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Overview

➜ Logic Fault Models
➜ Fault Detection & Redundancy
➜ Fault Equivalence & Fault Location
➜ Fault Dominance
➜ Single Stuck-Fault (SSF) Model
➜Multiple Stuck-Fault (MSF) Model
➜ Summary
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Recap: Testing Big Picture

➜A circuit defect leads to a fault.
➜A fault can cause a circuit error.
➜A circuit error can result in a circuit failure.
➜ Testing a circuit: 
➜Apply test vectors to the circuit inputs.
➜Compare circuit output responses to correct ones.

➜ Exhaustive testing
➜ test vectors required for a n-input comb. circuit.
➜Difficult for comb. circuit, impossible for seq. circuit.
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Recap: Testing Big Picture

➜Goal: find a small set of test vectors that target 
specific faults.
➜ Ideally, no redundant test vectors for the same fault.
➜The set contains enough test vectors to uncover all 

target faults.
➜ Impossible to achieve 100% fault coverage.
➜Due to undetectable faults.
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Recap: Physical Faults
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Recall that we have 4 types of errors
• Design Errors
• Fabrication Errors
• Fabrication Defects
• Physical Failures

Physical Faults can be:
• Permanent
• Intermittent
• Transient

Physical Faults



Recap: Logical Faults

➜Physical faults are difficult to handle 
mathematically

➜ Therefore, for a physical fault we identify 
equivalent logical fault
➜Example:
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Physical fault 
- Inputs are shorted

Logical fault 
- Gate now behaves as an inverterÞ



4.1  Logic Fault Models

➜ Fault model: representation of physical faults and 
their natures at logic level.

➜Recall that 
Behavior = Function + Timing

➜ Therefore, we can talk about two types of faults:
➜Logical Faults – modify circuit logic function.
➜Delay Faults - modify circuit operating speed.

➜Our focus will be on Logical Faults

74.1  Logic Fault Models



Logical Fault Modeling - Advantages

➜ Fault analysis becomes a logical problem.
➜Test can start before silicon is available.

➜ Fault analysis become less complex.
➜ Many physical faults can be modeled by the same 

logical fault
➜ Technology independent
➜ Tests derived for logical faults may be used for 

physical faults whose effect
➜ not completely understood
➜ or too complex to analyze

84.1  Logic Fault Models



Structural and Functional Faults

➜ Structural faults
➜Faults defined on a structural circuit model.
➜Effect: modify interconnections

➜ Functional faults
➜Faults defines on a functional circuit model
➜Effect: modify truth table etc.

➜ Intermittent & Permanent Faults
➜Statistical data on probability of occurrence of 

transient/intermittent faults are difficult to have.
➜Our focus in this discussion is on structural and 

permanent faults
94.1  Logic Fault Models



Single Fault Assumption - Justification

➜Assumption – one logical fault in the system.
➜ Justification
➜Frequent testing strategy (test often so that prob. of 

multiple faults developing in between too low)
➜Usually tests derived for individual single faults are 

applicable for detecting multiple faults composed of 
the single ones.

104.1  Logic Fault Models



Structural Fault Models

➜Assumptions:
➜Components are fault free and,
➜Only interconnections are affected – shorts & opens.

➜ Stuck-at-v Fault:
➜Short (with supply/gnd) or Open lines behave as 

“stuck at” fixed logic value v (v Î {0,1}) 
➜Bridging fault:
➜Short between two lines ® usually new logic function 

(AND or OR bridging)
➜We will discuss bridging faults later

114.1  Logic Fault Models



Single Stuck Fault – Open Line

➜Open on an unidirectional line
➜Unconnected input assumes a constant logic value
➜ Single logical fault, i-stuck-at-a can represent
➜ Line i open
➜Line i shorted to Vdd or GND (a=1 or a=0)
➜Internal fault in component driving line i
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Logical Fault Models
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Figure 4.1 Stuck faults caused by opens (a) Single stuck fault (b) Multiple stuck
fault

An open in a signal line with fanout may result in a multiple stuck fault involving a
subset of its fanout branches, as illustrated in Figure 4.1(b). If we restrict ourselves to
the single stuck-fault model, then we have to consider any single fanout branch stuck
fault separately from the stem fault.

In the macro approach for hierarchical modeling, every component is expanded to its
internal structural model. However, if components are individually tested before their
assembly, then it may be enough to test only for faults affecting their interconnections.
Then we do not want to consider the faults internal to components but only faults
associated with their I/O pins. This restricted fault assumption is referred to as the
pin-fault model.

4.2 Fault Detection and Redundancy
4.2.1 Combinational Circuits
Let Z(x) be the logic function of a combinational circuit N, where x represents an
arbitrary input vector and Z(x) denotes the mapping realized by N. We will denote by
t a specific input vector, and by Z(t) the response of N to t. For a multiple-output

4.1  Logic Fault Models



Multiple Stuck Fault
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• Single open can result in multiple faults
• Under single fault model, we need to consider 

faults on all fanout branches separately. 
4.1  Logic Fault Models
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4.2  Fault Detection and Redundancy



Fault Detection – Combinational Circuits
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N

Z(x)

Nf

Zf(x)

Fault f

• Input vector t to N results in output response Z(t).
• Test T = <t1, t2 …tm>  will yield < Z(t1), Z(t2), …Z(tm)>

4.2  Fault Detection and Redundancy



Fault Detection – Comb Circuits

Definition 4.1  A test (vector) t detects a fault f
iff

➜Note the above is applicable to comb. circuits 
only.

➜ Test vectors in T can applied in any order, so T is 
set of tests

➜Applicable to edge-pin testing
➜Components are assumed to be fault free.
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zf (t) 6= z(t)

4.2  Fault Detection and Redundancy



Example 1
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Let f = OR-bridging fault between x1 and x2
Z1 =___________ Z1f =___________
Z2 =___________ Z2f =___________
Give a test vector that detects the fault:
<x1, x2, x3> = __________

4.2  Fault Detection and Redundancy



Fault Detection and Test Vectors

➜ For a single-output circuit, a test t that detects a 
fault f makes
➜Z(t) = 0 and Zf(t) = 1   or
➜Z(t) = 1 and Zf(t) = 0

➜ Thus, the set of all tests that detect f is given by
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Zf (t)� Z(t) = 1

4.2  Fault Detection and Redundancy



Example 2

Let the fault f  be x4 s-a-0. Find all test vectors that detect f

194.2  Fault Detection and Redundancy
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Example 4.2: The function realized by the circuit of Figure 4.3(a) is
Z = (X2+X3)XI + XIX4. Let f be X4 s-a-O. In the presence of f the function becomes
Zf = (X2+X3)XI, and equation (4.1) reduces to XIX4 = 1. Thus any test in which
Xl = 0 and X4 = 1 is a test for f. The expression XIX4 represents, in compact form,
any of the four tests (0001, 0011, 0101, 0111) that detectf. D

X4
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Figure 4.3

Sensitization

Let us simulate the circuit of Figure 4.3(a) for the test t = 1001, both without and with
the fault G 2 s-a-1 present. The results of these two simulations are shown in
Figure 4.3(b). The results that are different in the two cases have the form vlv], where
v and vf are corresponding signal values in the fault-free and in the faulty circuit. The
fault is detected since the output values in the two cases are different.



Example 3
Let f = x4 s-a-0. 
For test vector 1001 that detects f, simulate without and with fault f

204.2  Fault Detection and Redundancy
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Example 3
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v/vf : fault-free/faulty

4.2  Fault Detection and Redundancy
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Fault: G2 s-a-1
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Fault – Sensitization
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t sensitizes fault f

t propagates fault f to
the primary output by 
a sensitized path 

f = G2 s-a-1,  Test vector t = 1 0 0 1

4.2  Fault Detection and Redundancy



Fault Sensitization – Terminology

➜ Fault Activation: A test t activates a fault on a line 
if it generates an error at the site of the fault.

➜ Fault Propagation: A test t propagates the error to 
a primary output by creating at least one path 
from fault site to the primary output.

➜ Line Sensitization:  A line whose value under the 
test t changes in the presence of the fault f is said 
to be sensitized to the fault f by the test t

➜ Sensitized Path: A path composed of sensitive 
lines

234.2  Fault Detection and Redundancy



Gate Controlling and Enabling Values 

➜Controlling value c: If at least one input assumes 
value c, then the gate’s output assumes value           
.

➜ Enabling value : If all inputs of a gate have the 
enabling value, then the gate’s output assumes 
the value           .

Example
Control value =____
Enabling value = ___
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c̄
c� i

c̄� i

NAND: c= 0, i=1.
4.2  Fault Detection and Redundancy



Lemma 4.1
Let G be a gate with inversion i and controlling value c, 

whose output is sensitized to a fault f (by a test t).
1. All inputs of G sensitized to f have the same value (say, 

a).
2. All inputs of G not sensitized to f (if any) have value    .
3. The output of G has value a Å i.
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c̄

4.2  Fault Detection and Redundancy

Fault Detection and Redundancy

Figure 4.4 NAND gate satisfying Lemma 4.1 (c=O, i=l)
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2. If there are several sensitized paths between I and j, then all of them have the
same inversion parity. 0

Detectability

A fault f is said to be detectable if there exists a test t that detects f, otherwise, f is an
undetectable fault. For an undetectable fault f, Zt(x) =Z(x) and no test can
simultaneously activate f and create a sensitized path to a primary output. In the
circuit of Figure 4.5(a) the fault a s-a-1 is undetectable. Since undetectable faults do
not change the function of the circuit, it may appear that they are harmless and hence
can be ignored. However, a circuit with an undetectable fault may invalidate the
single-fault assumption. Recall that based on the frequent testing strategy, we assume
that we can detect one fault before a second one occurs. But this may not be possible
if the first fault is undetectable.

When generating a set of tests for a circuit, a typical goal is to produce a complete
detection test set, that is, a set of tests that detect any detectable fault. However, a
complete test set may not be sufficient to detect all detectable faults if an undetectable
one is present in the circuit [Friedman 1967].

Example 4.3: Figure 4.5(a) shows how the fault b s-a-O is detected by t = 1101.
Figure 4.5(b) shows that b s-a-O is no longer detected by the test t if the undetectable
fault a s-a-1 is also present. Thus, if t is the only test that detects b s-a-O in a
complete detection test set T, then T is no longer complete in the presence of a s-a-1.D

The situation in which the presence of an undetectable fault prevents the detection of
another fault by a certain test is not limited to faults of the same category; for
example, an undetectable bridging fault can similarly invalidate a complete test set for
stuck faults.

Example 4.4: [Kodandapani and Pradhan 1980]. Consider the circuit of Figure 4.6(a)
that realizes the function xy + xz . The OR bridging fault between y and x is
undetectable, since the function realized in the presence of the fault is
xy + yz + zX = xy + zx. Figure 4.6 shows how the test 111 detects the fault q s-a-O
but no longer does so in the presence of the bridging fault. The test set T = {Ill, 010,
001, 101} is a complete detection test set for single stuck faults, and 111 is the only
test in T that detects q s-a-O. Hence T is no longer complete in the presence of the
undetectable bridging fault. 0



Faults – Detectability

A fault f is said to be detectable if there exists a test 
t that detects f

Otherwise, f is undetectable.

For undetectable fault, no test exists that can
simultaneously activate and propagate the fault to 

the primary output.

264.2  Fault Detection and Redundancy



Example: Undetectable Fault a s-a-1

274.2  Fault Detection and Redundancy
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Redundancy

A combinational circuit that contains an undetectable stuck fault is said to be
redundant, since such a circuit can always be simplified by removing at least one gate
or gate input. For instance, suppose that a s-a-l fault on an input of an AND gate G is
undetectable. Since the function of the circuit does not change in the presence of the
fault, we can permanently place a 1 value on that input. But an n-input AND with a
constant 1 value on one input is logically equivalent to the (n-l)-input AND obtained
by removing the gate input with the constant signal. Similarly, if an AND input s-a-O
is undetectable, the AND gate can be removed and replaced by a 0 signal. Since now
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Example: Detectable Fault b s-a-0
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b s-a-0 is detectable with t = 1101

4.2  Fault Detection and Redundancy



Example: Undetectable Fault
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b s-a-0 becomes undetectable in the presence of 
a s-a-1 by test t=1101
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Example 2: Undetectable Fault 
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q s-a-0 is detectable with 
t = 111

q s-a-0 is undetectable in the 
presence of OR Bridging fault 
between y and     .x̄

4.2  Fault Detection and Redundancy



Fault – Redundancy 
➜ A combinational circuit that contains an undetectable stuck fault is 

said to be redundant
➜ Such circuit can always be reduced by eliminating a gate or a gate 

input
➜ A combinational circuit in which all stuck faults are detectable is 

said to irredundant
Example: Y s-a-0 is undetectable. Gate Y can be dropped.

314.2  Fault Detection and Redundancy
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Note that in practice, when we deal with large combinational circuits, even irredundant
circuits may not be tested with complete detection test sets. The reason is that
generating tests for some faults may consume too much time, and all practical test
generation programs are set up to 3tOP the test generation process for a fault when it
becomes too costly. In a practical sense, there is no difference between an
undetectable fault f and a detectable one g that is not detected by an applied test set.
Clearly, g could be present in the circuit and hence invalidate the single-fault
assumption.

Identifying redundancy is closely related to the problem of test generation. To show
that a line is redundant means to prove that no test exists for the corresponding fault.
The test generation problem belongs to a class of computationally difficult problems,
referred to as NP-complete [Ibarra and Sahni 1975]. The traveling salesman problem
is one famous member of this class [Horowitz and Sahni 1978]. Let n be the "size" of
the problem. For the traveling salesman problem n is the number of cities to be
visited; for test generation n is the number of gates in a circuit. An important question
is whether there exists an algorithm that can solve any instance of a problem of size n
using a number of operations proportional to n r, where r is a finite constant. At
present, no such polynomial-time algorithm is known for any NP-complete problem.
These problems are related in the sense that either all of them or none of them can be
solved by polynomial-time algorithms.

Although test generation (and identification of redundancy) is a computationally
difficult problem, practical test generation algorithms usually run in polynomial time.
The fact that the test generation problem is NP-complete means that polynomial time
cannot be achieved in all instances, that is, any test generation algorithm may
encounter a circuit with a fault that cannot be solved in polynomial time. Experience
has shown that redundant faults are usually the ones that cause test generation
algorithms to exhibit their worst-case behavior.

4.2.2 Sequential Circuits
Testing sequential circuits is considerably more difficult than testing combinational
circuits. To detect a fault a test sequence is usually required, rather than a single input
vector, and the response of a sequential circuit is a function of its initial state.



Fault Interaction

➜ If f is a detectable fault and g is an undetectable 
fault, then f may become undetectable in the 
presence of g. Such a fault f is called a second-
generation redundant fault.

➜ Two undetectable single faults f  and g may 
become detectable if simultaneously present in 
the circuit.  In other words, the multiple fault {f , 
g} may be detectable even if its single-fault 
components are not.

324.2  Fault Detection and Redundancy



Detecting Redundancy

➜ To show a line is redundant => to prove that no 
test exists for the corresponding fault

➜Detecting Redundancy Problem => Test 
Generation Problem

➜ Test generation problem is an NP-complete 
problem

➜Practical test generation algorithms run in 
polynomial time

➜Redundant faults make test generation algorithms 
exhibit worst-case behavior

334.2  Fault Detection and Redundancy



Large Combinational Circuits

➜ Even if the circuit is irredundant, we may not have 
complete test set due to time limitations

➜ In such a case, the fault (say f) for which no test 
exists, is no different from an undetectable fault 
(say g)

➜Undetectable fault g may be present in the circuit 
and invalidate the single fault assumption.

344.2  Fault Detection and Redundancy



Sequential Circuits

➜ Testing more difficult than combinational circuits
➜Need a test sequence
➜Response is a function of initial state
➜Let T be a test sequence – a sequence of test vectors.
➜R(q, T) be the response to T with initial state q
➜Rf(qf, T) be the response for faulty circuit

354.2  Fault Detection and Redundancy



T Strongly Detects f

➜Definition 4.2: A test sequence T strongly detects 
the fault f

if and only if
the output sequences R(q, T) ¹ Rf(qf ,T) for every 
possible pair of initial states q and qf

364.2  Fault Detection and Redundancy



Example
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α line a s-a-1
β line b s-a-0
Test sequence T=10111

Fault Detection and Redundancy 105
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Initial Output sequence
state Fault-free a (a s-a-1) J3 (b s-a-O)

A 01011 01010 01101
B 11100 11100 11101
C 00011 00010 01010
D 11001 10010 11010

Figure 4.9 Output sequences as a function of initial state and fault

the circuit. However, an initialization sequence for the fault-free circuit N may fail to
initialize some faulty circuit Nt. Such a fault f is said to prevent initialization.

4.2  Fault Detection and Redundancy



Example

38

T = 10111

• T does not strongly detect α
• T strongly detects β 

4.2  Fault Detection and Redundancy
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T Detects f

➜Definition 4.3: A test sequence T detects the fault 
f

if and only if
for every possible pair of initial states q and qf the 
output sequences R(q, T) ¹ Rf(qf ,T) for some
specified vector ti Î T

394.2  Fault Detection and Redundancy



Testing with Initialization

➜Phase I: Initialization sequence TI such that N and 
Nf are brought to known states qI and qIf
➜Output responses ignored during initialization

➜Phase II: Apply T’ (output responses are 
predictable)
➜ ti is first vector of T’ for which an error is observed

404.2  Fault Detection and Redundancy



Drawback

➜ Initialization may not be possible for faulty circuit
➜ Example:

414.2  Fault Detection and Redundancy
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4.3  Fault Equivalence and Fault Location



Fault Equivalence – Combinational Circuits

➜Definition 4.4:  Two faults f and g are said to be 
functionally equivalent iff

➜ A test t is said to distinguish between two 
faults f and g if Zf(t) ¹ Zg(t)
➜ There exists no test that can distinguish 

functionally equivalent faults
➜ Faults are divided into equivalent classes.

434.3  Fault Equivalence and Fault Location

Zf (x) = Zg (x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Equivalence Fault Collapsing

➜Reduce faults into equivalent classes
➜ For a NAND gate,
➜All input s-a-0 faults and the output s-a-1 are 

functionally equivalent

444.3  Fault Equivalence and Fault Location
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Equivalence Fault Collapsing

➜ In general, for a gate with controlling value c and 
inversion i, 
➜All input s-a-c faults are functionally equivalent to 

output s-a-(cÅi) faults
➜Reduce 2(n+1) faults to n+2 faults for a n-input NAND 

gate.

454.3  Fault Equivalence and Fault Location



Fault Location

➜Goal of testing is to locate the fault besides 
detecting the fault

➜A complete location test distinguishes between 
every pair of distinguishable faults in a circuit

➜A fault-free circuit contains empty fault, denoted 
by F.
➜Therefore  ZF (x) = Z(x)

➜A fault detection is a particular case of fault 
location, since a test that detects f distinguishes 
between f and F.
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Functional Equivalence Under a Test

➜ In practice, test sets are not complete 
➜Affect diagnostic resultion

➜Definition 4.5: Two f and g are functionally 
equivalent under a test set T, 

iff
Zf(t) = Zg(t) for every test tÎT

Note:
Functional equivalence implies functional
equivalence under any test set, but not vice versa.
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Fault Equivalence – Sequential Circuits

➜Definition 4.6: Two f and g are strongly
functionally equivalent iff their corresponding 
state tables are equivalent.
➜ Impractical

➜Definition 4.6: Two f and g are functionally 
equivalent iff for any T’, 
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Rf (qI f ,T
0) = Zg (qI g ,T
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4.4  Fault Dominance



Fault Dominance – Combinational Circuits

➜Another fault relation to reduce faults to be 
considered

➜Definition 4.8: Let Tg be the set of all tests that 
detect a fault g.  We say that a fault f dominates
the fault g

iff
f and g are functionally equivalent under Tg.

504.4  Fault Dominance



Fault Dominance

51

• If f dominates g, then any test t that detects g, 
i.e, Zg(t) ¹ Z(t), will also detect f (on the same 
primary inputs) because Zf(t) = Zg(t)

• Therefore, we can drop f from the fault set

4.4  Fault Dominance



Example
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Fault g : y s-a-1
Fault f : z s-a-0
f dominates g

Tg = {xy = 10}
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Dominant Fault Collapsing

➜ In general, for a gate with controlling value c and 
inversion i, 
➜Output s-a-(cÅi) fault dominates input             faults.

➜Better to choose a fault model dominated by 
other models
➜Tests detecting one model also detects other faults 

models
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s-a-c̄
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An Example

➜ Faults: f : z2 s-a-0,  g : y1 s-a-1,  test t= 10
➜ t detects both f and g, but they do not dominate each 

other
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x-------------l

Yl

y -------.

yz

Figure 4.14

4.4.2 Sequential Circuits

FAULT MODELING

1------ ZI

Although the concept of dominance can be extended to sequential circuits, its
applicability in practice is difficult, since dominance relations in a combinational
circuit N may not remain valid when N is embedded in a sequential circuit. The
following example illustrates this phenomenon.

Example 4.7: Consider the circuit of Figure 4.15. Assume that initially y=l and
consider the test sequence shown in the figure. For the fault-free circuit the output
sequence generated is 0000. For the fault a (x z s-a-1) the first input fails to reset y
and the fourth input propagates this error to z. Thus the generated output sequence is
0001 and Xz s-a-1 is detected. Now consider the same test sequence and the fault
p (G 1 s-a-O), which dominates a in a combinational circuit sense. The first input
again fails to reset y. However, the fourth input generates an erroneous 0 at G z and
the two effects of this single fault - the one stored in the F/F and the one propagating
along the path (G 1, G z) - cancel each other, and the fault is not detected. D

While equivalence fault-collapsing techniques for combinational circuits remain valid
for sequential circuits, dominance fault-collapsing techniques are no longer applicable.

4.5 The Single Stuck-Fault Model
The single-stuck fault (SSF) model is also referred to as the classical or standard fault
model because it has been the first and the most widely studied and used. Although its
validity is not universal, its usefulness results from the following attributes:

• It represents many different physical faults (see, for example, [Timoc et ale 1983]).

• It is independent of technology, as the concept of a signal line being stuck at a
logic value can be applied to any structural model.

• Experience has shown that tests that detect SSFs detect many nonclassical faults as
well.

4.4  Fault Dominance
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Fault Universe

➜ For n lines where SSFs can be defined, there are 
2n stuck faults.

➜ For fanout-free circuits, the number of faults is 
2(G+I).
➜G: gate count
➜ I: number of primary inputs

➜ For circuits with fanout, the estimate is 2Gf
➜ f: average fanout count
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Checking Functional Equivalence is Hard!

➜ In general, to determine whether two arbitrary 
faults are functionally equivalent is NP-complete

➜ Example: Are c s-a-1 and d s-a-1 functionally 
equivalent?
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In the previous section we noted that the number of faults to be analyzed can be
reduced by fault collapsing based on equivalence and dominance relations. Functional
equivalence relations, however, cannot be directly applied for this purpose, because
determining whether two arbitrary faults are functionally equivalent is an NP-complete
problem [Goundan 1978]. For example, there is no simple way to determine that the
faults c s-a-l and d s-a-l in Figure 4.17 are functionally equivalent. (We can do this
by computing the two faulty functions and showing that they are identical.)

cA -----......---------1

d
B

Figure 4.17

What we can do is to determine equivalent faults that are structurally related. The
relation on which this analysis relies is called structural equivalence, and it is defined
as follows. In the circuit Nt, the presence of the stuck fault f creates a set of lines with
constant values. By removing all these lines (except primary outputs) we obtain a
simplified circuit S (Nt), which realizes the same function as Nt. Two faults f and g
are said to be structurally equivalent if the corresponding simplified circuits S (Nt) and
S (Ng ) are identical. An example is shown in Figure 4.18. Obviously, structurally
equivalent faults are also functionally equivalent. But, as illustrated by c s-a-l and
d s-a-l in Figure 4.17, there exist functionally equivalent faults that are not structurally
equivalent. The existence of such faults is related to the presence of reconvergent
fanout [McCluskey and Clegg 1971] (see Problem 4.13).

The advantage of structural equivalence relations is that they allow fault collapsing to
be done as a simple local analysis based on the structure of the circuit, while
functional equivalence relations imply a global analysis based on the function of the
circuit. Figure 4.19 illustrates the process of fault collapsing based on structural
equivalence relations. Conceptually, we start by inserting s-a-l and s-a-O faults on
every signal source (gate output or primary input) and destination (gate input). This is
shown in Figure 4.19(a), where a black (white) dot denotes a s-a-1 (s-a-O) fault. Then
we traverse the circuit and construct structural equivalence classes along the way. For
a signal line with a fanout count of 1, the faults inserted at its source are structurally
equivalent to the corresponding faults at its destination. For a gate with controlling
value c and inversion i, any s-a-c input fault is structurally equivalent to the output
s-a-(c@i). A s-a-O (s-a-1) input fault of an inverter is structurally equivalent to the
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Structural Equivalence

➜ In a circuit Nf the fault f creates a set of lines with 
constant values.

➜By removing all these lines (except POs), we 
obtain S(Nf) 

➜ Two faults f and g are structurally equivalent if 
S(Nf) and S(Ng) are identical

➜All structurally equivalent faults are functionally 
equivalent

➜But not all functionally equivalent faults are 
structurally equivalent

584.5  The Single Stuck-Fault Model



Example: Structural Equivalence
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Figure 4.18 Illustration for structural fault equivalence

output s-a-1 (s-a-O). Finally, from every equivalence class we retain one fault as
representative (Figure 4.19(b)).

A structural equivalence class determined in this way is confined to a fanout-free
region of the circuit. The reason is that in general, a stem s-a-v fault is not
functionally equivalent with a s-a-v fault on any of its fanout branches. Reconvergent
fanout, however, may create structurally equivalent faults in different fanout-free
regions; Figure 4.20 illustrates such a case. Thus our method of equivalence fault
collapsing will not identify faults such as b s-a-O and f s-a-O as structurally equivalent.
In such a case, the obtained structural equivalence classes are not maximal; Le., there
are at least two classes that can be further merged. However, the potential gain
achievable by extending the fault collapsing across fanout-free regions is small and
does not justify the cost of the additional analysis required.

Although the equivalence classes obtained by structural equivalence fault collapsing are
not maximal, this process nevertheless achieves a substantial reduction of the initial set
of 2n faults, where n is given by (4.8). For every gate j with gj inputs, it eliminates
mj input faults, where

The number of faults eliminated is

if gj > 1

if gj = 1 (4.9)

(4.10)
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Figure 4.19 Example of structural equivalence fault collapsing

Figure 4.20

where the summation is over all the gates in the circuit. Let us define a variable Pj by

{
o if gj > 1

Pj= 1 ifgj = 1 (4.11)

Structurally Equivalent Fault Collapsing

60

• For a line with fanout of 1, 
the faults at its sources are 
structurally eq. to those at 
its destination.

• For a gate, input              is 
structurally eq. to output                      
.

• For each eq. class, retain 
only one fault. 

s-a-c

s-a-(c� i)
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Figure 4.19 Example of structural equivalence fault collapsing

Figure 4.20

where the summation is over all the gates in the circuit. Let us define a variable Pj by

{
o if gj > 1

Pj= 1 ifgj = 1 (4.11)

Structurally Equivalent Faults – Example
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b

a

c

d

e

z

g s-a-1  and  i s-a-0 ?

g

h

i

4.5  The Single Stuck-Fault Model

On average, about 50% SSFs can be reduced !



Fault Reduction by Dominance Relation

➜ Theorem 4.1: In a fanout-free combinational 
circuit C, any test set that detects all SSFs on the 
primary inputs of C detects all SSFs in C.

➜ Theorem 4.2: In a combinational circuit C any test 
set that detects all SSFs on the primary inputs and 
the fanout branches of C detects all SSFs in C.
➜These faults can be further reduced by structural 

equivalence and dominance relations.
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Example
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• How many faults after fault collapsing?
• Answer: 10 (verify this)

The Single Stuck-Fault Model

The fraction of faults eliminated is

117

1 - = 1 - f - q 1 (4.18)
2n l+f-q l+f-q

For example, for typical values such as f = 2.5 and q = 0.7, we eliminate about
40 percent of the faults. The set of checkpoint faults can be further collapsed by using
structural equivalence and dominance relations, as illustrated in the following example.

Example 4.8: The circuit of Figure 4.21 has 24 SSFs and 14 checkpoint faults (10 on
the primary inputs - a, b, C, d, e - and 4 on the fanout branches g and h). Since
a s-a-O and b s-a-O are equivalent, we can delete the latter. Similarly, we can delete
d s-a-O, which is equivalent to h s-a-O. The fault g s-a-1 is equivalent to f s-a-1,
which dominates a s-a-1. Therefore, g s-a-1 can be eliminated. Similarly, e s-a-1 is
equivalent to i s-a-1, which dominates h s-a-1; hence e s-a-1 can be eliminated. The
original set of 24 faults has thus been reduced to 10. D

a
b

C-----------.

d------------I

Figure 4.21

j

Based on Theorem 4.2, many test generation systems generate tests explicitly only for
the checkpoint faults of a circuit. But Theorem 4.2 is meaningful only for an
irredundant circuit. In a redundant circuit, some of the checkpoint faults are
undetectable. If we consider only checkpoint faults and we generate a test set that
detects all detectable checkpoint faults, this test set is not guaranteed to detect all
detectable SSFs of the circuit; in such a case, additional tests may be needed to obtain
a complete detection test set [Abramovici et ale 1986].

Understanding the relations between faults on a stem line and on its fanout branches is
important in several problems that we will discuss later. Clearly a stem s-a-v is
equivalent to the multiple fault composed of all its fanout branches s-a-v. But, in
general, neither equivalence nor dominance relations exist between a stem s-a-v and an
individual fanout branch s-a-v. Figure 4.22 shows an example [Hayes 1979] in which
a stem fault (j s-a-O) is detected, but the (single) faults on its fanout branches (k s-a-O
and m s-a-O) are not. Figure 4.23 illustrates the opposite situation [Abramovici et ale
1984], in which faults on all fanout branches (Xl s-a-O and X2 s-a-O) are detected, but
the stem fault (x s-a-O) is not.
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Stem and Fanout Faults – Example 1
➜ In general neither functional equivalence nor dominance relations 

exists between stem and fanout faults
➜ Stem fault j s-a-0 is detected but k s-a-0 and m s-a-0 are not
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4.6 The Multiple Stuck-Fault Model
The multiple stuck-fault (MSF) model is a straightforward extension of the SSF model
in which several lines can be simultaneously stuck. If we denote by n the number of
possible SSF sites (given by formula (4.8)), there are 2n possible SSFs, but there are
3n- l possible MSFs (which include the SSFs). This figure assumes that any MSF can
occur, including the one consisting of all lines simultaneously stuck. If we assume that
the multiplicity of a fault, i.e., the number of lines simultaneously stuck, is no greater

than a constant k, then the number of possible MSFs is [7] 2i . This is usually too
1=1

large a number to allow us to deal explicitly with all multiple faults. For example, the
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Stem and Fanout Faults – Example 2 
➜ Fanout faults x1 s-a-0 and x2 s-a-0 are detectable but 

stem fault x s-a-0 is not
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4.6 The Multiple Stuck-Fault Model
The multiple stuck-fault (MSF) model is a straightforward extension of the SSF model
in which several lines can be simultaneously stuck. If we denote by n the number of
possible SSF sites (given by formula (4.8)), there are 2n possible SSFs, but there are
3n- l possible MSFs (which include the SSFs). This figure assumes that any MSF can
occur, including the one consisting of all lines simultaneously stuck. If we assume that
the multiplicity of a fault, i.e., the number of lines simultaneously stuck, is no greater

than a constant k, then the number of possible MSFs is [7] 2i . This is usually too
1=1

large a number to allow us to deal explicitly with all multiple faults. For example, the
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Multiple Stuck Fault (MSF) Model
➜ Several lines can be stuck simultaneously.
➜Straightforward extension of SSF

➜ For a n line circuit, there are 
➜2n SSFs, but
➜ possible MSFs

➜ possible MSFs for multiplicity k.

➜Too large a number to handle.
➜A MSF F can be viewed as                           .
➜Why do we need to consider MSF?
➜ Because of masking relation between faults
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{f1, f2, . . . , fk}
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Functional Masking
➜ Definition 4.9:  Let Tg be the set of all tests that detect g.  

We say that f functionally masks g iff the multiple fault  
{f, g} is not detected by any test in Tg

➜ Example: a s-a-1 masks c s-a-0
➜ 011 only vector that detects c s-a-0
➜ {c s-a-0, a s-a-1} is not detectable by 011
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number of double faults (k=2) in a circuit with n=1000 possible fault sites is about half
a million.

Let us first consider the question of why we need to consider MSFs altogether. Since
a multiple fault F is just a set {fl,!2, ...,!k} of single faults h, why isn't F detected by
the tests that detect the single faults h? The explanation is provided by the masking
relations among faults.

Definition 4.9: Let Tg be the set of all tests that detect a fault g. We say that a fault!
functionally masks the fault g iff the multiple fault {f,g} is not detected by any test in
Tg •

Example 4.9: In the circuit of Figure 4.24 the test 011 is the only test that detects the
fault c s-a-O. The same test does not detect the multiple fault {c s-a-O, a s-a-l}. Thus
a s-a-l masks c s-a-O. D

oa --------1 1

11
b---....

1
o

C --------1

Figure 4.24

Masking can also be defined with respect to a test set T.

Definition 4.10: Let Tg'e:T be the set of all tests in T that detect a fault g. We say
that a fault! masks the fault g under a test set T iff the multiple fault {f,g} is not
detected by any test in Tg ' .

Functional masking implies masking under any test set, but the converse statement is
not always true.

Masking relations can also be defined among different type of faults. In Example 4.4
we have an undetectable bridging fault that masks a detectable SSF under a complete
test set for SSFs.

If! masks g, then the fault {f,g} is not detected by the tests that detect g alone. But
{f,g} may be detected by other tests. This is the case in Example 4.9, where the fault
{c s-a-O, a s-a-l} is detected by the test 010.
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Masking under a Test Set

➜Definition 4.10:  Let Tg’ Í T be the set of all tests 
in T that detect a fault g. We say that a fault f 
masks the fault g under a test set T iff the 
multiple fault {f, g} is not detected by any test in 
Tg’

➜ Functional masking à masking under a test set
➜
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Problem

➜ If f masks g, then fault {f, g} is not detected by 
tests that detect g alone. But can there be other 
tests to detect {f, g}?
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number of double faults (k=2) in a circuit with n=1000 possible fault sites is about half
a million.

Let us first consider the question of why we need to consider MSFs altogether. Since
a multiple fault F is just a set {fl,!2, ...,!k} of single faults h, why isn't F detected by
the tests that detect the single faults h? The explanation is provided by the masking
relations among faults.

Definition 4.9: Let Tg be the set of all tests that detect a fault g. We say that a fault!
functionally masks the fault g iff the multiple fault {f,g} is not detected by any test in
Tg •

Example 4.9: In the circuit of Figure 4.24 the test 011 is the only test that detects the
fault c s-a-O. The same test does not detect the multiple fault {c s-a-O, a s-a-l}. Thus
a s-a-l masks c s-a-O. D
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Figure 4.24

Masking can also be defined with respect to a test set T.

Definition 4.10: Let Tg'e:T be the set of all tests in T that detect a fault g. We say
that a fault! masks the fault g under a test set T iff the multiple fault {f,g} is not
detected by any test in Tg ' .

Functional masking implies masking under any test set, but the converse statement is
not always true.

Masking relations can also be defined among different type of faults. In Example 4.4
we have an undetectable bridging fault that masks a detectable SSF under a complete
test set for SSFs.

If! masks g, then the fault {f,g} is not detected by the tests that detect g alone. But
{f,g} may be detected by other tests. This is the case in Example 4.9, where the fault
{c s-a-O, a s-a-l} is detected by the test 010.

{c s-a-0, a s-a-1}
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Problem – Detection of Multiple Faults

➜Given a complete test set T that detects all single 
faults, can there exist a multiple fault F = {f1, f2, …, 
fk} such that F is not detected by T?
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Example
➜ T = {1111, 0111, 1110, 1001, 1010, 0101}
➜ f = B s-a-1 and g = C s-a-1
➜ 1001 is the only vector that detects f and g SSFs, but…
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An important problem is, given a complete test set T for single faults, can there exist a
multiple fault F = {fl,/2, ...,/k} such that F is not detected by T? (Remember that T
detects every Ii alone.) The answer is provided by the following example.

Example 4.10: The test set T = {1111, 0111, 1110, 1001, 1010, 0101} detects every
SSF in the circuit of Figure 4.25. Let / be B s-a-1 and g be C s-a-1. The only test in
T that detects the single faults/and g is 1001. However, the multiple fault {f,g} is not
detected because under the test 1001, / masks g and g masks f. 0

A
1
0/1

B
1

0/1

0

0/1
1

0/1C
1

D

Figure 4.25

In the above example, a multiple fault F is not detected by a complete test set T for
single faults because of circular masking relations under T among the components of
F. Circular functional masking relations may result in an undetectable multiple fault
F, as shown in the following example [Smith 1978].

Example 4.11: In the circuit of Figure 4.26, all SSFs are detectable. Let / be D s-a-1
and g be E s-a-1. One can verify that / functionally masks g and vice versa and that
the multiple fault {f,g} is undetectable. (This represents another type of redundancy,
called multiple-line redundancy.) 0

Note that the existence of circular masking relations among the SSF components Ii of
a MSF F is a necessary but not a sufficient condition for F to be undetectable
[Smith 1979].

An important practical question is: What percentage of the MSFs can escape detection
by a test set designed to detect SSFs? The answer depends on the structure (but not
on the size) of the circuit. Namely, the following results have been obtained for
combinational circuits:

1. In an irredundant two-level circuit, any complete test set for SSFs also detects all
MSFs [Kohavi and Kohavi 1972].
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Example

➜1001 cannot detect {f, g}
➜ f masks g, and g masks f – circular masking
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An important problem is, given a complete test set T for single faults, can there exist a
multiple fault F = {fl,/2, ...,/k} such that F is not detected by T? (Remember that T
detects every Ii alone.) The answer is provided by the following example.

Example 4.10: The test set T = {1111, 0111, 1110, 1001, 1010, 0101} detects every
SSF in the circuit of Figure 4.25. Let / be B s-a-1 and g be C s-a-1. The only test in
T that detects the single faults/and g is 1001. However, the multiple fault {f,g} is not
detected because under the test 1001, / masks g and g masks f. 0
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In the above example, a multiple fault F is not detected by a complete test set T for
single faults because of circular masking relations under T among the components of
F. Circular functional masking relations may result in an undetectable multiple fault
F, as shown in the following example [Smith 1978].

Example 4.11: In the circuit of Figure 4.26, all SSFs are detectable. Let / be D s-a-1
and g be E s-a-1. One can verify that / functionally masks g and vice versa and that
the multiple fault {f,g} is undetectable. (This represents another type of redundancy,
called multiple-line redundancy.) 0

Note that the existence of circular masking relations among the SSF components Ii of
a MSF F is a necessary but not a sufficient condition for F to be undetectable
[Smith 1979].

An important practical question is: What percentage of the MSFs can escape detection
by a test set designed to detect SSFs? The answer depends on the structure (but not
on the size) of the circuit. Namely, the following results have been obtained for
combinational circuits:

1. In an irredundant two-level circuit, any complete test set for SSFs also detects all
MSFs [Kohavi and Kohavi 1972].

4.6  The Multiple Stuck-Fault Model



What % of MSFs can escape detection by a 
complete SSF test set (T)?
➜ In an irredundant 2-level circuit, T also detects all 

MSFs
➜ In a fanout-free circuit, any T detects all double 

and triple faults, and there exists a T for SSFs that 
detects all MSFs

➜ In an internal fanout free circuit, any T detects at 
least 98% of MSFs with multiplicity k < 6

➜A test set that detects all MSFs defined on all 
primary inputs without fanout and all fanout
branches of a circuit C detects all multiple faults in 
C.
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MSFs or Not?

➜A test set T for SSFs also detects most MSFs.
➜Typically focus on MSFs not detectable by T.

➜Probability of MSFs is low.
➜Modern semi-manufacturing is highly reliable

➜A SSF is guaranteed to be detected (GTBD) if it can 
be detected unconditionally.
➜Any MSF that includes a GTBD SSF is also GTBD.
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Summary

➜ Logic faults can represent various physical faults
➜ Fault detection
➜Find a test that causes deviation in output responses
➜Undetectable faults à redundancy

➜ Fault collapsing
➜Fault equivalence & dominance 

➜ Single stuck-fault model
➜Possible to find a complete test set

➜Multiple fault model
➜A SSF detection test set can find many MSFs 
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Backup



Corollary 4.1

Let j be a line sensitized to the fault l s-a-v (by a test 
t), and let p be the inversion parity of a sensitized 
path between l and j.

1. The value of j in t is v Å p.
2. If there are several sensitized paths between l

and j, then all of them have the same inversion 
parity.
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Redundancy in Circuits

➜Redundancy can be by design i.e., intentional
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