CIS 4930. Digital System Testing
Fault Modeling

Dr. Hao Zheng
Comp. Sci & Eng
U of South Florida
Overview

→ Logic Fault Models
→ Fault Detection & Redundancy
→ Fault Equivalence & Fault Location
→ Fault Dominance
→ Single Stuck-Fault (SSF) Model
→ Multiple Stuck-Fault (MSF) Model
→ Summary
Recap: Testing Big Picture

→ A circuit defect leads to a fault.
→ A fault can cause a circuit error.
→ A circuit error can result in a circuit failure.
→ Testing a circuit:
 → Apply test vectors to the circuit inputs.
 → Compare circuit output responses to correct ones.
→ Exhaustive testing
 → 2^n test vectors required for a n-input comb. circuit.
 → Difficult for comb. circuit, impossible for seq. circuit.
Recap: Testing Big Picture

Goal: find a small set of test vectors that target specific faults.
 Ideally, no redundant test vectors for the same fault.
 The set contains enough test vectors to uncover all target faults.

Impossible to achieve 100% fault coverage.
 Due to undetectable faults.
Recap: Physical Faults

Recall that we have 4 types of errors
• Design Errors
• Fabrication Errors
• Fabrication Defects
• Physical Failures

Physical Faults can be:
• Permanent
• Intermittent
• Transient
Recap: Logical Faults

→ Physical faults are difficult to handle mathematically
→ Therefore, for a physical fault we identify equivalent logical fault
→ Example:

Physical fault
- Inputs are shorted

Logical fault
- Gate now behaves as an inverter
4.1 Logic Fault Models

→ Fault model: representation of physical faults and their natures at logic level.
→ Recall that
 \[\text{Behavior} = \text{Function} + \text{Timing} \]
→ Therefore, we can talk about two types of faults:
 → **Logical Faults** – modify circuit logic function.
 → **Delay Faults** - modify circuit operating speed.
→ Our focus will be on Logical Faults
Logical Fault Modeling - Advantages

➔ Fault analysis becomes a logical problem.

➔ Test can start before silicon is available.

➔ Fault analysis become less complex.

➔ Many physical faults can be modeled by the same logical fault

➔ Technology independent

➔ Tests derived for logical faults may be used for physical faults whose effect

➔ not completely understood

➔ or too complex to analyze
Structural and Functional Faults

→ Structural faults
 → Faults defined on a structural circuit model.
 → Effect: modify interconnections

→ Functional faults
 → Faults defined on a functional circuit model
 → Effect: modify truth table etc.

→ Intermittent & Permanent Faults
 → Statistical data on probability of occurrence of transient/intermittent faults are difficult to have.
 → Our focus in this discussion is on structural and permanent faults
Single Fault Assumption - Justification

→ Assumption – one logical fault in the system.

→ Justification

→ Frequent testing strategy (test often so that prob. of multiple faults developing in between too low)

→ Usually tests derived for individual single faults are applicable for detecting multiple faults composed of the single ones.
Structural Fault Models

→ Assumptions:
 → Components are fault free and,
 → Only interconnections are affected – shorts & opens.

→ Stuck-at-v Fault:
 → Short (with supply/gnd) or Open lines behave as “stuck at” fixed logic value \(v \) (\(v \in \{0,1\} \))

→ Bridging fault:
 → Short between two lines → usually new logic function (AND or OR bridging)
 → We will discuss bridging faults later
Single Stuck Fault – Open Line

→ Open on an unidirectional line
→ Unconnected input assumes a constant logic value
→ Single logical fault, \(i\text{-stuck-at-}a\) can represent
 → Line \(i\) open
 → Line \(i\) shorted to Vdd or GND (\(a=1\) or \(a=0\))
→ Internal fault in component driving line \(i\)

4.1 Logic Fault Models
Multiple Stuck Fault

• Single open can result in multiple faults
• Under single fault model, we need to consider faults on all fanout branches separately.
4.2 Fault Detection and Redundancy
Fault Detection – Combinational Circuits

• Input vector \(t \) to \(N \) results in output response \(Z(t) \).
• Test \(T = \langle t_1, t_2 \ldots t_m \rangle \) will yield \(\langle Z(t_1), Z(t_2), \ldots Z(t_m) \rangle \)
Definition 4.1 A test (vector) t detects a fault f iff

$$z_f(t) \neq z(t)$$

→ Note the above is applicable to comb. circuits only.
→ Test vectors in T can applied in any order, so T is set of tests
→ Applicable to edge-pin testing
 → Components are assumed to be fault free.
Example 1

Let \(f = \text{OR-bridging fault between } x_1 \text{ and } x_2 \)

\[
\begin{align*}
Z_1 &= \underline{\quad} & Z_{1f} &= \underline{\quad} \\
Z_2 &= \underline{\quad} & Z_{2f} &= \underline{\quad}
\end{align*}
\]

Give a test vector that detects the fault:

\(<x_1, x_2, x_3> = \underline{\quad}\)
Fault Detection and Test Vectors

→ For a single-output circuit, a test \(t \) that detects a fault \(f \) makes

- \(Z(t) = 0 \) and \(Z_f(t) = 1 \) or
- \(Z(t) = 1 \) and \(Z_f(t) = 0 \)

→ Thus, the set of all tests that detect \(f \) is given by

\[Z_f(t) \oplus Z(t) = 1 \]
Example 2

Let the fault f be x_4 s-a-0. Find all test vectors that detect f
Example 3

Let \(f = x_4 \text{ s-a-0} \).

For test vector 1001 that detects \(f \), simulate without and with fault \(f \).
Example 3

\[F(z) = (x_2 + x_3)x_1 + x_1x_4 \]

Fault: G2 s-a-1

\[v/v_f: \text{fault-free/faulty} \]
Fault – Sensitization

f = G2 s-a-1, Test vector *t* = 1 0 0 1

Figure 4.3

Sensitization

Let us simulate the circuit of Figure 4.3(a) for the test vector *t* = 1 0 0 1, both without and with the fault G2 s-a-1 present. The results of these two simulations are shown in **Figure 4.3(b)**. The results that are different in the two cases have the form *v*1,v2, where *v* and *vf* are corresponding signal values in the fault-free and in the faulty circuit. The fault is detected since the output values in the two cases are different.

Fault – Sensitization

t sensitizes fault *f* to the primary output by a sensitized path

t propagates fault *f* to the primary output by a sensitized path
Fault Sensitization – Terminology

→ **Fault Activation**: A test t activates a fault on a line if it generates an error at the site of the fault.

→ **Fault Propagation**: A test t propagates the error to a primary output by creating at least one path from fault site to the primary output.

→ **Line Sensitization**: A line whose value under the test t changes in the presence of the fault f is said to be sensitized to the fault f by the test t.

→ **Sensitized Path**: A path composed of sensitive lines.
Gate Controlling and Enabling Values

→ **Controlling value c:** If at least one input assumes value c, then the gate’s output assumes value $c \oplus i$.

→ **Enabling value \bar{c}:** If all inputs of a gate have the enabling value, then the gate’s output assumes the value $\bar{c} \oplus i$.

Example

NAND: $c = 0$, $i = 1$.

Control value =_____

Enabling value = ___
Lemma 4.1

Let G be a gate with inversion i and controlling value c, whose output is sensitized to a fault f (by a test t).

1. All inputs of G sensitized to f have the same value (say, a).
2. All inputs of G not sensitized to f (if any) have value \overline{c}.
3. The output of G has value $a \oplus i$.

Figure 4.4 NAND gate satisfying Lemma 4.1 ($c=0$, $i=1$)
Faults – Detectability

A fault f is said to be detectable if there exists a test t that detects f

Otherwise, f is undetectable.

For undetectable fault, no test exists that can simultaneously activate and propagate the fault to the primary output.
Example: Undetectable Fault $a \ s\-\alpha\-1$

A combinational circuit that contains an undetectable stuck fault is said to be redundant, since such a circuit can always be simplified by removing at least one gate or gate input. For instance, suppose that a $s\-\alpha\-l$ fault on an input of an AND gate G is undetectable. Since the function of the circuit does not change in the presence of the fault, we can permanently place a 1 value on that input. But an n-input AND with a constant 1 value on one input is logically equivalent to the $(n-1)$-input AND obtained by removing the gate input with the constant signal. Similarly, if an AND input $s\-\alpha\-0$ is undetectable, the AND gate can be removed and replaced by a 0 signal. Since now...
Example: Detectable Fault \(b \ s-a-0 \)

\(b \ s-a-0 \) is detectable with \(t = 1101 \)
Example: Undetectable Fault

b s-a-0 becomes undetectable in the presence of a s-a-1 by test t=1101

4.2 Fault Detection and Redundancy
Example 2: Undetectable Fault

$q s-a-0$ is detectable with $t = 111$

$q s-a-0$ is undetectable in the presence of OR Bridging fault between y and \overline{x}.
Fault – Redundancy

→ A combinational circuit that contains an undetectable stuck fault is said to be **redundant**

→ Such circuit can always be reduced by eliminating a gate or a gate input

→ A combinational circuit in which all stuck faults are detectable is said to be **irredundant**

Example: Y s-a-0 is undetectable. Gate Y can be dropped.
Fault Interaction

If f is a detectable fault and g is an undetectable fault, then f may become undetectable in the presence of g. Such a fault f is called a second-generation redundant fault.

Two undetectable single faults f and g may become detectable if simultaneously present in the circuit. In other words, the multiple fault \{f, g\} may be detectable even if its single-fault components are not.
Detecting Redundancy

→ To show a line is redundant => to prove that no test exists for the corresponding fault

→ Detecting Redundancy Problem => Test Generation Problem

→ Test generation problem is an NP-complete problem

→ Practical test generation algorithms run in polynomial time

→ Redundant faults make test generation algorithms exhibit worst-case behavior
Large Combinational Circuits

→ Even if the circuit is *irredundant*, we may not have complete test set due to time limitations

→ In such a case, the fault (say f) for which no test exists, is no different from an *undetectable fault* (say g)

→ Undetectable fault g may be present in the circuit and invalidate the single fault assumption.
Sequential Circuits

→ Testing more difficult than combinational circuits
→ Need a test sequence
→ Response is a function of initial state
 → Let T be a test sequence – a sequence of test vectors.
 → $R(q, T)$ be the response to T with initial state q
 → $R_f(q_f, T)$ be the response for faulty circuit
T Strongly Detects f

→ Definition 4.2: A test sequence T strongly detects the fault f

if and only if

the output sequences $R(q, T) \neq R_f(q_f, T)$ for every possible pair of initial states q and q_f
Example

α line a s-a-1
β line b s-a-0
Test sequence T=10111

4.2 Fault Detection and Redundancy
Example

- T does not strongly detect α
- T strongly detects β

\[
\begin{array}{|c|c|c|c|}
\hline
& 0 & 1 & y_1 & y_2 \\
\hline
A & A,0 & D,0 & 0 & 0 \\
B & C,1 & C,1 & 0 & 1 \\
C & B,1 & A,0 & 1 & 1 \\
D & A,1 & B,1 & 1 & 0 \\
\hline
\end{array}
\]

\[
\text{: 10111}
\]

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Output sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fault-free</td>
</tr>
<tr>
<td>A</td>
<td>01011</td>
</tr>
<tr>
<td>B</td>
<td>11100</td>
</tr>
<tr>
<td>C</td>
<td>00011</td>
</tr>
<tr>
<td>D</td>
<td>11001</td>
</tr>
</tbody>
</table>

4.2 Fault Detection and Redundancy
T Detects f

→ Definition 4.3: A test sequence T detects the fault f

if and only if
for every possible pair of initial states q and q_f the output sequences $R(q, T) \neq R_f(q_f, T)$ for some specified vector $t_i \in T$
Testing with Initialization

→ Phase I: Initialization sequence T_i such that N and N_f are brought to known states q_i and q_{if}
 → Output responses ignored during initialization

→ Phase II: Apply T' (output responses are predictable)
 → t_i is first vector of T' for which an error is observed
Drawback

- Initialization may not be possible for faulty circuit
- Example:

Figure 4.10 Example of a fault preventing initialization
4.3 Fault Equivalence and Fault Location
Fault Equivalence – Combinational Circuits

→ **Definition 4.4:** Two faults f and g are said to be functionally equivalent iff

$$Z_f(x) = Z_g(x)$$

→ A test t is said to **distinguish** between two faults f and g if $Z_f(t) \neq Z_g(t)$

→ There exists no test that can distinguish functionally equivalent faults

→ Faults are divided into equivalent classes.
Equivalence Fault Collapsing

→ Reduce faults into equivalent classes
→ For a NAND gate,
 → All input \(s-a-0 \) faults and the output \(s-a-1 \) are functionally equivalent

\[\text{\bullet} : s - a - 1, \quad \circ : s - a - 0 \]
Equivalence Fault Collapsing

→ In general, for a gate with controlling value c and inversion i,
 → All input s-a-c faults are \textit{functionally equivalent} to output s-a-(c\oplusi) faults
 → Reduce 2(n+1) faults to n+2 faults for a n-input NAND gate.
Fault Location

→ Goal of testing is to locate the fault besides detecting the fault

→ A complete location test distinguishes between every pair of distinguishable faults in a circuit

→ A fault-free circuit contains empty fault, denoted by Φ.
 → Therefore $Z_\Phi(x) = Z(x)$

→ A fault detection is a particular case of fault location, since a test that detects f distinguishes between f and Φ.

4.3 Fault Equivalence and Fault Location
Functional Equivalence Under a Test

→ In practice, test sets are not complete
 → Affect diagnostic resolution

→ Definition 4.5: Two \(f \) and \(g \) are **functionally equivalent under a test set** \(T \),
 iff
 \[
 Z_f(t) = Z_g(t) \text{ for every test } t \in T
 \]

Note:
Functional equivalence implies functional equivalence under any test set, but not vice versa.
Fault Equivalence – Sequential Circuits

→ Definition 4.6: Two f and g are strongly functionally equivalent iff their corresponding state tables are equivalent.

→ Impractical

→ Definition 4.6: Two f and g are functionally equivalent iff for any T',

$$R_f(q_{If}, T') = Z_g(q_{Ig}, T')$$
4.4 Fault Dominance
Fault Dominance – Combinational Circuits

→ Another fault relation to reduce faults to be considered

→ Definition 4.8: Let T_g be the set of all tests that detect a fault g. We say that a fault f dominates the fault g

iff

f and g are functionally equivalent under T_g.
Fault Dominance

• If f dominates g, then any test t that detects g, i.e., $Z_g(t) \neq Z(t)$, will also detect f (on the same primary inputs) because $Z_f(t) = Z_g(t)$
• Therefore, we can drop f from the fault set
Example

\[z \]

\[x \]

\[y \]

\[s - a - 1, \quad s - a - 0 \]

\[\text{Fault } g : y \ s-a-1 \]

\[\text{Fault } f : z \ s-a-0 \]

\[f \text{ dominates } g \]

\[T_g = \{ xy = 10 \} \]

\[T_f = \{ ??? \} \]
Dominant Fault Collapsing

→ In general, for a gate with controlling value c and inversion i,
 → Output $s-a-(c \oplus i)$ fault dominates input $s-a-\overline{c}$ faults.

→ Better to choose a fault model dominated by other models
 → Tests detecting one model also detects other faults models
An Example

Faults: \(f : z_2 s-a-0, \ g : y_1 s-a-1, \) test \(t=10 \)

\(t \) detects both \(f \) and \(g \), but they do not dominate each other

![Diagram of a circuit](image)

Figure 4.14

4.4 Fault Dominance
4.5 The Single Stuck-Fault Model
Fault Universe

→ For n lines where SSFs can be defined, there are $2n$ stuck faults.

→ For fanout-free circuits, the number of faults is $2(G+I)$.
 → G: gate count
 → I: number of primary inputs

→ For circuits with fanout, the estimate is $2Gf$
 → f: average fanout count
Checking Functional Equivalence is Hard!

In general, to determine whether two arbitrary faults are functionally equivalent is NP-complete.

Example: Are \(c s-a-1 \) and \(d s-a-1 \) functionally equivalent?

![Diagram of a circuit](image)

Figure 4.17

4.5 The Single Stuck-Fault Model
Structural Equivalence

- In a circuit N_f the fault f creates a set of lines with constant values.
- By removing all these lines (except POs), we obtain $S(N_f)$
- Two faults f and g are structurally equivalent if $S(N_f)$ and $S(N_g)$ are identical
- All structurally equivalent faults are functionally equivalent
- But not all functionally equivalent faults are structurally equivalent
Example: Structural Equivalence

Figure 4.18 Illustration for structural fault equivalence

4.5 The Single Stuck-Fault Model
Structurally Equivalent Fault Collapsing

- For a line with fanout of 1, the faults at its sources are structurally eq. to those at its destination.
- For a gate, input $s-a-c$ is structurally eq. to output $s-a-(c \oplus i)$.
- For each eq. class, retain only one fault.

Figure 4.19 Example of structural equivalence fault collapsing
4.5 The Single Stuck-Fault Model

Structurally Equivalent Faults – Example

On average, about 50% SSFs can be reduced!
Fault Reduction by Dominance Relation

→ **Theorem 4.1**: In a fanout-free combinational circuit C, any test set that detects all SSFs on the primary inputs of C detects all SSFs in C.

→ **Theorem 4.2**: In a combinational circuit C any test set that detects all SSFs on the primary inputs and the fanout branches of C detects all SSFs in C.

→ These faults can be further reduced by structural equivalence and dominance relations.
Example

- How many faults after fault collapsing?
- Answer: 10 (verify this)

Figure 4.21
Stem and Fanout Faults – Example 1

→ In general neither functional equivalence nor dominance relations exists between stem and fanout faults

→ Stem fault $j \text{ s-} a-0$ is detected but $k \text{ s-} a-0$ and $m \text{ s-} a-0$ are not

![Circuit Diagram](image)

Figure 4.22
Stem and Fanout Faults – Example 2

→ Fanout faults x_1 s-a-0 and x_2 s-a-0 are detectable but stem fault x s-a-0 is not

Figure 4.23
4.6 The Multiple Stuck-Fault Model
Multiple Stuck Fault (MSF) Model

→ Several lines can be stuck simultaneously.
 → Straightforward extension of SSF
→ For a n line circuit, there are
 → $2n$ SSFs, but
 → $3^n - 1$ possible MSFs

→ $\sum_{i=1}^{k} \binom{n}{i} 2^i$ possible MSFs for multiplicity k.
→ Too large a number to handle.
→ A MSF F can be viewed as \{ f_1, f_2, \ldots, f_k \}.
→ Why do we need to consider MSF?
 → Because of masking relation between faults

4.6 The Multiple Stuck-Fault Model
Functional Masking

→ **Definition 4.9**: Let T_g be the set of all tests that detect g. We say that f functionally masks g iff the multiple fault $\{f, g\}$ is not detected by any test in T_g

→ Example: $a s-a-1$ masks $c s-a-0$
 → 011 only vector that detects $c s-a-0$
 → $\{c s-a-0, a s-a-1\}$ is not detectable by 011
Masking under a Test Set

→ **Definition 4.10:** Let $T_g' \subseteq T$ be the set of all tests in T that detect a fault g. We say that a fault f masks the fault g **under a test set** T iff the multiple fault $\{f, g\}$ is not detected by any test in T_g'.

→ Functional masking \rightarrow masking under a test set

\[T'_g \subseteq T_g \]
Problem

→ If \(f \) masks \(g \), then fault \(\{f, g\} \) is not detected by tests that detect \(g \) alone. But can there be other tests to detect \(\{f, g\} \)?

\[\{c \ s-a-0, \ a \ s-a-1\} \]

Figure 4.24
Problem – Detection of Multiple Faults

→ Given a complete test set \(T \) that detects all single faults, can there exist a multiple fault \(F = \{f_1, f_2, \ldots, f_k\} \) such that \(F \) is not detected by \(T \)?
Example

→ $T = \{1111, 0111, 1110, 1001, 1010, 0101\}$

→ $f = B \, s-a-1$ and $g = C \, s-a-1$

→ 1001 is the only vector that detects f and g SSFs, but...

4.6 The Multiple Stuck-Fault Model
Example

→ 1001 cannot detect \{f, g\}
→ f masks g, and g masks f – circular masking

![Diagram](image_url)

Figure 4.25

4.6 The Multiple Stuck-Fault Model
What % of MSFs can escape detection by a complete SSF test set (T)?

→ In an irredundant 2-level circuit, T also detects all MSFs

→ In a fanout-free circuit, any T detects all double and triple faults, and there exists a T for SSFs that detects all MSFs

→ In an internal fanout-free circuit, any T detects at least 98% of MSFs with multiplicity $k < 6$

→ A test set that detects all MSFs defined on all primary inputs without fanout and all fanout branches of a circuit C detects all multiple faults in C.

4.6 The Multiple Stuck-Fault Model
MSFs or Not?

→ A test set T for SSFs also detects most MSFs.
 → Typically focus on MSFs not detectable by T.
→ Probability of MSFs is low.
 → Modern semi-manufacturing is highly reliable
→ A SSF is guaranteed to be detected (GTBD) if it can be detected unconditionally.
 → Any MSF that includes a GTBD SSF is also GTBD.
Summary

→ Logic faults can represent various physical faults

→ Fault detection
 → Find a test that causes deviation in output responses
 → Undetectable faults → redundancy

→ Fault collapsing
 → Fault equivalence & dominance

→ Single stuck-fault model
 → Possible to find a complete test set

→ Multiple fault model
 → A SSF detection test set can find many MSFs
Backup
Corollary 4.1

Let \(j \) be a line sensitized to the fault \(l s-a-v \) (by a test \(t \)), and let \(p \) be the inversion parity of a sensitized path between \(l \) and \(j \).

1. The value of \(j \) in \(t \) is \(v \oplus p \).
2. If there are several sensitized paths between \(l \) and \(j \), then all of them have the same inversion parity.
Redundancy in Circuits

Redundancy can be by design i.e., intentional

Fault tolerant design

Figure 4.8

Hazard-free design

Figure 4.8