or D), and it is the of the implication process to determine
whether this value eventually becomes 1 or D. A partially specified composite value
u/b or btu (where b is binary) assigned to a PI is immediately transformed to bib,
because the PI cannot propagate fault effects. The benefit of the flexibility provided by
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Figure 6.24 (Continued)
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the partially specified composite values is that it reduces the amount of search done for
multiple path sensitization.

Example 6.7: Let us redo the problem from Example 6.6 using the 9-V algorithm.
Figure 6.26(a) traces the value computation and Figure 6.26(b) shows the
corresponding decision tree. Now the same test is generated without backtracking. D
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Figure 6.25 Partially specified composite values

The main difference between the D-algorithm and 9-V algorithm can be summarized as
follows. Whenever there are k possible paths for error propagation, the D-algorithm
may eventually try all the 2k-l combinations of paths. The 9-V algorithm tries only
one path at a time, but without precluding simultaneous error propagation on the other
k-l paths. This is made possible by the partially specified composite values that
denote potential error propagation. Thus in a situation where the D-algorithm may
enumerate up to 2k-l combinations of paths, the 9-V algorithm will enumerate at most
k ways of error propagation.

Single-Path Sensitization

Experience has shown that faults whose detection is possible only with multiple-path
sensitization are rare in practical circuits (see, for example, the results presented in

Each node is a D-frontier.
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PODEM – Path Oriented Decision Making
➺Direct search process

➺ Decisions only about PI assignments.
➺ In D-algorithm, decisions on PIs are indirect.

➺Value vk to be justified on line k 
= Objective (k, vk) to achieve via PI assignments.

➺Backtracing of an objective
➺ Maps a desired objective into a PI assignment

➺Note that no values are assigned during 
backtracing

626.2.1.2  Algorithms
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from the D-frontier or a way of justifying the value of a gate from the I-frontier.
These decisions are eventually mapped into PI values, but the search process is an
indirect one.

PODEM (Path-Oriented Decision Making) [Goel 1981] is a TG algorithm characterized
by a direct search process, in which decisions consist only of PI assignments. We
have seen that the problems of fault activation and error propagation lead to sets of
line-justification problems. PODEM treats a value Vk to be justified for line k as an
objective (k,Vk) to be achieved via PI assignments [Snethen 1977]. A backtracing
procedure (Figure 6.27) maps a desired objective into a PI assignment that is likely to
contribute to achieving the objective. Let (j, Vj) be the PI assignment returned by
Backtrace (k, Vk), and let p be the inversion parity of the path followed from k to j.
All lines on this path have value x, and the value Vj to be assigned and the objective
value Vk satisfy the relation Vk = Vj@p. Note that no values are assigned during
backtracing. Values are assigned only by simulating PI assignments.

Backtrace (k, Vk)
/* map objective into PI assignment */
begin

V=Vk
while k is a gate output

begin
i = inversion of k
select an input (j) of k with value x
v=v@i
k=j

end
/* k is a PI */
return (k,v)

end

Figure 6.27 Backtracing of an objective

Example 6.8: Consider the circuit shown in Figure 6.28 and the objective (/,1).
Assume that Backtrace(f,I) follows the path (f,d,b) and returns (b,I). Simulating the
assignment b=1 does not achieve the objective (/,1). Executing again Backtrace(f,I)
results in following the path (f,d,c,a) and leads to (a,O). Now simulating the
assignment a=O achieves f=1. 0

Objectives are selected (see Figure 6.29) so that first the target fault is activated; then
the resulting error is propagated towards a PO.

Figure 6.30 outlines the overall structure of PODEM. It uses the same five values -
0, 1, x, D, and D - as the D-algorithm. Initially all values are x. Non-x values are

generated only by simulating PI assignments. This 5-valued simulation is the task of
the routine Imply, which also creates the initial D or i5 when the fault is activated, and
maintains the D-frontier. At every level of recursion, PODEM starts by analyzing

6.2.1.2  Algorithms
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// objectives until it reaches PI
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Objective!)
begin

/* the target fault is I s-a-v */
if (the value of I is x) then return (/,V)
select a gate (G) from the D-frontier
select an input (j) of G with value x
c = controlling value of G
return (j,C)

end

Figure 6.29 Selecting an objective

f

values previously established, with the goal of iden!!fying a SUCCESS or a FAILURE
state. SUCCESS is returned if a PO has a D or D value, denoting that an error has
been propagated to a PO. FAILURE is returned if the current values show that
generating a test is no longer possible. This occurs when either of the following
conditions applies:

• The target fault I s-a-v cannot be activated, since line I has value v.

• No error can be propagated to a PO, either because the D-frontier is empty or
because the error propagation look-ahead shows that it will become empty.

If PODEM cannot immediately determine SUCCESS or FAILURE, it generates an
objective (k,Vk) that is mapped by backtracing into a PI assignment. The assignment
j=Vj is then simulated by Imply and a new level of recursion is entered. If this fails,
PODEM backtracks by reversing the decision j=Vj to j=Vj. If this also fails, then j is
set to x and PODEM returns FAILURE.

The selection of a gate from the D-frontier (done in Objective) and the selection of an
unspecified gate input (done in Objective and in Backtrace) can be, in principle,
arbitrary. Selection criteria that tend to increase the efficiency of the algorithm are
discussed in Section 6.2.1.3.

Backtrace – An Example

64

• Objective(f, 1)
• First  Backtrace (f, 1) call:
• Path (f, d, b) is tried with b=1 as PI assignment
• But b=1 is not enough to achieve objective (f, 1)

• Second Backtrace (f, 1) call: 
• Path (f, d, c, a) is tried with a = 0
• Now with a=0, we can achieve objective (f, 1)

6.2.1.2  Algorithms
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If PODEM cannot immediately determine SUCCESS or FAILURE, it generates an
objective (k,Vk) that is mapped by backtracing into a PI assignment. The assignment
j=Vj is then simulated by Imply and a new level of recursion is entered. If this fails,
PODEM backtracks by reversing the decision j=Vj to j=Vj. If this also fails, then j is
set to x and PODEM returns FAILURE.

The selection of a gate from the D-frontier (done in Objective) and the selection of an
unspecified gate input (done in Objective and in Backtrace) can be, in principle,
arbitrary. Selection criteria that tend to increase the efficiency of the algorithm are
discussed in Section 6.2.1.3.

Selecting an Objective
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Activate fault

Find the 
necessary 
inputs to 
propagate fault

6.2.1.2  Algorithms



66

206 TESTING FOR SINGLE STUCK FAULTS

PODEM()
begin

if (error at PO) then return SUCCESS
if (test not possible) then return FAILURE
(k,Vk) = Objective()
(j,Vj) = Backtrace(k,Vk) /* j is a PI */
Imply (j,Vj)
if PODEM() = SUCCESS then return SUCCESS
/* reverse decision */
Imply (j,Vj)
if PODEM() = SUCCESS then return SUCCESS
Imply (j,x)
return FAILURE

end

Figure 6.30 PODEM

Example 6.9: Let us apply PODEM to the problem from Example 6.6.
Figure 6.31(a) traces a possible execution of PODEM, showing the objectives, the PI
assignments determined by backtracing objectives, the implications generated by
simulating PI assignments, and the corresponding D-frontier. Note that the assignment
e=O causes the PO n to have a binary value, which makes the x-path check fail; this
shows that generating a test for the target fault is no longer possible and leads to
backtracking by reversing the incorrect decision. Also note that PODEM handles
multiple-path sensitization without any special processing. 0

Since a decision in PODEM is choosing a value VjE{0,1} to be assigned to the PI j,
the decision tree of PODEM is a binary tree in which a node corresponds to a PI j to
be assigned and a branch emanating from the node j is labeled with the selected value
"t: Figure 6.31(b) shows the decision tree for Example 6.9.

As illustrated by the structure of its decision tree, the PODEM search process is based
on direct implicit enumeration of the possible input vectors. As in the D-algorithm,
the search is exhaustive, such that FAILURE is eventually returned only if no test
exists for the target fault (see Problem 6.12). (In practice, the amount of search is
bounded by user-imposed limits.)

PODEM differs from the TG algorithms patterned after the schema given in
Figure 6.10 in several aspects. In PODEM, values are computed only by forward
implication of PI assignments. Consequently, the computed values are always
self-consistent and all values are justified. Therefore, PODEM does not need

• consistency check, as conflicts can never occur;

• the I-frontier, since there are no values that require justification;

• backward implication, because values are propagated only forward.

// 5-value simulation with PI assignments

// All lines are initialized to x

// D-frontier becomes empty

6.2.1.2  Algorithms
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Figure 6.24

specified composite values and the sets of completely specified composite they
represent. The totally unspecified value x is u/u and represents the set {0,1,D,D}.

A logic operation between two composite values can be carried out by separately
processing the good and the faulty circuit values, and then composing the results. For
example D.x = 1/0 . u/u = (l.u)/(O.u) = ufO. (In practice, logic operations using the
nine composite values are defined by tables.) Note that using only the five values of
the D-algorithm the result of D.x is x. The 9-valued system provides more information
as D.x = ufO shows that the result is 0 or D.

When the 9-V algorithm tries to drive a D through a gate G with controlling value c,
the value it assigns to the un!pecified inputs of G corresponds to the set {c,Q}.
Similarly, the of a D is enabled by values corresponding to the set {c,D}.
For example, to drive a D through an AND gate, the unspecified inputs are assigned a
u/I value (which is I or D), and it is the of the implication process to determine
whether this value eventually becomes 1 or D. A partially specified composite value
u/b or btu (where b is binary) assigned to a PI is immediately transformed to bib,
because the PI cannot propagate fault effects. The benefit of the flexibility provided by
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ATO for SSFs in Combinational Circuits
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Figure 6.31 Execution trace of PODEM on the problem of Example 6.6

Another important consequence of the direct search process is that it allows PODEM
to use a simplified backtracking mechanism. Recall that backtracking involves
restoring the state of computation to that existing before an incorrect decision. In the
TO algorithms previously described, state saving and restoring is an explicit (and
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Another important consequence of the direct search process is that it allows PODEM
to use a simplified backtracking mechanism. Recall that backtracking involves
restoring the state of computation to that existing before an incorrect decision. In the
TO algorithms previously described, state saving and restoring is an explicit (and
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D-Algorithm vs PODEM

➺PODEM does not need
➺ Consistency check
➺ J-frontier
➺ Backward implication propagation

➺Backtracking in PODEM is more simplified.
➺Overall, PODEM is more efficient.

726.2.1.2  Algorithms



Selection Criteria
➺Search process involves decisions
➺Decisions on how to:

➺ Select one of several unsolved problems: fault 
propagation/line justification.

➺ Select one possible way to solved the selected 
problem: several possible inputs to justify output 0 of 
AND gate.

What are the selection criteria?
Some principles to speed up the search process.

736.2.1.3  Selection Criteria



Selection Criteria - Principles
➺Among different unsolved problems, first attack 

the most difficult one
➺ Thus avoid useless time spent in solving the easier 

problems when a harder one cannot be solved

➺Among different solutions of a problem, first try 
the easiest one

➺Difficulty is measured by cost functions.
746.2.1.3  Selection Criteria



Cost Functions
➺ Controllability measures

➺ Related to the Line Justification problem
➺ Relative difficulty of setting a line to a value
Ex: select most difficult line-justification problem

➺ Observability measures
➺ Related to the Error Propagation problem
➺ Relative difficulty of propagating an error from a line to a PO
Ex: select the gate from D-frontier whose input error is easiest to 

observe
Important: Must be relative measures and easy to compute.

756.2.1.3  Selection Criteria



Distance Based Cost Functions
➺Any cost function should show that 

➺ PIs are the easiest to control
➺ POs are the easiest to observe

➺ Therefore
➺ Difficulty of controlling a line increases with its distance 

from PIs
Þ Line Level can be used as a controllability measure!

➺ Difficulty of observing a line increases with its distance 
from POs
Þ Shortest distance of a line to PO can be used as a 
observability measure!

Main Drawback:  Does not take into account the logic function
766.2.1.3  Selection Criteria



Controllability Measure C(l)
For every signal we want to compute:

C0(l) = Relative difficulty of setting line l to 0
C1(l) = Relative difficulty of setting line l to 1

Assume we know C0 and C1 costs of all inputs of the AND gate, 
To set X to 0:

C0(X) = min {C0(A), C0(B), C0(C) }
To set X to 1:

C1(X) = C1(A) + C2(B) + C3(C)
assuming  A, B, C are independent (i.e., do not  depend on 
common PIs)

We can develop similar cost functions for other gates. OR gate?

776.2.1.3  Selection Criteria



Controllability Measure Computation

➺Set C0 and C1 for every primary input to 1
➺Compute C0’s and C1’ level by level

➺ Cost are computed only after predecessor costs are 
known

➺Costs can be computed in one forward traversal
➺Linear in number of gates

786.2.1.3  Selection Criteria



Issues

79

If inputs of a gate are not independent, it can lead to incorrect 
results

In (a) cost of controlling B and C is the same
In (b) B and C cannot be set to 1 simultaneously, so C1(X)  should 

show that setting X=1 is impossible
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A
B
C )1---

Figure 6.40

x

This formula may lead to less accurate results if applied when inputs of X are not
independent because of reconvergent fanout. In Figure 6.41(a), Band C are identical
signals for which the cost of controlling them simultaneously should be the same as
the cost of controlling each one of them. In Figure 6.41(b), Band Care
complementary signals that can never be simultaneously set to the same value, so the
correct value of Cl(X) should show that setting X=1 is impossible.

A

(a)

x

Figure 6.41

(b)

x

Nevertheless, to keep the computation of costs a simple process, we will use the
simplifying assumption that costs of simultaneous line-setting problems are additive,
and later we will try to compensate for potential inaccuracies by introducing correction
terms.

Recursive formulas similar to (6.1) and (6.2) can be easily developed for other types of
gates. The computation of controllability costs proceeds level by level. First CO and
Cl of every PI are set to 1. Then CO and Cl are computed for every gate at level 1,
then for every gate at level 2, and so on. In this way the costs of a line are computed
only after the costs of its predecessors are known. Thus controllability costs are
determined in one forward traversal of the circuit, and the algorithm is linear in the
number of gates in the circuit.

Now let us discuss an observability measure 0(1) that reflects the relative difficulty of
propagating an error from 1 to a PO. Consider again the AND gate in Figure 6.40 and
assume that we know O(X). What can we say about the cost of observing the input A?
To propagate an error from A we must set both Band C to 1 (this propagates the error

6.2.1.3  Selection Criteria



Observability Measure O(l)

Cost of observing the input A?
➺ We must set B and C to 1
➺ Propagate error from X to a PO

O(A) = C1(B) + C1(C) + O(X)  …  Eq (3)
Assuming controlling B=1, C=1, and propagating 

Err(X) to PO are independent problems

What about OR gate?

806.2.1.3  Selection Criteria



Observability of a Stem X

O(X) = min { O(X1), O(X2), O(X3)}   …  Eq (4)
Assuming single path propagation is possible

81

X
X1

X2

X3
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Observability Measure Computation

➺Set observability cost of every PO to 0
➺Compute observabilities level by level backward 

manner using eq 3 and 4.
➺ Cost are computed only after successor costs are 

known
➺Costs can be computed in one backward traversal
➺Linear in number of lines
➺Assume controllability measure is known.

826.2.1.3  Selection Criteria



Fanout-Based Cost Functions

➺Reconvergent fanout makes TG difficult.
➺A line with fanout has high potential causing 

conflict.

83

Setting B = 0 is better 
than A = 0 

Not enough to just 
look at lines 
themselves (A and B)!!
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Fanout-Based Controllability Measure

➺C(l) depends on
➺ Fanout count of l
➺ Fanout count of predecessors of l

Where fl is the fanout count of l 
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C(l) =
X

i

C(i) + fl � 1

A line l with C(l) = 0 means it does not depend on any fanout lines.

6.2.1.3  Selection Criteria

(6.5)



Example

C(A) = 0
C(B) = 2
C(X) = 2

Therefore, select A=0 
to justify X=0.
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C = 1

C = 1

C(l) =
X

i

C(i) + fl � 1
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C0(l) and C1(l) – More Accurate Cost Func. 

➺Eq (6.5) does not distinguish between setting a 
line to 0 and to 1

For the AND gate we have:
C0(l) = min {C0(i)} + fl -1 

and

What about OR gate?
86

C1(l) =
X

i

C1(i) + fl � 1
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Example

C0(A) = C1(A) = 1
C0(B) = C1(B) = 0
C0(X) = 0,
C1(X) = 1.
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C(l) =
X

i

C(i) + fl � 1

C0(l) = min {C0(i)} + fl -1 
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Figure 6.42

C1(I) = "LC1(i)+ii-l (6.7)

For a PI I, its CO and Cl costs are set to ii-I. Formulas (6.6) and (6.7) also have the
property that a 0 value indicates an assignment that can be done without conflicts.
Thus these measures can identify the backtrace-stop lines used by FAST. Applying
these measures to the circuit in Figure 6.42(a), we obtain

CO(A)=Cl(A)=I, CO(B)=Cl(B)=O, CO(X)=O, Cl(X)=I.

Thus we correctly identify that X can be set to 0 without conflicts, even if X is fed by
a stem.

Let us rewrite (6.1) and (6.2) in a more general form:

CO(I) = min{CO(i)}
i

eta, = "LC1(i)

(6.1a)

(6.2a)

and compare them with (6.6) and (6.7). We, can observe that they are almost identical,
except for the term ii-I. So we can consider (6.6) and (6.7) as being extensions of
(6.1a) and (6.2a), with a correction term added to reflect the influence of fanout.

The measure presented in [Abramovici et al. 1986a] takes into account that only
reconvergent fanout can cause conflicts and introduces correction terms that reflect the
extent to which fanout is reconvergent.

Let us consider the circuit in Figure 6.43. The correction term for both COCA) and
Cl(A) used in formulas (6.6) and (6.7) has value 1, since A has a fanout count of 2.
But if we analyze the effect of setting A to 0 and to 1, we can see that A=O has a much
greater potential for conflicts than A=I. This is because A=O results in B, C, D, and E
being set to binary values, while A=1 does not set any other gate output.
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Side Effects – Example

88

• C0(A) and C1(A) both have corrective terms =1
• A = 0 has greater potential of conflicts than A = 1
• A = 0 results in B, C, D, E being set to binary values
• Less x-paths for error propagation.

6.2.1.3  Selection Criteria



Side Effects Cost Function
➺ Side-Effects Cost Functions: CS0(l) and CS1(l) to 

account for relative potential for conflicts caused by 
setting l to 0 and 1 

➺ Computed by simulating l = v (v Î{0, 1}) in a circuit 
initialized with all-x state, and then
➺ A gate whose output is set to a binary value increases cost 

by 1
➺ A gate with n inputs whose output remains at x but which 

has m inputs set to a binary value, increases the cost by 
m/n

896.2.1.3  Selection Criteria



Side Effect Function – Example
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• CS0(A) =4(1/2)
• CS1(A) = (1/3) + (1/2) = 5/6

6.2.1.3  Selection Criteria



Cost Functions with Side-Effects

C0(l) = min {C0(i)} + CS0(l)

91

C1(l) =
X

i

C1(i) + CS1 (l)

6.2.1.3  Selection Criteria

• Require circuit simulation after assigning l to 0 or 1
• Cause additional complexity



Cost Functions: Summary

➺Complexity of cost function computation must be 
low.

➺Cost functions are based heuristics.

➺Dynamic cost functions may lead to better 
performance.

926.2.1.3  Selection Criteria
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Backup



Fault Independent ATG
➺Fault-oriented algorithm targets a given fault and 

generate a test vector
➺Fault-independent algorithm’s goal:

➺ Derive a set of test that detect a large set of SSFs w/o 
targeting individual faults

➺CPT  -- Half of the SSFs on a path critical in a test t 
are detected by t
Þ Generate tests that produce long critical paths
Þ Critical path TG algorithm

946.2.2  Fault Independent ATG



Critical Paths – Basic Concept
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158 FAULT SIMULATION
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Figure 5.23 Example of critical path tracing in a fanout-free circuit

that appears in extending critical path tracing to the general case of circuits with
reconvergent fanout.

Example 5.5: For the circuit and the test given in Figure 5.24(a), we start at the
primary output, and by repeatedly using Lemma 5.1, we identify F, D, A, and Bl as
critical. We cannot, however, determine whether the stem B is critical without
additional analysis. Indeed, the effects of the fault B s-a-O propagate on two paths
with different inversion parities such that they cancel each other when they reconverge
at gate F. This phenomenon, referred to as self-masking, does not occur for the test
shown in Figure 5.24(b), because the propagation of the fault effect along the path
starting at B2 stops at gate E. Here B is critical. 0

The input vector detects output s-a-0 fault and other faults on the 
critical path.



Critical-path TG Algorithm

Basic Steps
1. Select a PO and assign it a critical 0-value or 1-

value (Recall that a PO is always critical)
2. Recursively justify the PO value, trying to justify 

any critical value on a gate output by critical 
values on the gate inputs
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Line Justification – 3 Input AND gate

97

By Primitive Cubes By Critical Cubes
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Critical-path TG - Example

What SSFs can be detected by this input vector?
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Critical-path TG – Example …contd.
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• Critical Path TG Fanout Free
• To generate complete test set 
for a FF circuit whose PO is Z,

add (Z, 0) to Critical
CPTGFF()
add (Z, 1) to Critical
CPTGFF()



101

Decision Tree

The number of terminal nodes equals the number of tests generated.



ATG for SSFs in Sequential Circuits
➺ TG using Iterative Array Model

➺ Extends TG methods of combinational circuits to 
sequential circuits

➺ Transform Synchronous sequential circuit into an 
iterative combinational array.
➺ Unroll the circuit for k times.
➺ One cell in the array -> time frame

➺Assume all FFs are driven by a fault-free clock line.
➺An input vector for the array is a sequence of k input 

vectors for the synchronous circuit. 
102



Synchronous State m/c model

103

q+ = Jq +Kq
y = q
y = q



Model for one time frame

104

• Since the circuit is same for every frame, we do 
not have to generate n copies

• However, we should separately maintain signal 
values of each time frame



Some observations
➺ C’ is a combinational circuit, so any combinational TG 

algorithm (D, PODEM, CPTG, etc.) can be applied
➺A test vector t for C’, may specify PI and q values

➺ q values must be justified in previous timeframe
➺ t may not propagate an error to a PO but to a q+ 

variable
➺ Error must be propagated to next time frame

➺ In general, search process
➺ May span multiple time frames
➺ Going backward and forward in time

105



Fault Propagation

➺Target fault can be present in every time frame!
➺ Error value (D or D’) may propagate onto the faulty 

line itself
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TG from a Known Initial State

107

Once circuit is unrolled, we can use 
any of the test generation algorithm

we studied for combinational
circuits, such as D-alg(), PODEM, etc.

Maximum Unroll factor



Iterative Array Model
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Ignore POs in 
r-1 slices



Example

➺Assume q1 = q2 = 0
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Time Frame 

110



• With q1 = q2 = 0, fault is activated (D’)
• With I=1, error is propagated to q2

+ but does not 
reach Z 

Time Frame 1 
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D’
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• D-frontier = {G1, G3, G4}
• If G1 or G4 is chosen, then I = 1 gives q1

+ = D’ and q2
+ =D’

• If G3 is selected with I = 0  gives q1
+ = 0 and q2

+ =D

Time Frame 2 
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• D-frontier = {Z, G1, G2, G3, G4}
• With I=1, we get Z = D, error propagated to a PO!
• Desired test sequence is I = (1, 1, 1)

Time Frame 3 – SOL1
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Generation of Self-initializing Test Sequences
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Generation of Self-initializing Test Sequences

1. Activate fault in frame 1, and propagate it to PO using r frames.
2. If q(0) is not all x, justify q(0) by backward propagation of p frames.

q(0) q(1)
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Figure 6.77

opposite to that of application. The same principle is used in the algorithms described
in [Mallela and Wu 1985] and [Cheng and Chakraborty 1989].

Example
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Figure 6.78 Example 6.19 (a) Decision tree (b) Iterative array

Critical-path TG algorithms for combinational circuits have also been extended to
synchronous sequential circuits using the iterative array model [Thomas 1971, Breuer
and Friedman 1976].

The method described in [Ma et ale 1988] relies on the existence of a reset state and
assumes that every test sequence starts from the reset state. Like the algorithm given
in Figure 6.76(a), it begins by activating the fault in time frame 1 and propagating the
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