
CIS 4930 Digital System Testing
Logic Simulation

Dr. Hao Zheng
Comp Sci & Eng

U of South Florida

Overview
• What is Logic Simulation?
• Types of Simulation
– Compiled Simulation
– Event Driven Simulation

• Delay models
• Hazards

2

3.1 What is Logic Simulation?
• Based on the logic model, it is the process of evolving

signals in time in response to input stimuli

3

3. LOGIC SIMULATION

About This Chapter

First we review different aspects of using logic simulation as a tool for design
verification testing, examining both its usefulness and its limitations. Then we
introduce the main types of simulators, compiled and event-driven. We analyze several
problems affecting the accuracy and the performance of simulators, such as treatment
of unknown logic values, delay modeling, hazard detection, oscillation control, and
values needed for tristate logic and MOS circuits. We discuss in detail techniques for
element evaluation and gate-level event-driven simulation algorithms. The last section
describes special-purpose hardware for simulation.

3.1 Applications
Logic simulation is a form of design verification testing that uses a model of the
designed system. Figure 3.1 shows a schematic view of the simulation process. The
simulation program processes a representation of the input stimuli and determines the
evolution in time of the signals in the model.

Stimuli
and

control

Simulation
program

Internal
model

Figure 3.1 Simulation process

Results

The verification of a logic design attempts to ascertain that the design performs its
specified behavior, which includes both function and timing. The verification is done
by comparing the results obtained by simulation with the expected results provided by
the specification. In addition, logic simulation may be used to verify that the operation
of the system is

39

Why Logic Simulation?
• Verify design correctness i.e., design has desired

behavior (function + timing)
• Verify against expected results
• Can be used to answer questions such as:
– Correct independent of initial state?
– Sensitive to delay variations of components?
– Free of critical races, oscillations, etc.?

4

Why Logic Simulation?...contd.,
• We can also use it to:
– Evaluate design alternatives
– Evaluate proposed changes
– Documentation (timing diagrams)

• Against a prototype, simulation has following
advantages:
– Checking various error conditions
– Ability to change delays in the model
– Start the simulated circuit in any desired state
– Precise control of timing of async events (interrupts)
– Automated testing

5

3.2 Problems in Logic Simulation
• How does one generate input stimuli?
– Test generation

• How does one know the results are correct?
– Output checking

• How “good” are the applied input stimuli, i.e.,
how “complete” is the testing experiment?
– Test coverage

Your design is as good as your testing cases!
• Only the design behavior covered by the test

cases is checked!
6

3.3 Types of Simulation
• Compiled simulation
– Compiled code generated from RTL

functional/structural models
– Cannot deal with timing/delay
– Applicable to synchronous functional testing.

• Event-drive simulation
– Model interpreted from the data structures generated

from RTL functional/structural models
– Simulate only active part of the circuit.
– Can simulate model with various delay specifications.
– More general.

7

3.4 The Unknown Logic Value
• When a circuit is powered on, initial state of FFs

and RAMs is unpredictable.
• Special logic value, u, to indicate unknown logic

value
– need to extend Boolean operators to 3-valued logic

• u represents one value in set {0,1}
• 0 and 1 represented by sets {0}, {1} respectively

8

Boolean Operation with u
AND(0, u) = AND({0}, {0,1})

= {AND(0,0), AND(0,1)}
= {0, 0}
= {0} = 0

OR(0, u) = OR({0}, {0,1})
= {OR(0,0), OR(0,1)}
= {0, 1}
= u

NOT(u) = NOT({0,1}) = {NOT(0), NOT(1)} = {1, 0} = u

9

Truth Tables for 3-valued Logic

10

Evaluation of 3-valued Logic

11

• Evaluate for
– Evaluate the vector with a primitive cube of f with the

intersection operation
– If the intersection is consistent, the output value of

the primitive cube is the output of the vector on f.
Otherwise, the vector leads to u.

Example: For a AND,
• What primitive cube is compatible with ?
• What primitive cube is compatible with ?

The Unknown Logic Value

o
U

U

U

45

U
U

1

Figure 3.4 Pessimistic result in 3-valued simulation

when we have only one state variable set to u. Figure 3.5 illustrates how the use of u
and ii may lead to incorrect results. Since it is better to be pessimistic than incorrect,
using u and u is not a satisfactory solution. A correct solution would be to use several
distinct unknown signals u 1, U 2, ... , Uk (one for every state variable) and the rules
Ui,Ui=O and ui+ui=l. Unfortunately, this technique becomes cumbersome for large
circuits, since the values of some lines would be represented by large Boolean
expressions of Ui variables.

Q

Q

Q

Q

U

U

o

Figure 3.5 Incorrect result from using U and Ii

Often the operation of a functional element is determined by decoding the values of a
group of control lines. A problem arises in simulation when a functional element
needs to be evaluated and some of its control lines have u values. In general, if
k control lines have u values, the element may execute one of 2k possible operations.
An accurate (but potentially costly) solution is to perform all 2k operations and to take
as result the union set of their individual results. Thus if a variable is set to 0 in some
operations and to 1 in others, its resulting value will be {O,l} = u. Of course, this

3-valued Logic – Pessimistic

12

Actual value
Should be 1

Pessimistic result due to reconvergent fanout!!

3.5 Compiled Simulation
• Compiled model becomes part of the simulator
• In extreme cases, compiler model is the simulator!!
• Example: Assume data F to FF satisfies setup time

constraint. Therefore, we can ignore gate delays

13

Compiled Simulation - Example
• Simulate level by level
Note: for every input vector every element is

evaluated

14

Assembly Code
LDA B
AND Q
INV
STA E
OR A
STA F
STA Q

1

2
3

Compiled Simulation: Asynchronous Circuits

15

• For asynchronous circuits, delay modeling in
the feedback path is necessary

3.6 Event-driven simulation
• Event – Change in the value

of a signal
• Active Signal – Signal with

changing value at some
arbitrary time

• Activated element – an
element with at least one
input signal with an event

• Evaluation – process of
determining the output
values of an element

16

Event-Driven Simulation

no more
events

Advance simulation time

done
Determine current events

Update values

Propagate events

Evaluate activated elements

Schedule resulting events

Figure 3.12 Main flow of event-driven simulation

51

simulator has periodically to read the stimulus file and to merge the events on the
primary inputs with the events internally generated.

In addition to the events that convey updates in signal values, an event-driven
simulator may also process control events, which provide a convenient means to
initiate different activities at certain times. The following are some typical actions
requested by control events:

• Display values of certain signals.

• Check expected values of certain signals (and, possibly, stop the simulation if a
mismatch is detected).

Event-driven simulation: Terminology

17

0 ® 1

1

1

0

01

Event-Driven Simulation: Example

18

Wang, Laung-Terng, Wu, Cheng-Wen, and Wen, Xiaoqing. Morgan Kaufmann Series in Systems on Silicon : VLSI Test Principles and Architectures : Design for Testability (1). Burlington, US: Morgan Kaufmann, 2006. ProQuest ebrary. Web. 4 January 2017.
Copyright © 2006. Morgan Kaufmann. All rights reserved.

Event-Driven Simulation
• Uses structural model to propagate events
• Stimulus file – changes in the values on primary

inputs
• Events on other lines are produced by evaluations

of activated elements
• Event occurs at a certain (simulated) time
• Applied stimuli – event sequences in time
• Can have events scheduled in future i.e., pending

events
• Simulator maintains an event list

19

3.7. Delay Modeling

20

• Every gate introduces delay on signals propagating
through it

• Behavior of a gate can be separated into functional and
timing

• Delay Models
q Zero delay – All gates have zero delay; used for functional

verification
q Unit Delay – All gates have delay = 1
q Real Delay – All gates have different delays

52 LOGIC SIMULATION

• Stop the simulation.

3.7 Delay Models
Many different variants of the general flow shown in Figure 3.12 exist. The
differences among them arise mainly from different delay models associated with the
behavior of the components in the model. Delay modeling is a key element controlling
the trade-off between the accuracy and the complexity of the simulation algorithm.

3.7.1 Delay Modeling for Gates
Every gate introduces a delay to the signals propagating through it. In modeling the
behavior of a gate, we separate its function and its timing as indicated in Figure 3.13.
Thus in simulation an activated element is first evaluated, then the delay computation
is performed.

zz-----11)......----
Figure 3.13 Separation between function and delay in modeling a gate

Transport Delays

The basic delay model is that of a transport delay, which specifies the interval d
separating an output change from the input change(s) which caused it.

To simplify the simulation algorithm, delay values used in simulation are usually
integers. Typically they are multiples of some common unit. For example, if we are
dealing with gate delays of 15, 20, and 30 ns, for simulation we can scale them
respectively to 3, 4, and 6 units, where a unit of delay represents the greatest common
divisor (5 ns) of the individual delays. (Then the times of the changes at the primary
inputs should be similarly scaled.) If all transport delays in a circuit are considered
equal, then we can scale them to 1 unit; this model is called a unit-delay model.

The answers to the following two questions determine the nature of the delay
computation.

• Does the delay depend on the direction of the resulting output transition?

• Are delays precisely known?

For some devices the times required for the output signal to rise (0 to 1 transition*)
and to fall (1 to 0) are greatly different. For some MOS devices these delays may

* We assume a positive logic convention, where the logic level 1 represents the highest voltage level.

Delay Models
• Transport Delay
– Interval separating output change from the associated

input change
• Inertial Delay
– All circuits require energy to switch states
– Energy in a signal is a function of its amplitude and

duration.
– Therefore, an input signal of minimum duration is

required to cause a change on the output.
– Minimum duration is known as input inertial delay dI

21

Example: Transport & Inertial Delay

22

Transport

Rise & Fall

Ambiguous

Inertial

Inertial

Delay Models 53

differ by a ratio of 3 to 1. To reflect this phenomenon in simulation, we associate
different rise and fall delays, d, and df , with every gate. The delay computation
selects the appropriate value based on the event generated for the gate output. If the
gate delays are not a function of the direction of the output change, then we can use a
transition-independent delay model. Figures 3.14(a) and (b) illustrate the differences
between these two models. Note that the result of having different rise and fall delays
is to change the width of the pulse propagating through the gate.

c
A

B=1
-I

A ---J< 3

I
I

3
c (a) d=2

I
I

5
C (b) dr=l, dj=3I

I
I

Rl R R2
C (c) dm=l, dM=3

I
I I

I 3 3IE
I

I I
I I

C I (d) d[=4I
I
I

3
C (e) d[=2, d=2

Figure 3.14 Delay models (a) Nominal transition-independent transport delay
(b) Rise and fall delays (c) Ambiguous delay (d) Inertial delay (pulse
suppression) (e) Inertial delay

Often the exact transport delay of a gate is not known. For example, the delay of a
certain type of NAND gate may be specified by its manufacturer as varying from 5 ns
to 10 ns. To reflect this uncertainty in simulation, we associate an ambiguity interval,
defined by the minimum (dm) and maximum (dM) delays, with every gate. This model,
referred to as an ambiguous delay model, results in intervals (Rl and R2 in
Figure 3.14(c)) during which the value of a signal is not precisely known. Under the
assumption that the gate delays are known, we have a nominal delay model. The rise

Inertial Delay
• Inertial delay can be modeled at the input or

output of a gate
• Input inertial delay
– No input < dI can propagate through circuit

• Output inertial delay
– No output < dI can be generated

23

Output Inertial Delay

24

An output pulse caused
by close input transitions

Example for which input and output
inertial delay models will give

different results

54 LOGIC SIMULATION

and fall delay model and the ambiguous delay model can be combined such that we
have different ambiguity intervals for the rise (drm, drMl and the fall (dIm' djM) delays
[Chappel and Yau 1971].

Inertial Delays

All circuits require energy to switch states. The energy in a signal is a function of its
amplitude and duration. If its duration is too short, the signal will not force the device
to switch. The minimum duration of an input change necessary for the gate output to
switch states is called the input inertial delay of the gate, denoted by d[. An input
pulse whose duration is less than d[is said to be a spike, which is filtered (or
suppressed) by the gate (Figure 3.14(d)). If the pulse width is at least d[, then its
propagation through the gate is determined by the transport delay(s) of the gate. If the
gate has a transition-independent nominal transport delay d, then the two delays must
satisfy the relation (Problem 3.6). Figure 3.14(e) shows a case with d[=d.

A slightly different way of modeling inertial delays is to associate them with the gate
outputs. This output inertial delay model specifies that the gate output cannot generate
a pulse whose duration is less than d[. An output pulse may be caused by an input
pulse (and hence we get the same results as for the input inertial delay model), but it
may also be caused by "close" input transitions, as shown in Figure 3.15(a). Another
case in which the two inertial delay models would differ is illustrated in
Figure 3.15(b). With the input inertial delay model, the input pulses are considered
separately and they cannot switch the gate output. However, under the output inertial
delay model, the combined effect of the input pulses forces the output to switch.

(a)

I

I

C
(b)

r------.,

, I

I
I
I

B

A-J
I

C _....L...- .1--__--L- _

Figure 3.15 Output inertial delay

3.7.2 Delay Modeling for Functional Elements
Both the logic function and the timing characteristics of functional elements are more
complex than those of the gates. Consider, for example, the behavior of an
edge-triggered D F/F with asynchronous set (S) and reset (R), described by the table
given in Figure 3.16. The symbol i denotes a 0-to-1 transition. The notation d/lo

Delay Modeling - FF

25

• Delays in FF more complex
• Rise, Fall, input-to-output (I/O) delays

Race Condition
• Setup time
– Minimum interval preceding an active clock edge.

• Hold time
– Minimum interval following an active clock edge.

26

clock

x

setup hold

Wire Delay

27

Wang, Laung-Terng, Wu, Cheng-Wen, and Wen, Xiaoqing. Morgan Kaufmann Series in Systems on Silicon : VLSI Test Principles and Architectures : Design for Testability (1). Burlington, US: Morgan Kaufmann, 2006. ProQuest ebrary. Web. 4 January 2017.
Copyright © 2006. Morgan Kaufmann. All rights reserved.

3.8 Evaluation of Logic Elements
• A process computing output of a logic element

based on its inputs and current state.
– Truth table is an obvious choice.
– More advanced techniques to speed up simulation:

input scanning, input counting, parallel simulation.

28

Wang, Laung-Terng, Wu, Cheng-Wen, and Wen, Xiaoqing. Morgan Kaufmann Series in Systems on Silicon : VLSI Test Principles and Architectures : Design for Testability (1). Burlington, US: Morgan Kaufmann, 2006. ProQuest ebrary. Web. 4 January 2017.
Copyright © 2006. Morgan Kaufmann. All rights reserved.

Zoom Tables

29

S8 LOGIC SIMULATION

Evaluation techniques based on truth tables are fast, but because of the exponential
increase in the amount of memory they require, they are limited to elements that
depend on a small number of variables.

A trade-off between speed and storage can be achieved by using a one-bit flag in the
value area of an element to indicate whether any variable has a nonbinary value. If all
values are binary, then the evaluation is done by accessing the truth table; otherwise a
special routine is used. This technique requires less memory, since truth tables are
now defined only for binary values. The loss in speed for nonbinary values is not
significant, because, in general, most of the evaluations done during a simulation run
involve only binary values.

Zoom Tables

An evaluation technique based on truth tables must first use the type of the evaluated
element to determine the truth table to access. Thus checking the type and accessing
the truth table are separate steps. These two consecutive steps can be combined into a
single step as follows. Let t be the number of types and let S be the size of the largest
truth table. We build a zoom table of size tS, in which we store the t individual truth
tables, starting at locations 0, S, ..., (t-l)S. To evaluate an element, we pack its type
code (in the range 0 to t-l) in the same word with its values, such that we can use the
value of this word as an index into the zoom table (see Figure 3.19).

typet-l D
I type Ivalues I index

type 1

type 0

Figure 3.19 Zoom table structure

This type of zoom table is an instance of a general speed-up technique that reduces a
sequence of k decisions to a single step. Suppose that every decision step i is based on
a variable Xi which can take one of a possible set of m, values. If all Xi'S are known
beforehand, we can combine them into one cross-product variable Xl x X2 x...x Xk

which can take one of the possible m I m 2 .. .m, values. In this way the k variables are
examined simultaneously and the decision sequence is reduced to one step. More
complex zoom tables used for evaluation are described in [Ulrich et al. 1972].

Logic Gate Characterization

• Controlling value c – uniquely determines output
• Inversion i

30

Element Evaluation 59

Input Scanning

The set of primitive elements used in most simulation systems includes the basic
gates - AND, OR, NAND, and NOR. These gates can be characterized by two
parameters, the controlling value c and the inversion i. The value of an input is said
to be controlling if it determines the value of the gate output regardless of the values
of the other inputs; then the output value is c(±)i. Figure 3.20 shows the general form
of the primitive cubes of any gate with three inputs.

c
cxx c(±)i AND 0 0
x c x c(±)i OR 1 0
x x c c(±)i NAND 0 1
c c c c@i NOR 1 1

Figure 3.20 Primitive cubes for a gate with controlling value c and inversion i

Figure 3.21 outlines a typical gate evaluation routine for 3-valued logic, based on
scanning the input values. Note that the scanning is terminated when a controlling
value is encountered.

evaluate (G, c, i)
begin

u values = FALSE
for every input value v of G

begin
if v = c then return c@i
if v = u then u values = TRUE

end
if u values return u
return c@i

end

Figure 3.21 Gate evaluation by scanning input values

Input Counting

Examining Figure 3.21, we can observe that to evaluate a gate using 3-valued logic, it
is sufficient to know whether the gate has any input with c value, and, if not, whether
it has any input with u value. This suggests that, instead of storing the input values
for every gate, we can maintain a compressed representation of the values, in the form
of two counters - c_count and u_count - which store, respectively, the number of
inputs with c and u values [Schuler 1972]. The step of updating the input values (done

Input Scanning

31

Element Evaluation 59

Input Scanning

The set of primitive elements used in most simulation systems includes the basic
gates - AND, OR, NAND, and NOR. These gates can be characterized by two
parameters, the controlling value c and the inversion i. The value of an input is said
to be controlling if it determines the value of the gate output regardless of the values
of the other inputs; then the output value is c(±)i. Figure 3.20 shows the general form
of the primitive cubes of any gate with three inputs.

c
cxx c(±)i AND 0 0
x c x c(±)i OR 1 0
x x c c(±)i NAND 0 1
c c c c@i NOR 1 1

Figure 3.20 Primitive cubes for a gate with controlling value c and inversion i

Figure 3.21 outlines a typical gate evaluation routine for 3-valued logic, based on
scanning the input values. Note that the scanning is terminated when a controlling
value is encountered.

evaluate (G, c, i)
begin

u values = FALSE
for every input value v of G

begin
if v = c then return c@i
if v = u then u values = TRUE

end
if u values return u
return c@i

end

Figure 3.21 Gate evaluation by scanning input values

Input Counting

Examining Figure 3.21, we can observe that to evaluate a gate using 3-valued logic, it
is sufficient to know whether the gate has any input with c value, and, if not, whether
it has any input with u value. This suggests that, instead of storing the input values
for every gate, we can maintain a compressed representation of the values, in the form
of two counters - c_count and u_count - which store, respectively, the number of
inputs with c and u values [Schuler 1972]. The step of updating the input values (done

Input Counting

32

60 LOGIC SIMULATION

before evaluation) is now replaced by updating of the two counters. For example, a
1 change at an input of an AND gate causes the c_count to be incremented, while a

change results in decrementing the c_count and incrementing the u_count. The
evaluation of a gate involves a simple check of the counters (Figure 3.22). This
technique is faster than the input scanning method and is independent of the number of
inputs.

evaluate (G, c, i)
begin

if c count> 0 then return c@i
if u count > 0 then return u
return c@i

end

Figure 3.22 Gate evaluation based on input counting

3.9 Hazard Detection
Static Hazards

In the circuit of Figure 3.23, assume that Q = 1 and A changes from 0 to 1, while B
changes from 1 to O. If these two changes are such that there exists a short interval
during which A=B=I, then Z may have a spurious pulse, which may reset the
latch. The possible occurrence of a transient pulse on a signal line whose static value
does not change is called a static hazard.

A

B

Z
R Q

1 S

Figure 3.23

To detect hazards, a simulator must analyze the transient behavior of signals. Let S(t)
and S(t+ 1) be the values of a signal S at two consecutive time units. If these values
are different, the exact time when S changes in the real circuit is uncertain. To reflect
this uncertainty in simulation, we will introduce a "pseudo time unit" t' between t and
t+l during which the value of S is unknown, i.e., Stt') = u [Yoeli and Rinon 1964,
Eichelberger 1965]. This is consistent with the meaning of u as one of the values in
the set {O,I}, because during the transition period the value of S can be independently

3.9 Hazard Detection

33

Ideally,

A: 0 -> 1, B: 1 -> 0, Z: 1-> 1

Possibly;

A: 0 -> 1 -> 1, B: 1 -> 1 -> 0,

Z: 1 -> 0 -> 1

60 LOGIC SIMULATION

before evaluation) is now replaced by updating of the two counters. For example, a
1 change at an input of an AND gate causes the c_count to be incremented, while a

change results in decrementing the c_count and incrementing the u_count. The
evaluation of a gate involves a simple check of the counters (Figure 3.22). This
technique is faster than the input scanning method and is independent of the number of
inputs.

evaluate (G, c, i)
begin

if c count> 0 then return c@i
if u count > 0 then return u
return c@i

end

Figure 3.22 Gate evaluation based on input counting

3.9 Hazard Detection
Static Hazards

In the circuit of Figure 3.23, assume that Q = 1 and A changes from 0 to 1, while B
changes from 1 to O. If these two changes are such that there exists a short interval
during which A=B=I, then Z may have a spurious pulse, which may reset the
latch. The possible occurrence of a transient pulse on a signal line whose static value
does not change is called a static hazard.

A

B

Z
R Q

1 S

Figure 3.23

To detect hazards, a simulator must analyze the transient behavior of signals. Let S(t)
and S(t+ 1) be the values of a signal S at two consecutive time units. If these values
are different, the exact time when S changes in the real circuit is uncertain. To reflect
this uncertainty in simulation, we will introduce a "pseudo time unit" t' between t and
t+l during which the value of S is unknown, i.e., Stt') = u [Yoeli and Rinon 1964,
Eichelberger 1965]. This is consistent with the meaning of u as one of the values in
the set {O,I}, because during the transition period the value of S can be independently

Hazard Detection

• If wire S changes at times t and t+1, assume its value

between t and t+1 is unknown.

• Evaluate the logic element, check if u appears on

output between t and t+1.

• Ex: A: 0->u->1, B: 1->u->0, Z: 1->u->1, hazard!

3.9 Hazard Detection
• Static hazards under different delay models.

34

Consider input sequence A = 010 for (a).
• For 0-delay model, B = 101, and C = 000 – no static hazard
• For unit-delay model, B = 1101, and C = 0010 – static hazard

Compiled Simulation 49

y = Y?

Figure 3.9 Asynchronous circuit simulation with compiled-code model

A

(a)

c A

B (b)

c

Figure 3.10 (a) Circuit used as pulse generator (b) Correct model for compiled
simulation

the two vectors cause a critical race, whose result depends on the actual delays in the
circuit. This example shows that a compiled simulator following the procedure
outlined in Figure 3.9, cannot deal with races and hazards which often affect the
operation of an asynchronous circuit. Techniques for detecting hazards will be
discussed in Section 3.9.

3.6 Event-Driven Simulation
An event-driven simulator uses a structural model of a circuit to propagate events. The
changes in the values of the primary inputs are defined in the stimulus file. Events on
the other lines are produced by the evaluations of the activated elements.

3.10 Gate-level Event-Driven Simulation

35

Assume transition independent nominal transport delays

Increasing time

signal i will set to value vi’

Ordered by tp < tq < tr < . . .

Algorithm 3.1 - Basic Algorithm

36

Pass 1:
Find all activated
gates for all
events at current
time

Pass 2:
For each activated
gate, evaluated,
schedule new
events

66 LOGIC SIMULATION

Activated = 0 /* set of activated gates */
for every entry (i.v/') pending at the current time t

if v/ i:- v(i) then
begin /* it is indeed an event */

v(i) = v/ /* update value */
for every j on the fanout list of i

begin
update input values of j
add j to Activated

end
end

for every j E Activated
begin

Vj' =evaluate (j)
schedule (j, Vj') for time t+d(j)

end

Figure 3.29 Algorithm 3.1

and to do the check for activity when the entries are retrieved. For the example in
Figure 3.30, (z.O) will be scheduled for time 12 as a result of (a,O) at time 4, but z will
already be set to °at time 10.

z

b
a_I 8)"'---

z

Figure 3.30 Example of activation of an already scheduled gate

Algorithm 3.2, given in Figure 3.31, is guaranteed to schedule only true events. This
is done by comparing the new value Vj', determined by evaluation, with the last
scheduled value of j, denoted by lsv(j). Algorithm 3.2 does fewer schedule operations
than Algorithm 3.1, but requires more memory and more bookkeeping to maintain the
last scheduled values. To determine which one is more efficient, we have to estimate

Example

37

• Algorithm 3.1 will schedule two (z,0) events at times
t=10 and t=12 (wasteful)

• Does not guarantee scheduling of only events

66 LOGIC SIMULATION

Activated = 0 /* set of activated gates */
for every entry (i.v/') pending at the current time t

if v/ i:- v(i) then
begin /* it is indeed an event */

v(i) = v/ /* update value */
for every j on the fanout list of i

begin
update input values of j
add j to Activated

end
end

for every j E Activated
begin

Vj' =evaluate (j)
schedule (j, Vj') for time t+d(j)

end

Figure 3.29 Algorithm 3.1

and to do the check for activity when the entries are retrieved. For the example in
Figure 3.30, (z.O) will be scheduled for time 12 as a result of (a,O) at time 4, but z will
already be set to °at time 10.

z

b
a_I 8)"'---

z

Figure 3.30 Example of activation of an already scheduled gate

Algorithm 3.2, given in Figure 3.31, is guaranteed to schedule only true events. This
is done by comparing the new value Vj', determined by evaluation, with the last
scheduled value of j, denoted by lsv(j). Algorithm 3.2 does fewer schedule operations
than Algorithm 3.1, but requires more memory and more bookkeeping to maintain the
last scheduled values. To determine which one is more efficient, we have to estimate

68 LOGIC SIMULATION

items than Algorithm 3.2. Typically the average fanout count! is in the range 1.5 to
3. As the event list is a dynamic data structure, these operations involve some form of
free-space management. Also scheduling requires finding the proper time slot where
an item should be entered. We can conclude that the cost of the unnecessary event list
operations done by Algorithm 3.1 is greater than that involved in maintaining the
lsv values by Algorithm 3.2.

One-Pass Versus Two-Pass Strategy

The reason the two-pass strategy performs the evaluations only after all the concurrent
events have been retrieved is to avoid repeated evaluations of gates that have multiple
input changes. Experience shows, however, that most gates are evaluated as a result of
only one input change. Hence a one-pass strategy [Ulrich 1969], which evaluates a
gate as soon as it is activated, would be more efficient, since it avoids the overhead of
constructing the Activated set. Algorithm 3.3, shown in Figure 3.32, implements the
one-pass strategy.

for every event (i.v/') pending at the current time t
begin

v(i) = v;'
for every j on the fanout list of i

begin
update input values of j
Vj' = evaluate (j)
if Vj' * lsv(j) then

begin
schedule (j, vj') for time t+d(j)
lsv(j) = Vj'

end
end

end

Figure 3.32 Algorithm 3.3 - one-pass strategy

Figure 3.33 illustrates the problem associated with Algorithm 3.3. Inputs a and b are
scheduled to change at the same time. If the events are retrieved in the sequence (b,O),
(zz.L), then z is never scheduled. But if (a,l) is processed first, this results in (z,l)
scheduled for time 4. Next, (b,O) causes (z.O) also to be scheduled for time 4. Hence
at time 4, Z will undergo both a O-to-l and a l-to-O transition, which will create a
zero-width "spike." Although the propagation of this spike may not pose a problem, it
is unacceptable to have the results depending on the order of processing of the
concurrent events. Algorithm 3.4, shown in Figure 3.34, overcomes this problem by
detecting the case in which the gate output is repeatedly scheduled for the same time
and by canceling the previously scheduled event. Identifying this situation is helped
by maintaining the last scheduled time, lst(j), for every gate j.

Algorithm 3.3 - One Pass Strategy

38

Avoids building
Activated element

list

“lsv” is last scheduled value

Avoid
redundant
events

Problem with Algorithm 3.3

39

When a changes before b, a zero-spike is generated at time 4!

Gate-Level Event-Driven Simulation

Figure 3.33 Processing of multiple input changes by Algorithm 3.3

for every event (i.v/') pending at the current time t

begin
v(i) = v;'
for every j on the fanout list of i

begin
update input values of j
Vj' = evaluate (j)
if Vj' * lsv(j) then

begin
t' = t+d(j)

if t' = lst(j)
then cancel event (j,lsv(j)) at time t'

schedule (j, Vj') for time t'
lsv(j) =Vj'

lst(j) = t'
end

end
end

Figure 3.34 Algorithm 3.4 - one-pass strategy with suppression of zero-width
spikes

69

Let us check whether with this extra bookkeeping, the one-pass strategy is still more
efficient than the two-pass strategy. The number of insertions in the Activated set
performed during a simulation run by Algorithm 3.2 is about Nf, these are eliminated
in Algorithm 3.4. Algorithm 3.4 performs the check for zero-width spikes only for
gates with output events, hence only N times. Canceling a previously scheduled event
is an expensive operation, because it involves a search for the event. However, in
most instances t + d(j) > lst(j), thus event canceling will occur infrequently, and the

Gate-Level Event-Driven Simulation

Figure 3.33 Processing of multiple input changes by Algorithm 3.3

for every event (i.v/') pending at the current time t

begin
v(i) = v;'
for every j on the fanout list of i

begin
update input values of j
Vj' = evaluate (j)
if Vj' * lsv(j) then

begin
t' = t+d(j)

if t' = lst(j)
then cancel event (j,lsv(j)) at time t'

schedule (j, Vj') for time t'
lsv(j) =Vj'

lst(j) = t'
end

end
end

Figure 3.34 Algorithm 3.4 - one-pass strategy with suppression of zero-width
spikes

69

Let us check whether with this extra bookkeeping, the one-pass strategy is still more
efficient than the two-pass strategy. The number of insertions in the Activated set
performed during a simulation run by Algorithm 3.2 is about Nf, these are eliminated
in Algorithm 3.4. Algorithm 3.4 performs the check for zero-width spikes only for
gates with output events, hence only N times. Canceling a previously scheduled event
is an expensive operation, because it involves a search for the event. However, in
most instances t + d(j) > lst(j), thus event canceling will occur infrequently, and the

Algorithm 3.4 – Suppression of zero-width spikes

40

lst: Last Scheduled Time
If two events are
scheduled at the same
time, cancel the
previously schedule one.

Gate-Level Event-Driven Simulation 71

3.10.2 Other Logic Values

3.10.2.1 Tristate Logic

Tristate logic allows several devices to time-share a common wire, called a bus. A bus
connects the outputs of several bus drivers (see Figure 3.36). Each bus driver is
controlled by an "enable" signal E. When E=I, the driver is enabled and its output 0
takes the value of the input I; when E=O, the driver is disabled and 0 assumes a
high-impedance state, denoted by an additional logic value Z. O=Z means that the
output is in effect disconnected from the bus, thus allowing other bus drivers to control
the bus. In normal operation, at most one driver is enabled at any time. The situation
when two bus drivers drive the bus to opposite binary values is called a conflict or a
clash and may result in physical damage to the devices involved. A pull-up
(pull-down) function, realized by connecting the bus to power (ground) via a resistor,
provides a "default" 1 (0) logic value on the bus when all the bus drivers are disabled.

E 1

0 1 I

II I

r l -, EI : pull-up orE 2 I
I I pull-down

O2
L1.J if E = 1 then 0 = II

12 if E = ° then 0 = Z

E 3 (b)

13

0 3

(a)

Figure 3.36 (a) Bus (b) bus driver

A bus represents another form of wired logic (see Section 2.4.4) and can be similarly
modeled by a "dummy" component, whose function is given in Figure 3.37. Note that
while the value observed on the bus is the forced value computed by the bus function,
for every bus driver the simulator should also maintain its own driven value, obtained
by evaluating -the driver. One task of the bus evaluation routine is to report conflicts
or potential conflicts to the user, because they usually indicate design errors.
Sometimes, it may also be useful to report situations when multiple drivers are
enabled, even if their values do not clash. When all the drivers are disabled, the
resulting Z value is converted to a binary value if a pull-up or a pull-down is present;
otherwise the devices driven by the bus will interpret the Z value as u (assuming lTL
technology).

Recall that the unknown logic value u represents a value in the set {0,1}. In
simulation, both the input I and the enable signal E of a bus driver can have any of the
values {O,I,u}. Then what should be the output value of a bus driver with 1=1 and
E=u? A case-by-case analysis shows that one needs a new "uncertain" logic value to

Simulating Tri-state Logic

41

• Only one driver should drive the bus
•Multiple drivers ® bus conflict (can damage the bus
• If all drivers in Z state ® bus is either pulled up or down

Z: High Impedance

Logic Function – Bus

42

Logic Function – Bus Driver

43

Compiled vs. Event-driven

Compiled Event-driven
Applicable only to
synchronous circuits

Both Synchronous and
asynchronous

Allows inputs to change
only when circuit is stable

Allows real-time inputs

Inefficient Efficient – simulates only
when required

Cannot handle
races/hazards

Can handle races/hazards

44

Other delay models
• We will not consider the following delay models.
– Rise & Fall Delay Models
• Straightforward extension of Algorithms 3.1-3.4. How?

– Inertial Delay Model
– Ambiguous Delays
– Oscillation Control

45

Summary
• Logic Simulation provides a mechanism to verify

the behavior of the system
• Two types of simulation
– Compiled Simulation
– Event Driven Simulation (more efficient and commonly

used)
• Delay models
– Transport, Inertial, Rise, Fall, Ambiguous

46

47

Backup

Compiled Simulation: Asynchronous Circuits

48

• Delay modeling in the feedback path is necessary
• Compiled sim model of (a) will not give correct results!

Races/Hazards

49

•Models (b) and (c) differ in which
feedback path has delay
• For same input RS = 00 -> 11, we will
get different results!
• This example illustrates that

compiled simulation cannot handle
races

Algorithm 3.2 - Updated Algorithm

50

lsv: last
scheduled
value

