
CIS 4930 Digital System Testing
Fault Simulation

Dr Hao Zheng
Comp. Sci & Eng.

U of South Florida

Overview

➺Fault simulation applications
➺Fault simulation techniques
➺ Serial
➺ Parallel
➺Deductive
➺ Concurrent

➺tentative
➺ Fault simulation for combinational circuits
➺ Fault sampling
➺ Statistical fault analysis

2

3

5.1 Applications

Fault Simulation

➺Simulation of a circuit in the presence of faults
➺Used to
➺ Evaluate a test T wrt fault coverage.
➺Generate tests T to achieve certain fault coverage.
➺ Construct fault dictionary
➺Analyze circuit operation in the presence of faults

45.1 Applications

1 – Evaluate a Test T

➺Usual metric: fault coverage
➺Fault coverage relevant to the fault model
➺ 100% FC does not mean 100% defects are covered if

the fault model is limited.
➺Other defects may still exists if not considered in a

fault model.
➺ Lower bound on defect coverage

➺Defect coverage d = probability that T detect any
physical fault.
➺Has a big impact on product quality.

55.1 Applications

132 FAULT SIMULATION

0.8 Y=O.Ol

Y=O.l

0.6
Defect level

0.4 Y=O.5

Y=O.25

1008040 60
Defect coverage (%)

20

Y=O.99

o

0.2

Figure 5.1 Defect level as a function of yield and defect coverage

Generate initial T

N
Sufficient fault coverage?

y

Done

Figure 5.2 General use of fault simulation in test generation

change T according to the results of the fault simulation until the obtained coverage is
considered satisfactory. The test T is modified by adding new vectors and/or by
discarding some of its vectors that did not contribute to achieving good coverage.
These changes may be made by a program or by a test designer in an interactive mode.

Yield and Defect Level
➺Defect level (DL) = prob. of shipping a defective product
➺ Yield (Y) = prob. that manufactured circuit is defect free

6

DL = 1 – Y1-d

5.1 Applications

2 – Test Evaluation
➺ Enhance T until adequate fault coverage is satisfactory

7

132 FAULT SIMULATION

0.8 Y=O.Ol

Y=O.l

0.6
Defect level

0.4 Y=O.5

Y=O.25

1008040 60
Defect coverage (%)

20

Y=O.99

o

0.2

Figure 5.1 Defect level as a function of yield and defect coverage

Generate initial T

N
Sufficient fault coverage?

y

Done

Figure 5.2 General use of fault simulation in test generation

change T according to the results of the fault simulation until the obtained coverage is
considered satisfactory. The test T is modified by adding new vectors and/or by
discarding some of its vectors that did not contribute to achieving good coverage.
These changes may be made by a program or by a test designer in an interactive mode.

5.1 Applications

8

Test Generation

Target fault
oriented
approach

5.1 Applications

3 – Construct Fault Dictionaries

➺Fault Dictionary – stores output response (Rf) or
signature S(Rf) to T of every faulty circuit Nf

9

f1 f2 .. fn

T1 0 1 .. 1

T2 1 0 .. 1

: : : :

Tm 1 1 .. 0

5.1 Applications

4 – Circuit Analysis

➺Analyze circuit operations in presence of faults
➺Some effects introduced by faults may not

present in fault-free circuit:
➺ Races and/or hazards
➺Oscillation and/or deadlock
➺ Inhibit proper initialization of seq. circuit
➺ Transform combinational to sequential
➺ Transform synchronous to asynchronous

105.1 Applications

11

5.2 Fault Simulation Techniques

General Fault Simulation Techniques

➺Serial Fault Simulation
➺Parallel Fault Simulation
➺Deductive Fault Simulation
➺Concurrent Fault Simulation

125.2 Fault Simulation Techniques

Serial Fault Simulation

➺Simulate faults one at a time
➺Given a fault f, do the following:
➺ Transform N to Nf

➺ Simulate Nf

➺Repeat for other faults under consideration.
➺Advantage
➺No need for a special fault simulator

➺Disadvantage
➺ Impractical for large number of faults

135.2 Fault Simulation Techniques

Other Three Techniques

➺Common characteristics:
➺Do not change the circuit model
➺ Can simultaneously simulate a set of faults(!)
➺ Simultaneously simulate good and bad circuits

➺One-Pass – If all faults are simulated
simultaneously

➺Multi-Pass – For large set of faults, need multiple
simulation runs

145.2 Fault Simulation Techniques

Tasks in Fault Simulation
➺Fault specification: define set of modeled faults and

perform fault collapsing
➺Fault insertion: select a fault subset and create data

structures to indicate fault presence.
➺Fault effect generation: Say line i has f s-a-1 then

whenever value 0 propagates on line i, then simulator
changes it to 1

➺Fault effect propagation: Propagate v/vf to primary
output for fault detection

➺Fault discarding: Inverse of fault insertion
➺ Discard a fault if it is detected for k times.

155.2 Fault Simulation Techniques

136

31 30 2

FAULT SIMULATION

o
A

'------- value of A in the good circuit

'------- value of A in faulty circuit #1

Figure 5.4 Value representation in parallel simulation

The above equations represent the process of fault insertion for one fault f (j s-a-c).
For W faults, this process is carried on in parallel using two mask words storing the
values bij and c in the bit position corresponding to fault f. Figure 5.5 shows a portion
of a circuit, the masks used for fault insertion on line Z, and the values of Z before and
after fault insertion. The first mask - / - associated with a line indicates whether
faults should be inserted on that line and in what bit positions, and the second - S -
defines the stuck values of these faults. Thus after evaluating gate Z by Z = Xl.Y, the
effect of inserting faults on Z is obtained by

Z' = Z./z + /z.Sz

Fault insertion for Xl and Y is similarly done before evaluating Z.

The above technique has several possible implementations [Thompson and
Szygenda 1975].

For 3-valued logic (0,1 ,u), one bit is not sufficient to represent a signal value. The
coding scheme shown in Figure 5.6 uses two words, Al and A2, to store the W values
associated with signal A. Since the codes for the values 0 and 1 are, respectively, 00
and 11, the logical AND and OR operations can be applied directly to the words Al
and A2. Hence, to evaluate an AND gate with inputs A and B and output C, instead of
C =A.B we use

Cl = Al.Bl
C2 = A2.B2

The complement operator, however, cannot be applied directly, as the code 01 will
generate the illegal code 10. An inversion B = NOT (A) is realized by

Parallel Fault Simulation
➺ Simultaneously simulate the good circuit and W copies of

faulty circuits
➺ Set F of faults needs éF/Wù number of passes
➺ Values of the same signal in different circuits are packed

into one memory location (a word or multi-words).

16

A

B

5.2 Fault Simulation Techniques

Function Evaluation

➺Words for A and B are bitwise ANDed (for eg.) for
logic AND.

➺Similar for other Boolean operations.
➺Sequential circuit: For eg., JK FF

The above expression is a Boolean expression consisting
of AND, OR, and NOT

17

Q+ = JQ+KQ

5.2 Fault Simulation Techniques

Q = clk" ? Q+ : Q
<latexit sha1_base64="SwOqqZYrCi+HB0iVN2rm1pghZeE=">AAAC5HicbVJNixNBEO2MX2v82KweRSgMgqCGGREUQVwUweMGzO5CJoaenpqkSX8M3TW7hiEnr97Eq3dPgv4a/4092UTMxoKGR9Xrqur3OiuV9BTHv1vRhYuXLl/Zudq+dv3Gzd3O3q1DbysncCCssu444x6VNDggSQqPS4dcZwqPstmbpn50gs5La97TvMSR5hMjCyk4hdS4c7cPL0GoWZ1WJXfOni5SeJVC/8NDeAH9cacb9+JlwDZIVqDLVnEw3mv9SHMrKo2GhOLeD5O4pFHNHUmhcNFOK48lFzM+wWGAhmv0o3r5jgXcD5kcCuvCMQTL7L83aq69n+ssMDWnqT9fa5L/qw0rKp6PamnKitCIs0FFpYAsNKJALh0KUvMAuHAy7Apiyh0XFKRrpw4NngqrNTd5nRZcSzXPseCVokWd+mKNN/bx3KwXgreGB0M8UOWMNBOwBpryY49OFtCwQNscH0EYAJVfUmiKDtCcSGdNI2fYY93yb8etLo12Dj2BLWDtQ3tDioY2qrPwX3LCj7QIFifnDd0Gh096SdxL+k+7+69XZu+wO+wee8AS9ozts3fsgA2YYJ/Yd/aT/YqK6HP0Jfp6Ro1aqzu32UZE3/4ATALqSg==</latexit><latexit sha1_base64="SwOqqZYrCi+HB0iVN2rm1pghZeE=">AAAC5HicbVJNixNBEO2MX2v82KweRSgMgqCGGREUQVwUweMGzO5CJoaenpqkSX8M3TW7hiEnr97Eq3dPgv4a/4092UTMxoKGR9Xrqur3OiuV9BTHv1vRhYuXLl/Zudq+dv3Gzd3O3q1DbysncCCssu444x6VNDggSQqPS4dcZwqPstmbpn50gs5La97TvMSR5hMjCyk4hdS4c7cPL0GoWZ1WJXfOni5SeJVC/8NDeAH9cacb9+JlwDZIVqDLVnEw3mv9SHMrKo2GhOLeD5O4pFHNHUmhcNFOK48lFzM+wWGAhmv0o3r5jgXcD5kcCuvCMQTL7L83aq69n+ssMDWnqT9fa5L/qw0rKp6PamnKitCIs0FFpYAsNKJALh0KUvMAuHAy7Apiyh0XFKRrpw4NngqrNTd5nRZcSzXPseCVokWd+mKNN/bx3KwXgreGB0M8UOWMNBOwBpryY49OFtCwQNscH0EYAJVfUmiKDtCcSGdNI2fYY93yb8etLo12Dj2BLWDtQ3tDioY2qrPwX3LCj7QIFifnDd0Gh096SdxL+k+7+69XZu+wO+wee8AS9ozts3fsgA2YYJ/Yd/aT/YqK6HP0Jfp6Ro1aqzu32UZE3/4ATALqSg==</latexit><latexit sha1_base64="SwOqqZYrCi+HB0iVN2rm1pghZeE=">AAAC5HicbVJNixNBEO2MX2v82KweRSgMgqCGGREUQVwUweMGzO5CJoaenpqkSX8M3TW7hiEnr97Eq3dPgv4a/4092UTMxoKGR9Xrqur3OiuV9BTHv1vRhYuXLl/Zudq+dv3Gzd3O3q1DbysncCCssu444x6VNDggSQqPS4dcZwqPstmbpn50gs5La97TvMSR5hMjCyk4hdS4c7cPL0GoWZ1WJXfOni5SeJVC/8NDeAH9cacb9+JlwDZIVqDLVnEw3mv9SHMrKo2GhOLeD5O4pFHNHUmhcNFOK48lFzM+wWGAhmv0o3r5jgXcD5kcCuvCMQTL7L83aq69n+ssMDWnqT9fa5L/qw0rKp6PamnKitCIs0FFpYAsNKJALh0KUvMAuHAy7Apiyh0XFKRrpw4NngqrNTd5nRZcSzXPseCVokWd+mKNN/bx3KwXgreGB0M8UOWMNBOwBpryY49OFtCwQNscH0EYAJVfUmiKDtCcSGdNI2fYY93yb8etLo12Dj2BLWDtQ3tDioY2qrPwX3LCj7QIFifnDd0Gh096SdxL+k+7+69XZu+wO+wee8AS9ozts3fsgA2YYJ/Yd/aT/YqK6HP0Jfp6Ro1aqzu32UZE3/4ATALqSg==</latexit><latexit sha1_base64="SwOqqZYrCi+HB0iVN2rm1pghZeE=">AAAC5HicbVJNixNBEO2MX2v82KweRSgMgqCGGREUQVwUweMGzO5CJoaenpqkSX8M3TW7hiEnr97Eq3dPgv4a/4092UTMxoKGR9Xrqur3OiuV9BTHv1vRhYuXLl/Zudq+dv3Gzd3O3q1DbysncCCssu444x6VNDggSQqPS4dcZwqPstmbpn50gs5La97TvMSR5hMjCyk4hdS4c7cPL0GoWZ1WJXfOni5SeJVC/8NDeAH9cacb9+JlwDZIVqDLVnEw3mv9SHMrKo2GhOLeD5O4pFHNHUmhcNFOK48lFzM+wWGAhmv0o3r5jgXcD5kcCuvCMQTL7L83aq69n+ssMDWnqT9fa5L/qw0rKp6PamnKitCIs0FFpYAsNKJALh0KUvMAuHAy7Apiyh0XFKRrpw4NngqrNTd5nRZcSzXPseCVokWd+mKNN/bx3KwXgreGB0M8UOWMNBOwBpryY49OFtCwQNscH0EYAJVfUmiKDtCcSGdNI2fYY93yb8etLo12Dj2BLWDtQ3tDioY2qrPwX3LCj7QIFifnDd0Gh096SdxL+k+7+69XZu+wO+wee8AS9ozts3fsgA2YYJ/Yd/aT/YqK6HP0Jfp6Ro1aqzu32UZE3/4ATALqSg==</latexit>

Bit Value Computation

➺Let vi be the value on line i in the faulty circuit Nf
where f is the fault j s-a-c

➺Then,

Fault insertion for one fault

18

v
0

i = vi�ij + c�ij

where �ij =

⇢
0 i 6= j
1 i = j

5.2 Fault Simulation Techniques

General Fault Simulation Techniques

x
Xl

137

Y z

Figure 5.5 Fault insertion on Z

Value of A
o 1 u

Al 0 1 0
A2 0 1 1

Figure 5.6 Coding for 3-valued logic

Bl = A2

B2 =M

that is, we complement Al and A2 and interchange them. Figure 5.7 shows a sample
computation for Z = X.Y (with a 3-bit word).

19

Mask Stuck Values

To discard a fault
simply make the it’s

mask bit = 0

Z 0 = ZIZ + SZIZ

0

Z = X1 · Y

5.2 Fault Simulation Techniques

Parallel FS - Limitations

➺Parallel simulation is limited for functional level
modeling
➺ For example if we have to examine for a word value, we need to

extract the bits and then re-pack

➺Impractical for multi-valued logic
➺Event on one bit position results in enter word

evaluation => wasted computation
➺Cannot take advantage of fault dropping
➺ Even if all but one faults are dropped, we still evaluate

W copies!

205.2 Fault Simulation Techniques

Deductive Fault Simulation
➺ Simulates good circuit and deduces the behavior of all

faulty circuits (limited by memory)
➺Maintains Fault List, Li for each signal line i.
➺ Li = List of all faults f that cause the values on i in N and

Nf to be different at the current simulation time
➺Difference with Parallel Simulation:

21

General Fault Simulation Techniques 139

Evaluation techniques based on Boolean equations are adequate for binary values, but
they become increasingly complex as the number of logic values used in modeling
increases. Hence, parallel simulation becomes impractical for multivalued logic.

In parallel fault simulation, an event occurs when the new value of a line differs from
its old value in at least one bit position. Such an event always causes W evaluations,
even if only one of the W evaluated elements has input events. Although it may
appear that the unnecessary evaluations do not take extra time, because they are done
in parallel with the needed ones, they do represent wasted computations. W
evaluations are done even after all the faults but one have been detected and discarded.
Thus parallel fault simulation cannot take full advantage of the concept of selective
trace simulation, or of the reduction in the number offaults caused by fault dropping.

5.2.4 Deductive Fault Simulation
The deductive technique [Armstrong 1972, Godoy and Vogelsberg 1971] simulates the
good circuit and deduces the behavior of all faulty circuits. "All" denotes a theoretical
capability, subject in practice to the size of the available memory. The data structure
used for representing fault effects is the fault list. A fault list L, is associated with
every signal line i. During simulation, L, is the set of all faults f that cause the values
of i in N and Nt to be different at the current simulated time. If i is a primary output
and all values are binary, then L, is the set of faults detected at i.

Figure 5.8 illustrates the difference between the value representation in parallel and in
deductive simulation. Suppose that we have F faults and a machine word with
W>Y + 1, hence we can simulate all the faults in one pass. Then in parallel simulation
the word associated with a line i stores the value of i in every faulty circuit. During
simulation, however, the value of i in most faulty circuits is the same as in the good
circuit. This waste is avoided in deductive simulation by keeping only the bit
positions (used as fault names) that are different from the good value.

F

iQIJ.·.·.·
t; = {4,7}

Figure 5.8 Fault-effects representation in parallel and deductive fault simulation

Given the fault-free values and the fault lists of the inputs of an element, the basic step
in deductive simulation is to compute the fault-free output value and the output fault.
list. The computation of fault lists is called fault-list propagation. Thus in addition to
the logic events which denote changes in signal values, a deductive fault simulator also
propagates list events which occur when a fault list changes, i.e., when a fault is either
added to or deleted from a list.

5.2 Fault Simulation Techniques

How Deductive Simulation Works

➺Given
➺ Fault-free input values, and
➺ Fault lists on inputs of an element

➺Compute:
➺ Fault-free output
➺Output fault list (i.e., fault list propagation)

225.2 Fault Simulation Techniques

Two Valued Deductive Simulation

➺Any fault that causes A or B = 0 will lead to Z = 0
➺Therefore:

23

LZ = LA È LB È { Z s-a-0 }
LA = {A s� a� 0}
LB = {B s� a� 0}

5.2 Fault Simulation Techniques

Use Ax to denote A s-a-x

Two Valued Deductive Simulation

➺Any fault that causes A = 1 without changing B,
will cause an error on Z

➺Note -- A fault that propagates on both A and B
will not affect Z

➺Therefore:

24

LZ = (LA Ç LB) È { Z1 }
= (LA - LB) È { Z1 }

5.2 Fault Simulation Techniques

0
0

General Formulae

➺Let I = set of inputs of gate Z
C = set of inputs with control value c
Then Fault List LZ on Z is given by

if C = F then

else

25

LZ = {
[

j2I

Lj} [{Z s� a� (c� i)}

LZ = {
\

j2C

Lj}� {
[

j2I�C

Lj} [{Z s-a-(c� i)}

5.2 Fault Simulation Techniques

Example

26

After Fault Collapsing, the fault set is
F = { a0 , a1 , b1 , c0 , c1 , d1 , e0 , g0 , h0 , h1}

Assume T = 00110 to abcde

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

5.2 Fault Simulation Techniques

27

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}
La = {a1}, Lb = {b1}, Lc = {c0}, Ld=Æ, Le = Æ

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

5.2 Fault Simulation Techniques

0
0

0

1

1

0

0

1

1

1

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

28

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}
La = {a1}, Lb = {b1}, Lc = {c0}, Ld=Æ, Le = Æ
Lf = La Ç Lb = Æ,

5.2 Fault Simulation Techniques

0
0

0

1

1

0

0

1

1

1

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

29

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}
La = {a1}, Lb = {b1}, Lc = {c0}, Ld=Æ, Le = Æ
Lf = La Ç Lb = Æ, Lg = LcÈ {g0} = {c0 , g0}
Lh = LcÈ {h0} = {c0 , h0}

5.2 Fault Simulation Techniques

0
0

0

1

1

0

0

1

1

1

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

30

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}
La = {a1}, Lb = {b1}, Lc = {c0}, Ld=Æ, Le = Æ
Lf = La Ç Lb = Æ, Lg = LcÈ {g0} = {c0 , g0}
Lh = LcÈ {h0} = {c0 , h0}, Lj = LgÈ Lf = {c0 , g0}
Li = Ld È Lh = {c0 , h0} Lk = Li - Le = {c0 , h0}

5.2 Fault Simulation Techniques

0
0

0

1

1

0

0

1

1

1

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}
La = {a1} Lb = {b1} Lc = {c0} Ld=Æ Le = Æ
Lf = La Ç Lb = Æ Lg = LcÈ {g0} = {c0 , g0}
Lh = LcÈ {h0} = {c0 , h0}. Lj = Lg- Lf = {c0 , g0}
Li = Ld È Lh = {c0 , h0} Lk = Li - Le = {c0 , h0}

Lm = Lk - Lj = {h0}

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

31
5.2 Fault Simulation Techniques

0
0

0

1

1

0

0

1

1

1

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

32

Now assume that next test vector is 11110. Redo the example.
La = Lb = Lc = Ld= Le =
Lf = Lg =
Lh =
Lj = Li =
Lk = Lm =

F = { a0, a1, b1, c0, c1, d1, e0, g0, h0, h1}

5.2 Fault Simulation Techniques

0

1

1

1
1

1

1

1

1

0

33

Solution:
La = {a0} Lb = Æ Lc = {c0} Ld=Æ Le = Æ
Lf = La È Lb = {a0} Lg = LcÈ {g0} = {c0 , g0}
Lh = LcÈ {h0} = {c0 , h0}
Lj = Lf Ç Lg = Æ Li = Ld È Lh = {c0 , h0}
Lk = Li - Le = {c0 , h0} Lm = Lk- Lj = {c0 , h0}

Fault c0 is detected!

General Fault Simulation Techniques 141

Lj == Lg - Lf == {co,go}, L, == Ld U Lh == {co,h o}

Lk == L, - L, == {co,h o}

t.; == L, - L j == {ho}

01
f

11
C ------------41

d 11

00

a
b

Figure 5.10

Since h 0 is detected, we drop it from the set of simulated faults by deleting h 0 from
every fault list where it appears, namely l-s, L i , Li, and L m • (Note that Co is not
detected.)

Now assume that both inputs a and b change to 1. Then La == {a o}, L b == 0, f = 1,
and Lf == {an}. The evaluation of gate j generates no logic event, but now
L, == Lf n Lg == 0. This shows that a list event may occur even without a
corresponding logic event. Propagating this list event to gate m, we obtain
Lm == L k - L j == {co}. Hence Co is now detected. D

Note that when L a is computed, to determine whether a list event has occurred, the
new La must be compared with the old La by La), before the latter is
destroyed; i.e., we must determine whether La == La.

Fault propagation becomes more involved when there is feedback. Care must be
exercised when the effect of a fault, say ao or aI, feeds back onto the line a itself. If
the fault list propagating to line a contains an no and if the good value of a is 0, then
no should be deleted from La because the values of a in the fault-free circuit and the
circuit with the fault aa are the same. Similarly al should be deleted from La it'" the
good value of a is 1.

Additional complexities occur in propagation of fault lists through memory elements.
Consider the SR latch shown in Figure 5.11. Let the state at time (1 be
(YbY2) = (0,1), and the input be (S,R) = (1,1). If at time (2 R changes to 0, the
outputs should remain the same. Let Ls an'! LR be the input fault lists at time (2

associated with lines Sand R, and let L 1 and L 2 be the fault lists associated with lines
Y 1 and Y 2 at time (1· The new fault lists L 1 and L 2 associated with lines Y 1 and Y2
resulting from the input logic event at (2 can be computed as follows (faults internal to
the latch will be ignored).

5.2 Fault Simulation Techniques

DS - Limitations

➺Compatible only in part with functional level
modeling
➺ Applicable only to models with Boolean eqns.

➺Limited to two or three logic values
➺Cannot handle timing models
➺Fault propagation mechanism cannot take full

advantage of the concept of activity-directed
simulation

345.2 Fault Simulation Techniques

Concurrent Fault Simulation

➺Observation – Most of the time, most values in
most fault circuits agree with those in the good
circuit.

➺Concurrent Method
➺ simulates the good circuit N
➺ For every faulty circuit Nf simulate only those elements

that differ with corresponding ones in N
➺ The differences of an element x in N is stored as a

concurrent fault list (CLx)

355.2 Fault Simulation Techniques

Concurrent List Example

36

General Fault Simulation Techniques 147

are maintained for every element x in N in the form of a concurrent fault list, denoted
by CLx • Let xf denote the replica of x in the circuit Nf . Let Vx (Vx) denote the
ensemble of input, output, and (possibly) internal state values of x f(Xf). During
simulation, CLx represents the set of all elements xf that are different from x at the
current simulated time. Elements x and xf may differ in two ways. First, we may
have Vx =t:: Vx ; this occurs when a fault effect caused by f has propagated to an
input/output line or state variable of xf. Second, f can be a local fault of xf' that is, a
fault inserted on an input/output line or state variable of xf. A local fault f makes xf
different from x, even if Vx = Vx ; this occurs when the input sequence applied so far
does not activate j: f

An entry in CL x has the form (j,Vx). Figure 5.15(a) illustrates a concurrent fault list
in pictorial form. The gates "hanging" from the good gate c are replicas of c in the
faulty circuits with the faults a, a I, and b I. Here a and are faults whose effects
propagate to gate c; they cause, respectively, a=l and b=O. Faults a I and b I are local
faults of gate c. Note that b I appears in CL c even if the values of a, b, and c in the
presence of b I are the same as in the good circuit. Figure 5.15(b) shows CLc in
tabular form. By contrast, the fault list of c in deductive simulation is L, = {a,a I }.

a

(a)

f a b c
a 1 1 0
J3 0 0 1
al 1 1 0
b i 0 1 1

(b)

Figure 5.15 Concurrent fault list for gate c (a) Pictorial representation (b) Tabular
representation

A fault f is said to be visible on a line i when the values of i in Nand Nf are different.
Among the entries in the concurrent fault list of a gate x, only those corresponding to
faults visible on its output appear also in the deductive fault list Lx. (In Figure 5.15, a
and a I are visible faults.) In this sense, a deductive fault list is a subset of the
corresponding concurrent fault list. Thus concurrent simulation requires more storage
than deductive simulation.

5.2 Fault Simulation Techniques

General Fault Simulation Techniques 147

are maintained for every element x in N in the form of a concurrent fault list, denoted
by CLx • Let xf denote the replica of x in the circuit Nf . Let Vx (Vx) denote the
ensemble of input, output, and (possibly) internal state values of x f(Xf). During
simulation, CLx represents the set of all elements xf that are different from x at the
current simulated time. Elements x and xf may differ in two ways. First, we may
have Vx =t:: Vx ; this occurs when a fault effect caused by f has propagated to an
input/output line or state variable of xf. Second, f can be a local fault of xf' that is, a
fault inserted on an input/output line or state variable of xf. A local fault f makes xf
different from x, even if Vx = Vx ; this occurs when the input sequence applied so far
does not activate j: f

An entry in CL x has the form (j,Vx). Figure 5.15(a) illustrates a concurrent fault list
in pictorial form. The gates "hanging" from the good gate c are replicas of c in the
faulty circuits with the faults a, a I, and b I. Here a and are faults whose effects
propagate to gate c; they cause, respectively, a=l and b=O. Faults a I and b I are local
faults of gate c. Note that b I appears in CL c even if the values of a, b, and c in the
presence of b I are the same as in the good circuit. Figure 5.15(b) shows CLc in
tabular form. By contrast, the fault list of c in deductive simulation is L, = {a,a I }.

a

(a)

f a b c
a 1 1 0
J3 0 0 1
al 1 1 0
b i 0 1 1

(b)

Figure 5.15 Concurrent fault list for gate c (a) Pictorial representation (b) Tabular
representation

A fault f is said to be visible on a line i when the values of i in Nand Nf are different.
Among the entries in the concurrent fault list of a gate x, only those corresponding to
faults visible on its output appear also in the deductive fault list Lx. (In Figure 5.15, a
and a I are visible faults.) In this sense, a deductive fault list is a subset of the
corresponding concurrent fault list. Thus concurrent simulation requires more storage
than deductive simulation.

Two Cases of Differences

37

Let xf be replica of x in Nf

Vxf and Vx be <inputs, output>

Case 1: Vxf ¹ Vx
This happens when fault effect of f
propagates to x

Case 2: Vxf = Vx
This happens when f is a local fault

(i.e., input/output fault)

Note: Even if the Vx and Vxf are equal,
the elements are different because
of the local fault.

5.2 Fault Simulation Techniques

Visible Faults

38

General Fault Simulation Techniques 147

are maintained for every element x in N in the form of a concurrent fault list, denoted
by CLx • Let xf denote the replica of x in the circuit Nf . Let Vx (Vx) denote the
ensemble of input, output, and (possibly) internal state values of x f(Xf). During
simulation, CLx represents the set of all elements xf that are different from x at the
current simulated time. Elements x and xf may differ in two ways. First, we may
have Vx =t:: Vx ; this occurs when a fault effect caused by f has propagated to an
input/output line or state variable of xf. Second, f can be a local fault of xf' that is, a
fault inserted on an input/output line or state variable of xf. A local fault f makes xf
different from x, even if Vx = Vx ; this occurs when the input sequence applied so far
does not activate j: f

An entry in CL x has the form (j,Vx). Figure 5.15(a) illustrates a concurrent fault list
in pictorial form. The gates "hanging" from the good gate c are replicas of c in the
faulty circuits with the faults a, a I, and b I. Here a and are faults whose effects
propagate to gate c; they cause, respectively, a=l and b=O. Faults a I and b I are local
faults of gate c. Note that b I appears in CL c even if the values of a, b, and c in the
presence of b I are the same as in the good circuit. Figure 5.15(b) shows CLc in
tabular form. By contrast, the fault list of c in deductive simulation is L, = {a,a I }.

a

(a)

f a b c
a 1 1 0
J3 0 0 1
al 1 1 0
b i 0 1 1

(b)

Figure 5.15 Concurrent fault list for gate c (a) Pictorial representation (b) Tabular
representation

A fault f is said to be visible on a line i when the values of i in Nand Nf are different.
Among the entries in the concurrent fault list of a gate x, only those corresponding to
faults visible on its output appear also in the deductive fault list Lx. (In Figure 5.15, a
and a I are visible faults.) In this sense, a deductive fault list is a subset of the
corresponding concurrent fault list. Thus concurrent simulation requires more storage
than deductive simulation.

A fault is visible on line i when the
values of i in N and Nf are different.

A deductive fault list includes all
visible faults, which is subset of the
concurrent fault list.

5.2 Fault Simulation Techniques

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

CFS - Example

39

What are those faults in the
initial state?

5.2 Fault Simulation Techniques

CFS - Example

40

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

5.2 Fault Simulation Techniques

CFS Example – Contd.

41

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

5.2 Fault Simulation Techniques

150 FAULT SIMULATION

-----r- 0/1 good event

event in circuit f

f

A

)ff
o 1
1)

r------ 0/1 good event
I
I
I
I

f

(a)
(b)

Figure 5.17

A B

Figure 5.18

fault list of every element B on the fanout list of i and evaluate the activated elements
(in the good and faulty circuits).

Figure 5.19 outlines the processing of the composed event at the source element A.
Let v (vf) be the current value of line i in the good circuit (in the circuit f). If an event
vlv' occurs in the good circuit, then we have to analyze every entry in CLA ; otherwise
we analyze only those entries with independent events. In the former case, if in a
circuit f line i stays at value vi = v (Le., the value of i in the circuit f is the same as the
value of i in the good circuit before the change), then f is a newly visible fault on
line i; these faults are collected into a list NV. The values of every analyzed entry f in
CLA , except for the newly visible ones, are compared to the values of the good
element A, and if they agree, f is deleted from CLA • (Practical implementation of the
processing described in Figure 5.19 is helped by maintaining entries in concurrent fault
lists and in lists of events ordered by their fault index.)

Concurrent Simulation
➺ Individually evaluates elements in both good and faulty circuits
➺ A line imay change even if i is stable in good circuit (see gate d1 in

previous example)
➺ A line i in the good circuit and some faulty circuits may also have

simultaneous but different events

42
Figure 5.17

5.2 Fault Simulation Techniques

Composed Event

43

➺ For a given input event on A, we compute the outputs in all copies
of A in the fault list

➺ Let the output list be L = <(f0 , v’f0), (f1 , v’f1), … (fn , v’fn)>
➺ Composed Event:

• A set of simultaneous events occurring on a line
• Represented as (i, L)

150 FAULT SIMULATION

-----r- 0/1 good event

event in circuit f

f

A

)ff
o 1
1)

r------ 0/1 good event
I
I
I
I

f

(a)
(b)

Figure 5.17

A B

Figure 5.18

fault list of every element B on the fanout list of i and evaluate the activated elements
(in the good and faulty circuits).

Figure 5.19 outlines the processing of the composed event at the source element A.
Let v (vf) be the current value of line i in the good circuit (in the circuit f). If an event
vlv' occurs in the good circuit, then we have to analyze every entry in CLA ; otherwise
we analyze only those entries with independent events. In the former case, if in a
circuit f line i stays at value vi = v (Le., the value of i in the circuit f is the same as the
value of i in the good circuit before the change), then f is a newly visible fault on
line i; these faults are collected into a list NV. The values of every analyzed entry f in
CLA , except for the newly visible ones, are compared to the values of the good
element A, and if they agree, f is deleted from CLA • (Practical implementation of the
processing described in Figure 5.19 is helped by maintaining entries in concurrent fault
lists and in lists of events ordered by their fault index.)

Figure 5.18

5.2 Fault Simulation Techniques

44

Processing of a composed event (i, L) at element A
General Fault Simulation Techniques

NV=0
if i changes in the good circuit then

begin
set i to v' in the good circuit
for every / E CLA

begin
if / E L then

begin
set i to Vt' in circuit /
if VA! = VA then delete/from CLA

end
else /* no event in circuit / */

if Vt = v then add newly visible fault/to NV
else if VA! = VA then delete / from CLA

end
end

else /* no good event for i */
for every / E L

begin
set i to vt' in circuit /
if VA! = VA then delete / from CLA

end

Figure 5.19 Processing of a composed event (i, L) at the source element A

151

Next, the composed event (i,L), together with the list NV of newly visible faults on
line i, is propagated to every fanout element B. If a good event exists, then it activates
B (for simplicity, we assume a two-pass strategy; thus evaluations are done after all the
activated elements are determined). The processing of an element Bt depends on
which lists (CLB , L, NV) contain f The way NV is constructed (see Figure 5.19)
implies that / cannot belong to both NV and L. The different possible cases are
labeled 1 through 5 in the Kamaugh map shown in Figure 5.20. The corresponding
actions are as follows:

Case 1: (Bt exists in CLB and no independent event on i occurs in Nt.) If a good
event exists and it can propagate in Nj. then activate Bt . The good event on line i can
propagate in the circuit / if Vt = v and / is not the local s-a-v fault on the input i of Bt .
For example, in Figure 5.16(b) the change of c from 0 to 1 propagates in the circuits
d 1 and but not in the circuits eland o.

Case 2: (Bt exists in CLB and an independent event on i occurs in Nt·) Activate Bt.
Here we have independent activity in a faulty circuit; this is illustrated in
Figure 5.17(b), where the event 1/0 activates the gate Bt .

Case 3: (An independent event on i occurs in Nt, but/does not appear in CLB .) Add
an entry for / to CLB and activate Bt. This is shown in Figure 5.21. Here A and At

NV: newly visible faults

5.2 Fault Simulation Techniques

150 FAULT SIMULATION

-----r- 0/1 good event

event in circuit f

f

A

)ff
o 1
1)

r------ 0/1 good event
I
I
I
I

f

(a)
(b)

Figure 5.17

A B

Figure 5.18

fault list of every element B on the fanout list of i and evaluate the activated elements
(in the good and faulty circuits).

Figure 5.19 outlines the processing of the composed event at the source element A.
Let v (vf) be the current value of line i in the good circuit (in the circuit f). If an event
vlv' occurs in the good circuit, then we have to analyze every entry in CLA ; otherwise
we analyze only those entries with independent events. In the former case, if in a
circuit f line i stays at value vi = v (Le., the value of i in the circuit f is the same as the
value of i in the good circuit before the change), then f is a newly visible fault on
line i; these faults are collected into a list NV. The values of every analyzed entry f in
CLA , except for the newly visible ones, are compared to the values of the good
element A, and if they agree, f is deleted from CLA • (Practical implementation of the
processing described in Figure 5.19 is helped by maintaining entries in concurrent fault
lists and in lists of events ordered by their fault index.)

Processing of element Bf Î CLB
➺After updating the CLA of source element A, we need to

update values and CLB of every element B on the fanout
list of i and evaluate activated elements

455.2 Fault Simulation Techniques

Case 1: f Î CLB , f Ï L, f Ï NV

Remark: Bf exists in CLB and no independent event
on i occurs in Nf

Action
If good event exists and
can propagate in Nf
then activate Bf

Example:
Change c 0/1 propagates
in d1 and β but not in c1 and α

46

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

5.2 Fault Simulation Techniques

Case 2: f Î CLB, f Î L, f Ï NV

Remark: Bf exists in CLB and an independent event
on i occurs in Nf

Action
Activate Bf

Example:
f in CLB

47

150 FAULT SIMULATION

-----r- 0/1 good event

event in circuit f

f

A

)ff
o 1
1)

r------ 0/1 good event
I
I
I
I

f

(a)
(b)

Figure 5.17

A B

Figure 5.18

fault list of every element B on the fanout list of i and evaluate the activated elements
(in the good and faulty circuits).

Figure 5.19 outlines the processing of the composed event at the source element A.
Let v (vf) be the current value of line i in the good circuit (in the circuit f). If an event
vlv' occurs in the good circuit, then we have to analyze every entry in CLA ; otherwise
we analyze only those entries with independent events. In the former case, if in a
circuit f line i stays at value vi = v (Le., the value of i in the circuit f is the same as the
value of i in the good circuit before the change), then f is a newly visible fault on
line i; these faults are collected into a list NV. The values of every analyzed entry f in
CLA , except for the newly visible ones, are compared to the values of the good
element A, and if they agree, f is deleted from CLA • (Practical implementation of the
processing described in Figure 5.19 is helped by maintaining entries in concurrent fault
lists and in lists of events ordered by their fault index.)

5.2 Fault Simulation Techniques

Case 3: f Ï CLB, f Î L, f Ï NV

Remark: An independent event on i occurs in Nf

but f does not appear in CLB

Action: Add an entry for f to CLB and activate Bf

485.2 Fault Simulation Techniques

Case 3: f Ï CLB, f Î L, f Ï NV

Example:

49

152 FAULT SIMULATION

fECLB

1- 4 5 1 1
I 3 - - 2 I fEL

fENV

Figure 5.20 Possible cases in processing a composed event propagated to a fanout
element B

have been evaluated because the input b changed from 0 to 1, and now i changes from
o to 1 in the good circuit and from 0 to u in the circuit f An entry for f is added to
CLB (with the same values as B) and activated.

J 0/1 good event
- - - LO/u event in circuit f

I
I
I
V

(b)

A

f

a
b

B

(a)

A

I - - - - - 0/1 good event
I
I
I
I
I
V

f

a
b

f f
(c)

Figure 5.21

Case 4: if is newly visible on line i and does not appear in CL B .) Add an entry for f
to CL B • This is illustrated in Figure 5.16 by the addition of at to CLeo

Case 5: if is a newly visible fault on line i, but an entry for f is already present in
CLB .) No action. In a combinational circuit this may occur only when there is
reconvergent fanout from the origin of the fault f to the element B. Figure 5.22
provides such an example.

5.2 Fault Simulation Techniques

Case 4: f Ï CLB , f Ï L , f Î NV

Remark: f is newly visible on line i and does not
appear in CLB

Action: Add an entry for f to CLB

Example:
Add a1 to CLe

50

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

General Fault Simulation Techniques 149

1/0 good event i 0/1 good event
: - - - a 1 newly visible

a C I

e
b···

e

al
Cl

al
Cl

a d l
ex d l

(a) a (b) a

(c) d l

1/0 event in circuit d 1

1/0 event in circuit f3

Figure 5.16 Changes in fault lists during simulation

(index) and v/' is the scheduled value of line i in the circuit f. (The good circuit has
[=0). The good-circuit event also occurs (implicitly) in all the faulty circuits that do
not have an entry in CLA •

The overall flow of event-directed logic simulation shown in Figure 3.12 is valid for
concurrent fault simulation with the understanding that the events processed are
composed events. Suppose that a composed event (i,L) has just been retrieved from
the event list. First we update the values and the concurrent fault list of the source
element A where the event originated. Then we update the values and the concurrent

5.2 Fault Simulation Techniques

Case 5: f Î CLB , f Ï L , f Î NV

Remark: f is newly visible
on line i but an entry is
already present in CLB

Action: No Action.
Example: In a comb.
circuit this occurs
with reconv. fanout

515.2 Fault Simulation Techniques

Comparison
Criteria Parallel Deductive Concurrent

Multiple Logic
Values

Impractical for
more than 3 logic
values

Impractical for
more than 3 logic
values

No limit

Functional level
Modeling

Partially compatible Partially compatible Fully compatible

Different Delay
Models

No No Yes

Speed* n3 n2 faster?

Storage Reqs. Medium Medium Large

52

* Comparison for large combinational circuit with n gates. No comparison between
deductive and concurrent reported.

5.2 Fault Simulation Techniques

53

Backup

Fault Storage
Characteristic Vector

➺ Fault insertion Bit =1
➺ Fault deletion Bit = 0
➺ Union – Bit-wise OR
➺ Intersection – Bit-wise AND
➺ Memory Intensive

54

