CIS 4930. Digital System Testing Fault Modeling

Dr. Hao Zheng Comp. Sci & Eng U of South Florida

Overview

- → Logic Fault Models
- → Fault Detection & Redundancy
- → Fault Equivalence & Fault Location
- → Fault Dominance
- → Single Stuck-Fault (SSF) Model
- → Multiple Stuck-Fault (MSF) Model
- → Summary

Recap: Testing Big Picture

- → A circuit defect leads to a fault.
- → A fault can cause a circuit error.
- → A circuit error can result in a circuit failure.
- → Testing a circuit:
 - → Apply test vectors to the circuit inputs.
 - → Compare circuit output responses to correct ones.
- Exhaustive testing
 - $\rightarrow 2^n$ test vectors required for a *n*-input comb. circuit.
 - → Difficult for comb. circuit, impossible for seq. circuit.

Recap: Testing Big Picture

- → Goal: find a small set of test vectors that target specific faults.
 - → Ideally, no redundant test vectors for the same fault.
 - → The set contains enough test vectors to uncover all target faults.
- → Impossible to achieve 100% fault coverage.
 - → Due to undetectable faults.

Recap: Physical Faults

Recall that we have 4 types of errors

- Design Errors
- Fabrication Errors
- Fabrication Defects
- Physical Failures

Physical Faults can be:

- Permanent
- Intermittent
- Transient

Recap: Logical Faults

- → Physical faults are difficult to handle mathematically
- → Therefore, for a physical fault we identify equivalent logical fault
 - → Example:

4.1 Logic Fault Models

- → Fault model: representation of physical faults and their natures at logic level.
- → Recall that

Behavior = Function + Timing

→ Therefore, we can talk about two types of faults:
 → Logical Faults – modify circuit logic function.
 → Delay Faults - modify circuit operating speed.
 → Our focus will be on Logical Faults

Logical Fault Modeling - Advantages

- → Fault analysis becomes a logical problem.
 - Test can start before silicon is available.
- → Fault analysis become less complex.
 - → Many physical faults can be modeled by the same logical fault
- → Technology independent
- → Tests derived for logical faults may be used for physical faults whose effect
 - → not completely understood
 - → or too complex to analyze

Structural and Functional Faults

→ Structural faults

- Faults defined on a structural circuit model.
- → Effect: modify interconnections

→ Functional faults

- Faults defines on a functional circuit model
- → Effect: modify truth table etc.
- → Intermittent & Permanent Faults
 - → Statistical data on probability of occurrence of transient/intermittent faults are difficult to have.
 - →Our focus in this discussion is on structural and permanent faults

Single Fault Assumption - Justification

- → Assumption one logical fault in the system.
- → Justification
 - → Frequent testing strategy (test often so that prob. of multiple faults developing in between too low)
 - → Usually tests derived for individual single faults are applicable for detecting multiple faults composed of the single ones.

Structural Fault Models

→ Assumptions:

- → Components are fault free and,
- → Only interconnections are affected shorts & opens.

→ Stuck-at-v Fault:

→ Short (with supply/gnd) or Open lines behave as "stuck at" fixed logic value v (v ∈ {0,1})

→ Bridging fault:

- → Short between two lines → usually new logic function (AND or OR bridging)
- → We will discuss bridging faults later

Single Stuck Fault – Open Line

- Open on an unidirectional line
- Unconnected input assumes a constant logic value
- → Single logical fault, *i-stuck-at-a* can represent
 - → Line *i* open
 - →Line *i* shorted to Vdd or GND (a=1 or a=0)
 - →Internal fault in component driving line *i*

Multiple Stuck Fault

(b)

- Single open can result in multiple faults
- Under single fault model, we need to consider faults on all fanout branches separately.

4.2 Fault Detection and Redundancy

Fault Detection – Combinational Circuits

- Input vector t to N results in output response Z(t).
- Test T = $<t_1, t_2 ... t_m >$ will yield $< Z(t_1), Z(t_2), ... Z(t_m) >$

Fault Detection – Comb Circuits

Definition 4.1 A test (vector) t detects a fault fiff $z_f(t) \neq z(t)$

- → Note the above is applicable to comb. circuits only.
- → Test vectors in T can applied in any order, so T is set of tests

→ Applicable to edge-pin testing
 → Components are assumed to be fault free.

Example 1

Figure 4.2

Let *f* = OR-bridging fault between x1 and x2

Fault Detection and Test Vectors

→ For a single-output circuit, a test t that detects a fault f makes

→ Z(t) = 0 and
$$Z_f(t) = 1$$
 or
→ Z(t) = 1 and $Z_f(t) = 0$

→ Thus, the set of all tests that detect f is given by

 $Z_f(t) \oplus Z(t) = 1$

Let the fault f be x_4 s-a-0. Find all test vectors that detect f

Example 3

Let $f = x_4$ s-a-0.

For test vector 1001 that detects *f*, simulate without and with fault *f*

Example 3

v/v_f: fault-free/faulty

Fault: G2 s-a-1

4.2 Fault Detection and Redundancy

Fault – Sensitization

4.2 Fault Detection and Redundancy

Fault Sensitization – Terminology

- → Fault Activation: A test t activates a fault on a line if it generates an error at the site of the fault.
- → Fault Propagation: A test t propagates the error to a primary output by creating at least one path from fault site to the primary output.
- → Line Sensitization: A line whose value under the test t changes in the presence of the fault f is said to be sensitized to the fault f by the test t
- → Sensitized Path: A path composed of sensitive lines

Gate Controlling and Enabling Values

- -> Controlling value c: If at least one input assumes value c, then the gate's output assumes value . $c \oplus i$
- → Enabling value \bar{c} : If all inputs of a gate have the enabling value, then the gate's output assumes the value $\bar{c} \oplus i$.

Example

Control value =____ Enabling value = ___

NAND: c= 0, i=1.

Lemma 4.1

Let G be a gate with inversion *i* and controlling value *c*, whose output is sensitized to a fault *f* (by a test *t*).

- All inputs of G sensitized to *f* have the same value (say, *a*).
- 2. All inputs of G not sensitized to f (if any) have value \overline{c} .
- 3. The output of G has value $a \oplus i$.

Figure 4.4 NAND gate satisfying Lemma 4.1 (c=0, i=1)

Faults – Detectability

A fault f is said to be **detectable** if there exists a test t hat detects f

Otherwise, f is **undetectable**.

For undetectable fault, no test exists that can simultaneously activate and propagate the fault to the primary output.

Example: Undetectable Fault *a s-a-1*

Example: Detectable Fault *b**s***-***a***-0**

b s-a-0 is detectable with t = 1101

Example: Undetectable Fault

b s-a-0 becomes undetectable in the presence of a s-a-1 by test t=1101

Example 2: Undetectable Fault

q s-a-0 is detectable with t = 111

q s-a-0 is undetectable in the presence of OR Bridging fault between y and \bar{x} .

4.2 Fault Detection and Redundancy

Fault – Redundancy

- → A combinational circuit that contains an undetectable stuck fault is said to be redundant
- Such circuit can always be reduced by eliminating a gate or a gate input
- → A combinational circuit in which all stuck faults are detectable is said to irredundant

Example: Y s-a-0 is undetectable. Gate Y can be dropped.

Fault Interaction

- → If f is a detectable fault and g is an undetectable fault, then f may become undetectable in the presence of g. Such a fault f is called a secondgeneration redundant fault.
- → Two undetectable single faults f and g may become detectable if simultaneously present in the circuit. In other words, the multiple fault {f, g} may be detectable even if its single-fault components are not.

Detecting Redundancy

- → To show a line is redundant => to prove that no test exists for the corresponding fault
- → Detecting Redundancy Problem => Test Generation Problem
- → Test generation problem is an NP-complete problem
- → Practical test generation algorithms run in polynomial time
- → Redundant faults make test generation algorithms exhibit worst-case behavior

Large Combinational Circuits

- → Even if the circuit is *irredundant*, we may not have complete test set due to time limitations
- → In such a case, the fault (say f) for which no test exists, is no different from an undetectable fault (say g)
- → Undetectable fault g may be present in the circuit and invalidate the single fault assumption.

Sequential Circuits

- Testing more difficult than combinational circuits
- → Need a test sequence
- → Response is a function of initial state
 - \rightarrow Let *T* be a test sequence a sequence of test vectors.
 - $\rightarrow R(q, T)$ be the response to T with initial state q
 - $\rightarrow R_f(q_f, T)$ be the response for faulty circuit

T Strongly Detects *f*

→ Definition 4.2: A test sequence T strongly detects the fault f

if and only if the output sequences $R(q, T) \neq R_f(q_f, T)$ for every possible pair of initial states q and q_f
Example

α line a s-a-1 β line b s-a-0 Test sequence T=10111

Initial	Output sequence			
state	Fault-free	α (a s-a-1)	β (b s-a-0)	
A	01011	01010	01101	
B	11100	11100	11101	
C	00011	00010	01010	
D	11001	10010	11010	

4.2 Fault Detection and Redundancy

Figure 4.9 Output sequences as a function of initial state and fault

Example

- T does not strongly detect α
- T strongly detects β

: 10111

Initial	Output sequence		
state	Fault-free	α (<i>a s-a-</i> 1)	β (b s-a-0)
A	01011	01010	01101
B	11100	11100	11101
C	00011	00010	01010
D	11001	10010	11010

T Detects **f**

→ Definition 4.3: A test sequence T detects the fault

if and only if for every possible pair of initial states q and q_f the output sequences $R(q, T) \neq R_f(q_f, T)$ for some specified vector $t_i \in T$

Testing with Initialization

- → Phase I: Initialization sequence T_I such that N and N_f are brought to known states q_I and q_{If}
 → Output responses ignored during initialization
- → Phase II: Apply T' (output responses are predictable)
 - \rightarrow t_i is first vector of T' for which an error is observed

Drawback

→ Initialization may not be possible for faulty circuit → Example:

Figure 4.10 Example of a fault preventing initialization

4.2 Fault Detection and Redundancy

4.3 Fault Equivalence and Fault Location

Fault Equivalence – Combinational Circuits

→ Definition 4.4: Two faults f and g are said to be functionally equivalent iff

$$Z_f(x)=Z_g(x)$$

- → A test *t* is said to **distinguish** between two faults *f* and *g* if $Z_f(t) \neq Z_g(t)$
- → There exists no test that can distinguish functionally equivalent faults
- → Faults are divided into equivalent classes.

Equivalence Fault Collapsing

- → Reduce faults into equivalent classes
- → For a NAND gate,

→ All input s-a-0 faults and the output s-a-1 are functionally equivalent

Equivalence Fault Collapsing

- → In general, for a gate with controlling value c and inversion *i*,
 - →All input s-a-c faults are *functionally equivalent* to output s-a-(c⊕i) faults
 - → Reduce 2(n+1) faults to n+2 faults for a n-input NAND gate.

Fault Location

- → Goal of testing is to locate the fault besides detecting the fault
- → A complete location test distinguishes between every pair of distinguishable faults in a circuit
- → A fault-free circuit contains *empty fault*, denoted by Φ.

→ Therefore $Z_{\Phi}(x) = Z(x)$

→ A fault detection is a particular case of fault location, since a test that detects f distinguishes between f and Φ.

Functional Equivalence Under a Test

→ In practice, test sets are not complete
→ Affect diagnostic resultion

→ Definition 4.5: Two f and g are functionally equivalent under a test set T,
iff

 $Z_f(t) = Z_g(t)$ for every test $t \in T$

Note:

Functional equivalence implies functional equivalence under any test set, but not vice versa.

Fault Equivalence – Sequential Circuits

→ Definition 4.6: Two *f* and *g* are strongly functionally equivalent iff their corresponding state tables are equivalent.

→ Impractical

→ Definition 4.6: Two f and g are functionally equivalent iff for any T',

$$R_f(q_{If}, T') = Z_g(q_{Ig}, T')$$

4.4 Fault Dominance

Fault Dominance – Combinational Circuits

- → Another fault relation to reduce faults to be considered
- → Definition 4.8: Let T_g be the set of all tests that detect a fault g. We say that a fault f dominates the fault g

iff

f and g are functionally equivalent under Tg.

Fault Dominance

- If f dominates g, then any test t that detects g, i.e, $Z_g(t) \neq Z(t)$, will also detect f (on the same primary inputs) because $Z_f(t) = Z_g(t)$
- Therefore, we can drop *f* from the fault set

Figure 4.13 The sets T_f and T_g when f dominates g

Example

Dominant Fault Collapsing

- → In general, for a gate with controlling value c and inversion *i*,
 - → Output *s*-*a*-(*c* \oplus *i*) fault dominates input *s*-*a*- \bar{c} faults.
- → Better to choose a fault model dominated by other models
 - → Tests detecting one model also detects other faults models

An Example

→ Faults: f : z2 s-a-0, g : y1 s-a-1, test t= 10
 → t detects both f and g, but they do not dominate each other

Figure 4.14

4.5 The Single Stuck-Fault Model

Fault Universe

- → For n lines where SSFs can be defined, there are 2n stuck faults.
- → For fanout-free circuits, the number of faults is 2(G+I).
 - → G: gate count
 - → I: number of primary inputs
- → For circuits with fanout, the estimate is 2*Gf*
 - → *f*: average fanout count

Checking Functional Equivalence is Hard!

- → In general, to determine whether two arbitrary faults are functionally equivalent is NP-complete
- → Example: Are *c s*-*a*-1 and *d s*-*a*-1 functionally equivalent?

Figure 4.17

Structural Equivalence

- → In a circuit N_f the fault f creates a set of lines with constant values.
- → By removing all these lines (except POs), we obtain *S*(*N*_f)
- → Two faults f and g are structurally equivalent if $S(N_f)$ and $S(N_g)$ are identical
- → All structurally equivalent faults are functionally equivalent
- → But not all functionally equivalent faults are structurally equivalent

Example: Structural Equivalence

Figure 4.18 Illustration for structural fault equivalence

4.5 The Single Stuck-Fault Model

Structurally Equivalent Fault Collapsing

- For a line with fanout of 1, the faults at its sources are structurally eq. to those at its destination.
- For a gate, input s-a-c is structurally eq. to output . s-a- $(c \oplus i)$
- For each eq. class, retain only one fault.

Figure 4.19 Example of structural equivalence fault collapsing

Structurally Equivalent Faults – Example

g s-a-1 and i s-a-0?

On average, about 50% SSFs can be reduced !

4.5 The Single Stuck-Fault Model

Fault Reduction by Dominance Relation

- → Theorem 4.1: In a fanout-free combinational circuit *C*, any test set that detects all SSFs on the primary inputs of *C* detects all SSFs in *C*.
- → Theorem 4.2: In a combinational circuit *C* any test set that detects all SSFs on the primary inputs and the fanout branches of *C* detects all SSFs in *C*.
 - → These faults can be further reduced by structural equivalence and dominance relations.

Example

- How many faults after fault collapsing?
- Answer: 10 (verify this)

Figure 4.21

Stem and Fanout Faults – Example 1

- → In general neither functional equivalence nor dominance relations exists between stem and fanout faults
- → Stem fault *j s*-*a*-*0* is detected but *k s*-*a*-*0* and *m s*-*a*-*0* are not

4.5 The Single Stuck-Fault Model

Stem and Fanout Faults – Example 2

→ Fanout faults x₁ s-a-0 and x₂ s-a-0 are detectable but stem fault x s-a-0 is not

Figure 4.23

4.6 The Multiple Stuck-Fault Model

Multiple Stuck Fault (MSF) Model

- → Several lines can be stuck simultaneously.
 - → Straightforward extension of SSF
- → For a *n* line circuit, there are
 - → 2*n* SSFs, but
 - → $3^n 1$ possible MSFs
 - → $\sum_{i=1}^{k} {n \choose i} 2^i$ possible MSFs for multiplicity k.
 - → Too large a number to handle.
- → A MSF *F* can be viewed as $\{f_1, f_2, \ldots, f_k\}$.
- → Why do we need to consider MSF?
 - Because of masking relation between faults

Functional Masking

→ **Definition 4.9**: Let T_g be the set of *all* tests that detect *g*. We say that *f* **functionally masks** *g* iff the multiple fault $\{f, g\}$ is not detected by any test in T_q

→ Example: *a s-a-1* masks *c s-a-0*

→ 011 only vector that detects *c s-a-0*

→ {*c s-a-0, a s-a-1*} is not detectable by 011

Masking under a Test Set

- → Definition 4.10: Let $T'_g \subseteq T$ be the set of all tests in *T* that detect a fault *g*. We say that a fault *f* masks the fault *g* under a test set **T** iff the multiple fault {*f*, *g*} is not detected by any test in T'_g
- → Functional masking → masking under a test set → $T'_g \subseteq T_g$

Problem

→ If f masks g, then fault {f, g} is not detected by tests that detect g alone. But can there be other tests to detect {f, g}?

{*c s*-*a*-0, *a s*-*a*-1}

Figure 4.24

Problem – Detection of Multiple Faults

→ Given a complete test set T that detects all single faults, can there exist a multiple fault F = {f₁, f₂, ..., f_k} such that F is not detected by T?

Example

→ $T = \{1111, 0111, 1110, 1001, 1010, 0101\}$ → f = B s - a - 1 and g = C s - a - 1

 \rightarrow 1001 is the only vector that detects f and g SSFs, but...

Figure 4.25
Example

→ 1001 cannot detect {f, g} → f masks g, and g masks f - circular masking

Figure 4.25

What % of MSFs can escape detection by a complete SSF test set (T)?

- → In an irredundant 2-level circuit, T also detects all MSFs
- → In a fanout-free circuit, any T detects all double and triple faults, and there exists a T for SSFs that detects all MSFs
- → In an internal fanout free circuit, any T detects at least 98% of MSFs with multiplicity k < 6</p>
- → A test set that detects all MSFs defined on all primary inputs without fanout and all fanout branches of a circuit C detects all multiple faults in C.

MSFs or Not?

→ A test set T for SSFs also detects most MSFs.
→ Typically focus on MSFs not detectable by T.
→ Probability of MSFs is low.

Modern semi-manufacturing is highly reliable

→ A SSF is guaranteed to be detected (GTBD) if it can be detected unconditionally.

→ Any MSF that includes a GTBD SSF is also GTBD.

Summary

- → Logic faults can represent various physical faults
- → Fault detection
 - → Find a test that causes deviation in output responses
 - \rightarrow Undetectable faults \rightarrow redundancy
- → Fault collapsing
 - → Fault equivalence & dominance
- → Single stuck-fault model
 - → Possible to find a complete test set
- → Multiple fault model
 - → A SSF detection test set can find many MSFs

Backup

Corollary 4.1

- Let *j* be a line sensitized to the fault *l s*-*a*-*v* (by a test *t*), and let *p* be the inversion parity of a sensitized path between *l* and *j*.
- 1. The value of *j* in *t* is $v \oplus p$.
- If there are several sensitized paths between *I* and *j*, then all of them have the same inversion parity.

Redundancy in Circuits

→ Redundancy can be by design i.e., intentional

Fault tolerant design

Hazard-free design

