
CIS 4930 Digital System Testing
Modeling

Dr. Hao Zheng
Comp Sci & Eng

U of South Florida

Reading
• Chapter 2

2

2.1 Basic Concepts
• Functional modeling at logic level
• Functional modeling at register level
• Structural models

3

Black Box View

• A system can be viewed as a black box i.e.,
generates outputs in response to inputs.

• Behavior is defined by the I/O mapping.
– i.e. value transformation
– Different value representations at different levels.

4

10

Figure 2.1 Black box view of a system

MODELING

components are CPUs, RAMs, I/O devices, etc. A schematic diagram of a circuit is a
structural model using components whose types might be AND, OR, 2-to-4
DECODER, SN7474, etc. The type of the components may be denoted graphically by
special shapes, such as the shapes symbolizing the basic gates.

A structural model always carries (implicitly or explicitly) information regarding the
function of its components. Also, only small circuits can be described in a strictly
functional (black-box) manner. Many models characterized as "functional" in the
literature also convey, to various extents, some structural information. In practice
structural and functional modeling are always intermixed.

External and Internal Models

An external model of a system is the model viewed by the user, while an internal
model consists of the data structures and/or programs that represent the system inside a
computer. An external model can be graphic (e.g., a schematic diagram) or text based.
A text-based model is a description in a formal language, referred to as a Hardware
Description Language (HDL). HDLs used to describe structural models are called
connectivity languages. HDLs used at the register and instruction set levels are
generally referred to as Register Transfer Languages (RTLs). Like a conventional
programming language, an RTL has declarations and statements. Usually, declarations
convey structural information, stating the existence of hardware entities such as
registers, memories, and busses, while statements convey functional information by
describing the way data words are transferred and transformed among the declared
entities.

Object-oriented programming languages are increasingly used for modeling digital
systems [Breuer et ale 1988, Wolf 1989].

2.2 Functional Modeling at the Logic Level
2.2.1 Truth Tables and Primitive Cubes
The simplest way to represent a combinational circuit is by its truth table, such as the
one shown in Figure 2.2(a). Assuming binary input values, a circuit realizing a
function Z (x 1, X 2, ... , xn) of n variables requires a table with 2n entries. The data
structure representing a truth table is usually an array V of dimension Z", We arrange
the input combinations in their increasing binary order. Then V(O) = Z(O,O,... ,O),
V(l) = Z(O,O,... ,l), ... , V(2n-1) = Z(l,l, ... ,l). A typical procedure to determine the
value of Z, given a set of values for Xl' X 2, ... , X n ' works as follows:

Behavioral/Functional Model
• System Behavior is defined by
– I/O Mapping occurs over time

• A logic function is a I/O Mapping without timing.
• A functional model is a representation of logic

function
• A behavioral model is
– A functional Model + A representation of timing

relations

5

Structural Model
• Collection of interconnected smaller boxes called

components/elements
• Often hierarchical
– A component itself represented by a structural

model.
• Bottom-level boxes known as primitive elements
• Can shown as block Diagrams, or schematics
• In practice structural and functional are inter-

mixed.
• Often necessary to describe large systems.

6

2.2 Functional Modeling at Logic Level

• Truth Tables
• Primitive Cubes
• State Tables
• Flow Tables
• BDDs – Binary Decision Diagrams
• Programs

7

8

Truth Tables & Primitive Cubes

Cubical Notation

• First two rows can be combined
00x | 1

where X is a don’t care
• A cube of a function Z(x1, x2, x3) has

the form
(v1, v2, v3 | vZ)

where vZ = Z(v1, v2, v3)
• A cube of Z can represent multiple

rows in a truth table

9

Cubical Notation
• If cube q can be obtained from cube p by

replacing one or more x in p by 0 or 1
then p covers q
Eg: 00x | 1 covers cubes 000 | 1 and 001 | 1

10

Implicants
• An implicant g of Z is a sub-function such that

(g = 1) => (Z = 1)
• An implicant “covers” one or more minterms in a

truth table.
– A disjunction of some minterms.

• If an implicant covers at least one row that is not
covered by any other implicants, it is known as a
prime implicant.

11

Prime Implicant and Primitive Cube
• Cube 00x | 1 represents implicant

• A cube that represents a prime implicant is
known as primitive cube.

12

x1 x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Primitive Cube Representation

13

Compact
Representation
of function Z

Intersection Operator

14

Find Z for 001
• x10 Ç 001 -- Inconsistent
• 11x Ç 001 -- Inconsistent
• x0x Ç 001 -- Consistent
• 0x1 Ç 001 -- Consistent
Output is Z = 1

Modeling Synchronous Sequential Circuit

• Canonical structure of synchronous circuits

15

14

x

y

MODELING

z

combinational
circuit C

y

CLOCK

Figure 2.5 Canonical structure of a synchronous sequential circuit

J
Y

Y 0C
1K y

(a) JK flip-flop

T
y 0 1

T y
0 ITIIJC 1 1 0

Y

(b) T (Trigger) flip-flop

D
y 0 1

D y
0 [I[[]C 1 o 1

y

(c) D (Delay) flip-flop

Figure 2.6 Three types of flip-flops

caused by a single input change to I j , until a stable configuration is reached, denoted
by the condition N (qi,Ij) = qi. Such stable configurations are shown in boldface in the
flow table. Figure 2.7 shows a flow table for an asynchronous machine, and Figure 2.8
shows the canonical structure of an asynchronous sequential circuit.

State Table Representation
• FSM – Finite State Machine can be represented

by a state table
• Inputs are sampled at regular intervals and next

state and output computed

16

Pseudo-combinational -- Iterative Array
• Unroll seq circuit à pseudocombinational cir.

17

16 MODELING

y(O)

x(O)

z(O)

time frame 0

cell 0

x(1)

z(1)

time frame 1

cell 1

x(i)

z(i)

time frame i

cell i

Figure 2.9 Combinational iterative array model of a synchronous sequential
circuit

s

present state
I
I
I
Iv

- q -- y -
ormal norma
nputs output

- y -- -q+
I

n
i

q J K q+ Y Y
0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 1 1 0
1 0 0 1 1 0
1 0 1 0 0 1
1 1 0 1 1 0
1 1 1 0 0 1

(a)

I
I
I
V

next state

(b)

Figure 2.10 (a) Truth table of a JK pseudo-F/F (b) General model of a
pseudo-F/F

This modeling technique maps the time domain response of the sequential circuit into a
space domain response of the iterative array. Note that the model of the combinational
part need not be actually replicated. This transformation allows test generation
methods developed for combinational circuits to be extended to synchronous sequential
circuits. A similar technique exists for asynchronous sequential circuits.

Asynchronous Circuit
• Represented by a flow table
• Single input change can lead to multiple state

changes until a stable configuration is reached
• Stable configurations are shown in bold font

18

Binary Decision Diagrams (BDDs)
• A graph representation of circuit functions

19

Functional Modeling at the Logic Level 17

2.2.3 Binary Decision Diagrams

A binary decision diagram [Lee 1959, Akers 1978] is a graph model of the function of
a circuit. A simple graph traversal procedure determines the value of the output by
sequentially examining values of its inputs. Figure 2.11 gives the diagram of
f = abc + ac. The traversal starts at the top. At every node, we decide to follow the
left or the right branch, depending on the value (0 or 1) of the corresponding input
variable. The value of the function is determined by the value encountered at the exit
branch. For the diagram in Figure 2.11, let us compute f for abc=OO1. At node a we
take the left branch, then at node b we also take the left branch and exit with value 0
(the reader may verify that when a=O and b=O, f does not depend on the value of c).
If at an exit branch we encounter a variable rather than a value, then the value of the
function is the value of that variable. This occurs in our example for a=l; heref=c.

f

o c

Figure 2.11 Binary decision diagram of f = abc + ac

When one dot is encountered on a branch during the traversal of a diagram, then the
final result is complemented. In our example, for a=O and b=1, we obtain f=c. If
more than one dot is encountered, the final value is complemented if the number of
dots is odd.

Binary decision diagrams are also applicable for modeling sequential functions.
Figure 2.12 illustrates such a diagram for a JK F/F with asynchronous set (S) and
reset (R) inputs. Here q represents the previous state of the F/F. The diagram can be
entered to determine the value of the output y or Y. For example, when computing y
for S=O,y=O, C=I, and q=l, we exit with the value of K inverted (because of the dot),
i.e., y=K. The outputs of the F/F are undefined (x) for the "illegal" condition S = 1
and R = 1.

The following example [Akers 1978] illustrates the construction of a binary decision
diagram from a truth table.

Example 2.1: Consider the truth table of the function f = abc + ac, given in
Figure 2.13(a). This can be easily mapped into the binary decision diagram of
Figure 2.13(b), which is a complete binary tree where every path corresponds to one of
the eight rows of the truth table. This diagram can be simplified as follows. Because
both branches from the leftmost node c result in the same value 0, we remove this

Constructing BDD

20

21

BDD for a JK FF

22

Program as Functional Model

23

LDA A /* load acc with A */
AND B /* compute A.B */
AND C /* compute A.B.C */
STA E /* store partial result */
LDA D /* load acc with D */
INV /* compute not D */
OR E /* compute A.B.C + ~(D) */
STA Z /* store results */

Assembly Program

C Program
E = A & B & C ;
F = ~ D;
Z = E | F ;

“Compiled Code Model”

2.3 Functional Modeling at Register Level

• System model at register and instruction set
levels

• Storage declarations:
register IR [0 ® 7] //8-bit register
memory ABC [0 ®255; 0 ® 15] // 256 word memory

• Data paths implicitly defined with operations on
registers.

• Data processing by primitive operators:
C = A + B // add two registers A and B

24

RTL constructs

• Control flow:
– if X then C = A + B
– if (CLOCK and (AREG < BREG)) then AREG = BREG
– test (IR [0 ® 3])

case 0: operation0
case 1: operation1

:
testend

25

FSM modeling
• One block per state
• Only one state is active/current at any time

state S1, S2, S3 /* state register */
S1: if X then

begin
P = Q + R
go to S2

end
else

P = Q – R
go to S3

S2: …

26

Procedural and Non-procedural RTLs
• Procedural RTLs (sequential semantics, ex. C)
– Use a sequential programming language
– implicit cycle-based timing model (i.e., assures that the state

of the model accurately reflects state of processor at the end
of a cycle)

• Non-procedural RTLs (concurrent semantics, ex. VHDL)
– Statements conceptually executed in parallel

• Example: A = B
C = A

– if the above is procedural code, register C gets value B after
execution

– If the above is non-procedural code, then C gets old value of A

27

Timing Modeling
• Explicitly specify delay to add more details.
– Make a model more accurate.

• Examples:
// delay updating C by 100.
C = A + B, delay = 100

// delay every update to C by 100.
delay C 100

28

2.4 Structural Models

29

CIRCUIT XOR
INPUTS = A,B
OUTPUTS = Z

NOT D, A
NOT C, B
AND E, (A, C)
AND F, (B, D)
OR Z, (E, F)

=

Connections are implicitly done via name matching.

Structural Models

Ao------..------------l

B (}--- -------------l

E

F

z

25

Figure 2.15 Schematic diagram of an XOR circuit

E1

E2 U3
ERRDET

B

CLOCK1
'-----IJ

}----------l C U1

Q ERR

A NOTERR
K QB

Figure 2.16

which defines the name of the component, its type, and the name of the nets connected
to its terminals.

The compiler of an external model consisting of such statements must understand
references to types (such as JKFF) and to terminal names (such as Q, J, K). For this,
the model can refer to primitive components of the modeling system (system primitive
components) or components previously defined in a library of components (also called
part library or catalog).

The use of a library of components implies a bottom-up hierarchical approach to
describing the external model. First the components are modeled and the library is
built. The model of a component may be structural or an RTL model. Once defined,
the library components can be regarded as user primitive components, since they
become the building blocks of the system. The library components are said to be

Fanout-Free Circuit

30

• If a gate drives more than one gate then it has a fanout.
• A fanout-free circuit can be represented as a tree

Structural Models 27

Figure 2.17 Fanout-free circuit and its graph (tree) representation

Component
E1
x

ERRDET B B
x x

E2
x

/ ERR/

Net x

CLOCK1 Vi
x

NOTERR
A x

Figure 2.18 Bipartite graph model for the circuit of Figure 2.16

The next chapters will show that the presence of reconvergent fanout in a circuit
greatly complicates the problems of test generation and diagnosis.

In circuits composed only of AND, OR, NAND, NOR, and NOT gates, we can define
the inversion parity of a path as being the number, taken modulo 2, of the inverting
gates (NAND, NOR, and NOT) along that path.

In circuits in which every component has only one output it is redundant to use
separate nodes to represent nets that connect only two components. In such cases, the
graph model used introduces additional nodes, called fanout nodes, only to represent

Reconvergent Fanout

31

• A signal fans out into two or more paths which later
converge at a gate.

• Common in real circuits
• Makes fault detection problem more difficult

Structural Models

Ao------..------------l

B (}--- -------------l

E

F

z

25

Figure 2.15 Schematic diagram of an XOR circuit

E1

E2 U3
ERRDET

B

CLOCK1
'-----IJ

}----------l C U1

Q ERR

A NOTERR
K QB

Figure 2.16

which defines the name of the component, its type, and the name of the nets connected
to its terminals.

The compiler of an external model consisting of such statements must understand
references to types (such as JKFF) and to terminal names (such as Q, J, K). For this,
the model can refer to primitive components of the modeling system (system primitive
components) or components previously defined in a library of components (also called
part library or catalog).

The use of a library of components implies a bottom-up hierarchical approach to
describing the external model. First the components are modeled and the library is
built. The model of a component may be structural or an RTL model. Once defined,
the library components can be regarded as user primitive components, since they
become the building blocks of the system. The library components are said to be

Logic Levels

32

• Logic level of a gate is it’s
distance from primary
inputs

• Can be computed in a
breadth-first manner

Structural Models

r--------------------------------------,
I
I
I

29

CLK __---L...- ----,

A

C ----1------1

R --+------r-----t

w
C y
D 4

y

1-------; L\1___-------------'

Figure 2.20 Logic levels in a circuit

2.4.3 Internal Representation
Figure 2.21 illustrates a portion of typical data structures used to represent a structural
model of the circuit shown in Figure 2.16. The data structure consists of two sets of
"parallel" tables, the ELEMENT TABLE and the SIGNAL TABLE, and also of a
FANIN TABLE and a FANOUT TABLE. An element is internally identified by its
position (index) in the ELEMENT TABLE, such that all the information associated
with the element i can be retrieved by accessing the i-th entry in different columns of
that table. Similarly, a signal is identified by its index in the SIGNAL TABLE. For
the element i, the ELEMENT TABLE contains the following data:

1. NAME(i) is the external name of i.

2. TYPE(i) defines the type of i. (PI denotes primary input; PO means primary
output.)

3. NOUT(i) is the number of output signals of i.

4. OUT(i) is the position (index) in the SIGNAL TABLE of the first output signal
of i. The remaining NOUT(i)-l output signals are found in the next NOUT(i)-l
positions.

Summary
• Digital system model
– representation of the actual system
– can be done at logic and RT-levels

• Behavioral model = Functional Model + Timing
• Models for combinational circuits: truth table, primitive

cubes, BDDs, programs (compiled-code models)
• Sequential circuits: state tables, RT level case statement
• Reconvergent Fanout – signal branches and later

converges on a gate
• Non-procedural language used for RTL modeling to mimic

concurrent execution of the hardware

33

34

Backup

Fanout Terminology

35

• Stem and fanout branches

