CIS 4930 Digital System Testing Testing for Single Stuck-at Faults (SSFs)

Dr Hao Zheng

Comp. Sci. \& Eng.
U of South Florida

Testing Generation

Testing Generation (TG) is a complex problem We are interested in:
\rightarrow The cost of generating the test
\rightarrow The quality (fault coverage) of the test
\rightarrow The cost of applying the test

Types of Test Generation

Test Generation

Deterministic

Manual Automatic

Fault Oriented
Fault Independent

Deterministic TG System

Figure 6.1 Deterministic test generation system

6.2.1 Fault-oriented ATG

\rightarrow Circuit model - gate-level combinational circuit
\rightarrow Basic Algorithm - Fanout Free
\rightarrow Backtracking Algorithm
\rightarrow D Algorithm
\rightarrow PODEM (Path Oriented Decision Making)
\rightarrow

Line Justification

\rightarrow To detect a fault
\rightarrow Activate the fault
\rightarrow Propagate the fault to a PO

Activating a fault a $l s-a-v$:
\rightarrow Determine PI values that force value on line l to \bar{v}

This is known as the line-justification problem

Composite Logic Values

Let D represent $1 / 0$ and \bar{D} represent $0 / 1$

$\mathbf{v} / \mathbf{v}_{\boldsymbol{f}}$	
$0 / 0$	0
$1 / 1$	1
$1 / 0$	\boldsymbol{D}
$0 / 1$	$\overline{\boldsymbol{D}}$

AND	$\mathbf{0}$	$\mathbf{1}$	\mathbf{D}	$\overline{\mathbf{D}}$	\mathbf{X}
$\mathbf{0}$	0	0	0	O	O
$\mathbf{1}$	0	1	D	$\overline{\mathbf{D}}$	X
\mathbf{D}	0	D	D	O	X
$\overline{\mathbf{D}}$	0	D^{\prime}	O	$\overline{\mathbf{D}}$	X
\mathbf{X}	0	X	X	X	X

$\mathbf{O R}$	$\mathbf{0}$	$\mathbf{1}$	\mathbf{D}	$\overline{\mathbf{D}}$	\mathbf{x}
$\mathbf{0}$	0	1	D	D^{\prime}	O
$\mathbf{1}$	1	1	1	1	1
\mathbf{D}	D	1	D	1	X
$\overline{\mathbf{D}}$	$\overline{\mathbf{D}}$	1	1	$\overline{\mathbf{D}}$	X
\mathbf{X}	X	1	X	X	X

Fig 6.3 TG for I $s-a-v$ in Fanout Free circuit

begin set all values to $x / /$ initialization of all wires to X
 Justify (l, \bar{v}) //justification of line / if $v=0$ then Propagate (l, D) else Propagate (l, \bar{D})
 end

Line Justification

Justify (l, val) begin
set l to val
if l is a PI then return /* l is a gate (output) */
$c=$ controlling value of l
$i=$ inversion of l
inval $=v a @ i$
if (inval $=\bar{c}$)
then for every input j of l
Justify (j, inval)
else

begin

select one input (j) of l
Justify (j, inval)
end
end

Error Propagation - Fanout Free circuit

Propagate (l, err) /*err is D or \bar{D} */

begin

set l to $e r r$
if l is PO then return
$k=$ the fanout of l

$c=$ controlling value of k
$i=$ inversion of k
for every input j of k other than l
Justify (j, \bar{c})
Propagate $(k$, err $\oplus i)$
end

Example 6.1

Find an input vector such that $f s-a-0$ is observable on j

Example 6.1

Example 6.1

Example 6.1

Propagate (f, D)

Example 6.1

Propagate (h, D)

Example 6.1

Propagate (j, D)

Example 6.1

Fanout Free vs. Fanout

\rightarrow For Fanout Free circuit
\rightarrow Line justification problems are independent
\rightarrow Sets of Pl's assigned to justify required values are mutually disjoint
\rightarrow Circuits with Fanout
\rightarrow Several ways to propagate error to PO
\rightarrow Fundamental difficulty: see following examples resulting line justification problems are no longer independent

Example 6.2

Backtracking Strategy

\rightarrow Search for a test vector \rightarrow decision process
\rightarrow Several alternatives for a line justification problem
\rightarrow Pick one alternative
\rightarrow If it leads to an inconsistency, then backtrack!
\rightarrow Backtracking Strategy
\rightarrow Systematic exploration
\rightarrow Recovery from incorrect decisions

- Invert all values assigned since last decision

Example 6.3

Decision: choose one alternative if there are multiple alternatives to justify() or propagate()

Implication: compute new values as a result of decision, and check inconsistencies.

Decisions	Implications	Remarks
	$\begin{gathered} \mathrm{h}=\mathrm{D}^{\prime} \\ \mathrm{e}=1 \\ \mathrm{f}=1 \\ \mathrm{p}=\mathrm{D}^{\prime} \\ \mathrm{r}=1 \\ \mathrm{q}=1 \\ \mathrm{o}=0 \\ \mathrm{~s}=\mathrm{D}^{\prime} \end{gathered}$	Initial Implications
$l=1$	$\begin{aligned} \mathrm{c} & =1 \\ \mathrm{~d} & =1 \\ \mathrm{~m} & =0 \\ \mathrm{n} & =0 \\ \mathrm{r} & =0 \end{aligned}$	To justify $q=1$ Contradiction
$k=1$	$\begin{aligned} & a=1 \\ & b=1 \end{aligned}$	To justify $\mathrm{q}=1$
$\mathrm{m}=1$	$\begin{aligned} & \mathrm{c}=0 \\ & l=0 \end{aligned}$	To justify r=1

Fig 6.10 TG Algorithm Outline

Solve()
begin
if Imply_and_check() = FAILURE then return FAILURE
if (error at PO and all lines are justified) then return SUCCESS
if (no error can be propagated to a PO) then return FAILURE
select an unsolved problem
repeat
begin
select one untried way to solve it
if Solve() = SUCCESS then return SUCCESS
end
until all ways to solve it have been tried return FAILURE
end
6.2 ATG for SSFs in Combinational Circuits

Decision Tree

(b)

TG Failure for an Undetectable Fault

\rightarrow Solve() is exhaustive - guarantee to find a test if one exists.
\rightarrow worst case complexity is exponential

Figure 6.12 TG failure for an undetectable fault (a) Circuit (b) Decision tree

D-Frontier

\rightarrow D-frontier - all gates whose output value is currently x but have one or more error signals on their inputs.
\rightarrow D-drive operation -
Pick a gate and try to propagate error

\rightarrow If \boldsymbol{D}-frontier becomes empty
\Rightarrow No error can be propagated to PO
\Rightarrow Backtracking should occur

Gates in D-frontier indicate necessary decisions in order to proceed.

J-Frontier

\rightarrow J-frontier - all gates whose output value is known, but not implied by its input values
\rightarrow Helps keep track of currently unsolved linejustification problems

All inputs are implied to be 1.

No implications on x-inputs.

Implication Process

3 Steps:

1. Compute all values that can be uniquely determined by implication
2. Check for consistency and assign values
3. Maintain the D-frontier and J-frontier

Implication can be forward or backward.

Backward Implication Propagation

Before

(d)

Forward Implication Propagation

Figure 6.15

Forward Implication Propagation

Forward Implication Propagation - cont'd

Before

D-frontier $=\{\ldots, a\}$

After
(a)
(b)
(c)
$\bar{D} \square 0 \rightarrow 0$-frontier $=\{\ldots\}$

D-frontier $=\{\ldots\}$

(d)

Figure 6.16

Figure 6.17 Unique D-Drive

\rightarrow When only gate remains in the D-frontier. \rightarrow There is only one way to propagate D.

Before

After
D-frontier $=\{a\}$

Figure 6.18 Future Unique D-drive

- D-frontier $=\{\mathrm{d}, \mathrm{e}\}$
- Eventually we end up unique D-drive with gate g only

This type of propagations is global implication.

Reversing Incorrect Decisions

\rightarrow Assume that $a=0$ failed irrespective of b and c $\Rightarrow a$ must be 1 !

Figure 6.21 Reversing incorrect decisions

Look-Ahead in Error Propagation

\rightarrow No matter how we propagate, D-frontier will be empty!
\rightarrow Look-ahead: Error propagation is possible only if there is at least one x-path from gate G in D-frontier to at least one PO. (a necessary condition)
$\rightarrow X$-paths used to avoid failed decisions.

D-Algorithm

\rightarrow Ability to propagate errors on several reconvergent fanouts
\rightarrow We assume error propagation is given priority over justification problems (simplifying assumption)
\rightarrow "assign" means "add the value to the assignment queue"
\rightarrow Imply_and_check() handles the assignments

1. $D-a \lg ()$
2. begin
3. if Imply_and_check() = FAIL then return FAIL
4. if (error not at PO) then /* error propagation */
5. begin
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16. end
17. /* error propagated to a PO */
18. if J-frontier $=\varnothing$ then return SUCCESS
19. select a gate (G) from the J-frontier
20. $c=$ controlling value of G
21. repeat
22. begin
23. select an input (j) of G with value x
24. assign c to j
25.
26.
27. end
28. until all inputs of G are specified
29. return FAIL
30. end

Example 6.6
6.2.1.2 Algorithms

Example 6.6

Example 6.6

| Decisions \quad Implications

Each node is a D-frontier.

PODEM - Path Oriented Decision Making

\rightarrow Direct search process
\rightarrow Decisions only about PI assignments.
\rightarrow In D-algorithm, decisions on PIs are indirect.
\rightarrow Value v_{k} to be justified on line k
$=$ Objective (k, v_{k}) to achieve via PI assignments.
\rightarrow Backtracing of an objective
\rightarrow Maps a desired objective into a PI assignment
\rightarrow Note that no values are assigned during backtracing

Backtrace (k, v_{k})
/* map objective into PI assignment */
begin

$$
v=v_{k}
$$

while k is a gate output // Recursive generating
begin // objectives until it reaches PI
$i=$ inversion of k select an input (j) of k with value x $v=v \oplus i$
$k=j$
end
${ }^{*} k$ is a $\mathrm{PI} * /$
return (k, v)
end

Backtrace - An Example

- Objective (f, 1)

Figure 6.28

- First Backtrace $(f, 1)$ call:
- Path (f, d, b) is tried with $b=1$ as PI assignment
- But $b=1$ is not enough to achieve objective $(f, 1)$
- Second Backtrace ($f, 1$) call:
- Path (f, d, c, a) is tried with $\mathrm{a}=0$
- Now with a=0, we can achieve objective ($f, 1$)

Selecting an Objective

Objective()
begin

Activate fault

/* the target fault is $l s-a-v * /$
if (the value of l is x) then return (l, \bar{v}) select a gate (G) from the D-frontier select an input (j) of G with value x $c=$ controlling value of G
]

Find the
necessary inputs to return (j, \bar{c})
end

```
PODEM() // All lines are initialized to x
begin
    if (error at PO) then return SUCCESS
    if (test not possible) then return FAILURE
    (k,vk})=\mathrm{ Objective()
    (j,v}\mp@subsup{)}{}{\prime}=\operatorname{Backtrace}(k,\mp@subsup{v}{k}{})/*j\mathrm{ is a PI */
    Imply (j,v v})///5\mathrm{ -value simulation with PI assignments
    if PODEM() = SUCCESS then return SUCCESS
    /* reverse decision */
    Imply (j,\mp@subsup{\overline{v}}{j}{})
    if PODEM() = SUCCESS then return SUCCESS
    Imply (j,x)
    return FAILURE // D-frontier becomes empty
end
```


6.2.1.2 Algorithms

Objective	PI Assignment	Implications	D-frontier	
$a=0$	$a=0$	$h=1$	g	
$b=1$	$b=1$		g	
$c=1$	$c=1$	$g=D$	i, k, m	
$d=1$	$d=1$	$\begin{gathered} d^{\prime}=0 \\ i=\bar{D} \end{gathered}$	k, m, n	
$k=1$	$e=0$	$\begin{gathered} e^{\prime}=1 \\ j=0 \\ k=1 \\ n=1 \end{gathered}$	m	x-path check fails
	$e=1$	$\begin{gathered} e^{\prime}=0 \\ j=1 \\ k=\bar{D} \\ n=x \end{gathered}$	m, n	reversal
$l=1$	$f=1$	$\begin{gathered} f^{\prime}=0 \\ l=1 \\ m=\bar{D} \\ n=D \end{gathered}$		

D-Algorithm vs PODEM

\rightarrow PODEM does not need
\rightarrow Consistency check
\rightarrow J-frontier
\rightarrow Backward implication propagation
\rightarrow Backtracking in PODEM is more simplified. \rightarrow Overall, PODEM is more efficient.

Selection Criteria

\rightarrow Search process involves decisions
\rightarrow Decisions on how to:
\rightarrow Select one of several unsolved problems: fault propagation/line justification.
\rightarrow Select one possible way to solved the selected problem: several possible inputs to justify output 0 of AND gate.

What are the selection criteria?
Some principles to speed up the search process.

Selection Criteria - Principles

\rightarrow Among different unsolved problems, first attack the most difficult one
\rightarrow Thus avoid useless time spent in solving the easier problems when a harder one cannot be solved
\rightarrow Among different solutions of a problem, first try the easiest one
\rightarrow Difficulty is measured by cost functions.

Cost Functions

\rightarrow Controllability measures
\rightarrow Related to the Line Justification problem
\rightarrow Relative difficulty of setting a line to a value
Ex: select most difficult line-justification problem
\rightarrow Observability measures
\rightarrow Related to the Error Propagation problem
\rightarrow Relative difficulty of propagating an error from a line to a PO
Ex: select the gate from D-frontier whose input error is easiest to observe
Important: Must be relative measures and easy to compute.

Distance Based Cost Functions

\rightarrow Any cost function should show that
\rightarrow Pls are the easiest to control
\rightarrow POs are the easiest to observe
\rightarrow Therefore
\rightarrow Difficulty of controlling a line increases with its distance from Pls
\Rightarrow Line Level can be used as a controllability measure!
\rightarrow Difficulty of observing a line increases with its distance from POs
\Rightarrow Shortest distance of a line to PO can be used as a observability measure!
Main Drawback: Does not take into account the logic function

Controllability Measure C(l)

For every signal we want to compute:
$C O(l)=$ Relative difficulty of setting line l to 0
C1 $(l)=$ Relative difficulty of setting line l to 1
Assume we know C0 and C1 costs of all inputs of the AND gate, To set X to 0 :
$\mathrm{CO}(\mathrm{X})=\min \{\mathrm{CO}(\mathrm{A}), \mathrm{CO}(\mathrm{B}), \mathrm{CO}(\mathrm{C})\}$
To set X to 1:
$C 1(X)=C 1(A)+C 2(B)+C 3(C)$
assuming A, B, C are independent (i.e., do not depend on common Pls)
We can develop similar cost functions for other gates. OR gate?

Controllability Measure Computation

\rightarrow Set CO and C1 for every primary input to 1
\rightarrow Compute CO's and C1' level by level
\rightarrow Cost are computed only after predecessor costs are known
\rightarrow Costs can be computed in one forward traversal
\rightarrow Linear in number of gates

Issues

If inputs of a gate are not independent, it can lead to incorrect results
In (a) cost of controlling B and C is the same
In (b) B and C cannot be set to 1 simultaneously, so $C 1(X)$ should show that setting $X=1$ is impossible

Observability Measure $O(l)$

Cost of observing the input A ?
\rightarrow We must set B and C to 1
\rightarrow Propagate error from X to a PO

$$
O(A)=C 1(B)+C 1(C)+O(X) \ldots \quad E q(3)
$$

Assuming controlling $B=1, C=1$, and propagating $\mathrm{Err}(\mathrm{X})$ to PO are independent problems

What about OR gate?

Observability of a Stem X

$O(X)=\min \{O(X 1), O(X 2), O(X 3)\} \quad .$. Eq (4) Assuming single path propagation is possible

Observability Measure Computation

\rightarrow Set observability cost of every PO to 0
\rightarrow Compute observabilities level by level backward manner using eq 3 and 4 .
\rightarrow Cost are computed only after successor costs are known
\rightarrow Costs can be computed in one backward traversal
\rightarrow Linear in number of lines
\rightarrow Assume controllability measure is known.

Fanout-Based Cost Functions

\rightarrow Reconvergent fanout makes TG difficult.
\rightarrow A line with fanout has high potential causing conflict.

Setting $B=0$ is better than $A=0$

Fanout-Based Controllability Measure

$\rightarrow \mathrm{C}(l)$ depends on
\rightarrow Fanout count of l
\rightarrow Fanout count of predecessors of l

$$
\begin{equation*}
C(l)=\sum_{i} C(i)+f_{l}-1 \tag{6.5}
\end{equation*}
$$

Where f_{l} is the fanout count of l

A line $/$ with $C(I)=0$ means it does not depend on any fanout lines.

Example

$$
C(l)=\sum_{i} C(i)+f_{l}-1
$$

$C(A)=0$
$C(B)=2$
$C(X)=2$
Therefore, select $A=0$ to justify $\mathrm{X}=0$.

C0(l) and C1(l) - More Accurate Cost Func.

$\rightarrow E q(6.5)$ does not distinguish between setting a line to 0 and to 1

For the AND gate we have:

$$
C O(l)=\min \{C O(i)\}+f_{l}-1
$$

and

$$
C 1(l)=\sum_{i} C 1(i)+f_{l}-1
$$

What about OR gàte?

Example

$$
\begin{aligned}
& \mathrm{CO}(l)=\min \{\mathrm{CO}(i)\}+f_{l}-1 \\
& C(l)=\sum_{i} C(i)+f_{l}-1
\end{aligned}
$$

$\mathrm{CO}(\mathrm{A})=\mathrm{C1}(\mathrm{~A})=1$
$\mathrm{CO}(\mathrm{B})=\mathrm{C1}(\mathrm{~B})=0$
$\mathrm{CO}(\mathrm{X})=0$,
$C 1(X)=1$.

Side Effects - Example

- $\mathrm{CO}(\mathrm{A})$ and $\mathrm{C1}(\mathrm{~A})$ both have corrective terms $=1$
- $A=0$ has greater potential of conflicts than $A=1$
- $A=0$ results in B, C, D, E being set to binary values
- Less x-paths for error propagation.

Side Effects Cost Function

\rightarrow Side-Effects Cost Functions: $\operatorname{CSO}(l)$ and $\operatorname{CS1}(l)$ to account for relative potential for conflicts caused by setting l to 0 and 1
\rightarrow Computed by simulating $l=v(v \in\{0,1\})$ in a circuit initialized with all- x state, and then
\rightarrow A gate whose output is set to a binary value increases cost by 1
\rightarrow A gate with n inputs whose output remains at x but which has m inputs set to a binary value, increases the cost by m / n

Side Effect Function - Example

- $\operatorname{CSO}(\mathrm{A})=4(1 / 2)$
- $\operatorname{CS1}(\mathrm{A})=(1 / 3)+(1 / 2)=5 / 6$

Cost Functions with Side-Effects

$$
\begin{aligned}
& \mathrm{CO}(l)=\min \{\mathrm{CO}(i)\}+\operatorname{CSO}(l) \\
& C 1(l)=\sum_{i} C 1(i)+\operatorname{CS1}(l)
\end{aligned}
$$

- Require circuit simulation after assigning / to 0 or 1
- Cause additional complexity

Cost Functions: Summary

\rightarrow Complexity of cost function computation must be low.
\rightarrow Cost functions are based heuristics.
\rightarrow Dynamic cost functions may lead to better performance.

Backup

Fault Independent ATG

\rightarrow Fault-oriented algorithm targets a given fault and generate a test vector
\rightarrow Fault-independent algorithm's goal:
\rightarrow Derive a set of test that detect a large set of SSFs w/o targeting individual faults
\rightarrow CPT -- Half of the SSFs on a path critical in a test t are detected by t
\Rightarrow Generate tests that produce long critical paths
\Rightarrow Critical path TG algorithm

Critical Paths - Basic Concept

The input vector detects output s-a-0 fault and other faults on the critical nath

Critical-path TG Algorithm

Basic Steps

1. Select a PO and assign it a critical 0-value or 1value (Recall that a PO is always critical)
2. Recursively justify the PO value, trying to justify any critical value on a gate output by critical values on the gate inputs

Line Justification - 3 Input AND gate

By Primitive Cubes

A	B	C	Z
1	1	1	1
0	x	x	0
x	0	x	0
x	x	0	0

(a)

By Critical Cubes

(b)

Critical-path TG - Example

What SSFs can be detected by this input vector?

Critical-path TG - Example ...contd.

(c)

(d)


```
CPTGFF()
begin
    while (Critical # \varnothing)
    begin
        remove one entry (l,val) from Critical
        set l to val
        mark l as critical
        if l is a gate output then
            begin
                c= controlling value of l
                    i= inversion of l
                            inval = val }\oplus
                            if (inval =
                            then for every input j of l
                                add (j,\overline{c}) to Critical
                            else
                                begin
                            for every input j of l
                                    begin
                                    add (j,c) to Critical
                                    for every input }k\mathrm{ of l other than j
                                    Justify (k,\overline{c}
                                    CPTGFF()
                                    end
                                    return
                                end
            end
        end
    /* Critical = \varnothing */
    record new test
    return
end
```


Decision Tree

Figure 6.47 Decision trees for Example 6.12
The number of terminal nodes equals the number of tests generated ${ }_{i 01}$

ATG for SSFs in Sequential Circuits

\rightarrow TG using Iterative Array Model
\rightarrow Extends TG methods of combinational circuits to sequential circuits
\rightarrow Transform Synchronous sequential circuit into an iterative combinational array.
\rightarrow Unroll the circuit for k times.
\rightarrow One cell in the array -> time frame
\rightarrow Assume all FFs are driven by a fault-free clock line.
\rightarrow An input vector for the array is a sequence of k input vectors for the synchronous circuit.

Synchronous State m/c model

Model for one time frame

- Since the circuit is same for every frame, we do not have to generate n copies
- However, we should separately maintain signal values of each time frame

Some observations

$\rightarrow C^{\prime}$ is a combinational circuit, so any combinational TG algorithm (D, PODEM, CPTG, etc.) can be applied
\rightarrow A test vector t for C^{\prime}, may specify Pl and q values
$\rightarrow q$ values must be justified in previous timeframe
$\rightarrow t$ may not propagate an error to a PO but to a q+ variable
\rightarrow Error must be propagated to next time frame
\rightarrow In general, search process
\rightarrow May span multiple time frames
\rightarrow Going backward and forward in time

Fault Propagation

\rightarrow Target fault can be present in every time frame! \rightarrow Error value (D or D^{\prime}) may propagate onto the faulty line itself

Value propagated onto line l	Fault of line l	Resulting value of line l
D	$s-a-0$	D
D	$s-a-1$	1
\bar{D}	$s-a-0$	0
\bar{D}	$s-a-1$	\bar{D}

Figure 6.73 Result of a fault effect propagating to a faulty line

TG from a Known Initial State

$r=1$
repeat
begin
build model with r time frames
ignore the POs in the first $r-1$ frames
ignore the q^{+}outputs in the last frame
$q(1)=$ given initial state
if (test generation is successful) then return SUCCESS
/* no solution with frames */
$r=r+1$
end
until $r=f_{\text {max }}$
return FAHENRE

Once circuit is unrolled, we can use any of the test generation algorithm we studied for combinational circuits, such as D-alg(), PODEM, etc.

Iterative Array Model

Ignore POs in
r-1 slices

Example

\rightarrow Assume $q_{1}=a_{2}=0$

Time Frame

Time Frame 1

- With $q_{1}=q_{2}=0$, fault is activated (D^{\prime})
- With $I=1$, error is propagated to q_{2}^{+}but does not reach Z

- D-frontier $=\{\mathrm{G} 1, \mathrm{G} 3, \mathrm{G} 4\}$
- If G1 or G4 is chosen, then $\mathrm{I}=1$ gives $\mathrm{q}_{1}{ }^{+}=\mathrm{D}^{\prime}$ and $\mathrm{q}_{2}{ }^{+}=\mathrm{D}^{\prime}$
- If G3 is selected with $\mathrm{I}=0$ gives $\mathrm{q}_{1}{ }^{+}=0$ and $\mathrm{q}_{2}{ }^{+}=\mathrm{D}$

- D-frontier $=\{Z, G 1, G 2, G 3, G 4\}$
- With $\mathrm{I}=1$, we get $\mathrm{Z}=\mathrm{D}$, error propagated to a PO!
- Desired test sequence is $I=(1,1,1)$

Generation of Self-initializing Test Sequences

```
r=1
p=0
repeat
    begin
        build model with p+r time frames
        ignore the POs in the first p+r-1 frames
        ignore the q}\mp@subsup{q}{}{+}\mathrm{ outputs in the last frame
        if (test generation is successful and every q input in the first frame has
            value }x\mathrm{ ) then return SUCCESS
        increment r or p
    end
until ( }r+p=\mp@subsup{f}{\mathrm{ max }}{}
return FAILURE
```


Generation of Self-initializing Test Sequences

(a)

1. Activate fault in frame 1, and propagate it to PO using r frames.
2. If $q(0)$ is not all x, justify $q(0)$ by backward propagation of p frames.

Example: Iterative Arrav: Detect Z s-a-0

$$
q^{+}=J \bar{q}+\bar{K} q
$$

Example: Iterative Array: Detect Z s-a-0

