CIS 4930 Digital System Testing
Modeling

Dr. Hao Zheng
Comp Sci & Eng
U of South Florida

Reading

* Chapter 2

2.1 Basic Concepts

* Functional modeling at logic level
* Functional modeling at register level
e Structural models

Black Box View

VYY
VVYy
S

* A system can be viewed as a black box i.e.,
generates outputs in response to inputs.

* Behavior is defined by the I/O mapping.
— i.e. value transformation
— Different value representations at different levels.

Behavioral/Functional Model

System Behavior is defined by

— 1/O Mapping occurs over time
A logic function is a |/O Mapping without timing.

A functional model is a representation of logic
function

A behavioral model is

— A functional Model + A representation of timing
relations

Structural Model

e Collection of interconnected smaller boxes called
components/elements

e Often hierarchical

— A component itself represented by a structural
model.

* Bottom-level boxes known as primitive elements
e Can shown as block Diagrams, or schematics

* |n practice structural and functional are inter-
mixed.

e Often necessary to describe large systems.

2.2 Functional Modeling at Logic Level

* Truth Tables

* Primitive Cubes

* State Tables

* Flow Tables

* BDDs — Binary Decision Diagrams
* Programs

Truth Tables & Primitive Cubes

X1..X3: X3 1€ Xy Xo X5 V&
3 Jl | S0 0 O B x 179 0
U9 331 R " 0
O 1 010 x 0 x 1
' 1 -k g 3 I
1 0 0 |1
1 0 1 |1
I 1 010
i & f1LES)
(a) (b)

Figure 2.2 Models for a combinational function Z(x, x,, x3) (a) truth table
(b) primitive cubes

Cubical Notation

* First two rows can be combined
00x | 1

1 where X is a don’t care

0
|
0O 1 010 * A cube of a function Z(x4, X5, X3) has
| the form

0

1

1

l | (V1; vV, V3 | VZ)

1 1 010 where v,=17Z(vy, V,, V3)
1

* A cube of Zcan represent multiple
rows in a truth table

Cubical Notation

* |f cube g can be obtained from cube p by
replacing one or more xinp by Oor1

then p covers g
Eg: 00x | 1 covers cubes 000 | 1and 001 | 1

Implicants

* Animplicant g of Z is a sub-function such that
(g=1) =>(2=1)
* An implicant “covers” one or more minterms in a
truth table.

— A disjunction of some minterms.

* |f an implicant covers at least one row that is not
covered by any other implicants, it is known as a
prime implicant.

Prime Implicant and Primitive Cube

* Cube 00x | 1 represents implicant

X1 X2

* A cube that represents a prime implicant is
known as primitive cube.

Primitive Cube Representation

Xy X3 X3 | Z Xy X2 X3 | £

009 11 s B SRtE | 0

00 1|1 plog oaedbop

01000 e 0

0 1 1 | 0 x 1 I

1 0 0 |1

i Compact

: : (1) 8 Representation

of function Z

(a) (b)

Figure 2.2 Models for a combinational function Z(x,, x,, x3) (a) truth table
(b) primitive cubes

13

Intersection Operator

X l~ 0 0

N 0 | X EUL 0

0 - aela @ x 0 l

l > l 1 0 =% 3 |
X 0 I X

Find Z for 001

*x10 N 001 -- Inconsistent
Figure 2.3 Intersection operator e 11x N 001 -- Inconsistent
* XOx M 001 -- Consistent
*Ox1 N 001 -- Consistent
Outputis Z=1

14

Modeling Synchronous Sequential Circuit

e Canonical structure of synchronous circuits

—
X =

combinational
circuit C

F/F

F/F

CLOCK

vy

15

State Table Representation

 FSM — Finite State Machine can be represented
oy a state table

* |nputs are sampled at regular intervals and next
state and output computed

X

0 l

1| 21 |30
o221 |40
2 &l 10 14
28 4% 30

N(g,x),Z(q,x)

Pseudo-combinational -- Iterative Array

* Unroll seq circuit 2 pseudocombinational cir.

time frame O
cell O

x(0) | x(D)
B B
; | ,
pseudo| pseudo
C(0) ——= (1)
Y(1)| F/F y(ll) Y2)| F/F
z(0) z(1)

time frame 1
cell 1

time frame i

cell i

y(@+1)

17

Asynchronous Circuit

* Represented by a flow table

e Single input change can lead to multiple state
changes until a stable configuration is reached

e Stable configurations are shown in bold font

X1X2
00 01 11 10
I 1,0 i1 2,0 1,0
2 1,0 2,0 2,0 3.1
31 3,1 2,0 4,0 3.0
4| 3,1 5,1 4,0 4.0
S 13 N 4,0 3,1
il

Figure 2.7 A flow table

— _—

v — — —

—_— -

combinational

circuit

Figure 2.8 Canonical structure of an asynchronous sequential circuit

18

Binary Decision Diagrams (BDDs)

* A graph representation of circuit functions

f

Figure 2.11 Binary decision diagram of f = abc + ac

19

Constructing BDD

T e e e

(b)

(a)

20

(c)

c

(d)

(e)

21

BDD for a JK FF

>
AN) / e
K y —

R

Figure 2.12 Binary decision diagram for a JK F/F

22

Program as Functional Model

Assembly Program

L LDA A /* load acc with A */
B __E —— AND B /* compute A.B */
— — AND C /* compute A.B.C */
7. STA E /*store partial result */

L LDA D /* load acc with D */

F INV /* compute not D */
OR E /* compute A.B.C + ~(D) */
STA Z /* store results */

Figure 2.14
C Program

“Compiled Code Model” E=A&B&C;
F="~D;
Z=E|F;

23

2.3 Functional Modeling at Register Level

e System model at register and instruction set
levels

* Storage declarations:

register IR [0 — 7] //8-bit register
memory ABC [0 —»255; 0 —» 15] // 256 word memory

e Data paths implicitly defined with operations on
registers.

e Data processing by primitive operators:
C=A+8B // add two registers A and B

RTL constructs

* Control flow:
— if X then C=A+8B
— if (CLOCK and (AREG < BREG)) then AREG = BREG
— test(/R[O0—>3])
case 0: operationO

case 1: operationl

testend

FSM modeling

* One block per state
* Only one state is active/current at any time

state S1, S2, S3 /* state register */
S1: if X then
begin
P=Q+R
goto S2
end
else
P=Q-R
goto S3
S2: ...

Procedural and Non-procedural RTLs

* Procedural RTLs (sequential semantics, ex. C)

— Use a sequential programming language

— implicit cycle-based timing model (i.e., assures that the state
of the model accurately reflects state of processor at the end
of a cycle)

 Non-procedural RTLs (concurrent semantics, ex. VHDL)
— Statements conceptually executed in parallel

e Example: A=B

C=A
— if the above is procedural code, register C gets value B after
execution

— If the above is non-procedural code, then C gets old value of A

Timing Modeling

* Explicitly specify delay to add more details.
— Make a model more accurate.
 Examples:

// delay updating C by 100.
C =A+B, delay =100

// delay every update to C by 100.
delay C 100

28

2.4 Structural Models

Figure 2.15 Schematic diagram of an XOR circuit

CIRCUIT XOR
INPUTS =A,B
OUTPUTS =Z

NOT
NOT
AND
AND
OR

D, A
C,B
E, (A, C)
F, (B, D)
Z, (E, F)

Connections are implicitly done via name matching.

Fanout-Free Circuit

* If a gate drives more than one gate then it has a fanout.

e A fanout-free circuit can be represented as a tree

Dy
1o
=libs

Figure 2.17 Fanout-free circuit and its graph (tree) representation

Reconvergent Fanout

* Asignal fans out into two or more paths which later
converge at a gate.

e Common in real circuits
* Makes fault detection problem more difficult

Lo — =
o z

Figure 2.15 Schematic diagram of an XOR circuit

Logic Levels

* Logic level of a gate is it’s
distance from primary
inputs CLK ——

 Can be computed in a

breadth-first manner -
C : D
! F

Summary

Digital system model
— representation of the actual system
— can be done at logic and RT-levels

Behavioral model = Functional Model + Timing

Models for combinational circuits: truth table, primitive
cubes, BDDs, programs (compiled-code models)

Sequential circuits: state tables, RT level case statement

Reconvergent Fanout — signal branches and later
converges on a gate

Non-procedural language used for RTL modeling to mimic
concurrent execution of the hardware

Backup

Fanout Terminology

e Stem and fanout branches

/ \
‘ 7
/ s AN Z s / »
4 » =0 f ¥—— fanout
P ST S branches

™.
? \‘i D I
ol /

: Mg ®)

Figure 2.19 (a) Graph model for the circuit of Figure 2.15 (b) A fanout node

35

