CDA 5416: CAV Symbolic CTL Model Checking

Hao Zheng

Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456

3 Symbolic Model Checking Algorithms

- Transition systems are stored as graphs using hash tables.
- States are labeled with appropriate AP/subformlas.
- Complexity of model checking algorithms is linear in the structure sizes.
 - Structure size can be exponential!
- Problems
 - Demand of large amount of memory.
 - Low performance.

- Idea: reformulate model-checking in a symbolic way.
- Concept: represent sets of states and transitions symbolically.
- Approach: binary encoding of states + switching functions for sets.
- Compact representation of switching functions is possible using binary decision diagrams (BDDs).
- Alternative representation is the conjunctive normal form which is the basis for SAT-based model checking.

Contents

2 Symbolic Encoding

3 Symbolic Model Checking Algorithms

- Let $Var = \{z_1, \ldots, z_m\}$ be a finite set of Boolean variables, $m \ge 0$.
- An evaluation is a function $\eta: Var \rightarrow \{0, 1\}$.
 - Let $Eval(z_1, \ldots, z_m)$ denote the set of evaluations for z_1, \ldots, z_m .
 - Shorthand $[z_1 = \mathfrak{b}_1, \dots, z_m = \mathfrak{b}_m]$ for $\eta(z_1) = \mathfrak{b}_1, \dots, \eta(z_m) = \mathfrak{b}_m$.
- $f : Eval(Var) \rightarrow \{0, 1\}$ is a *switching function* for $Var = \{z_1, \ldots, z_m\}.$
 - Can be defined by Boolean expressions, i.e. $(z_1 \lor \neg z_2) \land z_3$

Switching Functions: Definitions

•
$$f_1 \wedge f_2 = \min\{f_1, f_2\}$$

•
$$f_1 \lor f_2 = \max\{f_1, f_2\}$$

•
$$f|_{z_i=b_i}(z_1,\ldots,z_i,\ldots,z_m) = f(z_1,\ldots,b_i,\ldots,z_m)$$
 (cofactor).
e.g. $((a \wedge b) \vee c)|_{b=1} = a \vee c$

•
$$f|_{z_i=b_i,\ldots,z_k=b_k} = ((f|_{z_i=b_i})\ldots)|_{z_k=b_k}$$
 (iterated cofactor).

• If
$$f|_{z_i=0} \neq f|_{z_i=1}$$
 then z_i is an essential variable.

Switching Functions: Definitions (1)

•
$$f = (\neg z \land f|_{z=0}) \lor (z \land f|_{z=1})$$
 (Shannon expansion).

• $\exists z. f = f|_{z=0} \lor f|_{z=1}$ (existential quantification).

e.g. $\exists b.((a \land b) \lor c) = (c) \lor (a \lor c) = a \lor c$

• $\forall z. f = f|_{z=0} \land f|_{z=1}$ (universal quantification).

e.g. $\forall b.((a \land b) \lor c) = (c) \land (a \lor c) = c$

• $f\{z \leftarrow y\}(s) = f(s\{y \leftarrow z\})$ (rename operator).

Switching Functions – Shannon Expansion

 $f = (\neg z_1 \land f|_{z_1=0}) \lor (z_1 \land f|_{z_1=1})$

3 Symbolic Model Checking Algorithms

Hao Zheng (Department of Computer Science

CDA 5416: CAV

Symbolic Representation of TS

- Let TS = (S, →, I, AP, L) be a "large" finite transition system. Note: the set of actions is irrelevant and has been omitted, i.e., →⊆ S × S.
- For $n \ge \lceil \log |S| \rceil$, let injective function

```
enc: S \rightarrow \{0,1\}^n
```

be the encoding of the states by bit vectors of length n.

- Identify:
 - Each states $s \in S$ has an unique $enc(s) \in \{0,1\}^n$.
 - $B \subseteq S$ by its characteristic function $\chi_B : \{0,1\}^n \to \{0,1\}$, that is $\chi_B(enc(s)) = 1$ if and only if $s \in B$.
 - $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0,1\}^{2n} \rightarrow \{0,1\}$, such that $\Delta(enc(s), enc(s')) = 1$ if and only if $s \rightarrow s'$.

Symbolic Representation of TS: Example

• Four states: two Boolean variables needed for encoding, i.e. x_1, x_2 .

Symbolic Representation of TS: Example

• State encoding on variables *x*₁, *x*₂:

$$f_{S} = 1$$

Symbolic Representation of TS: Example

• Switching function: $\Delta(\underbrace{x_1, x_2}_{s}, \underbrace{x_1', x_2'}_{s'}) = 1$ if and only if $s \to s'$

$$\begin{array}{rcl} \Delta(x_1,x_2,x_1',x_2') = & & \left(\neg x_1 \ \land \ \neg x_2 \ \land \ \neg x_1' \ \land \ x_2' \right) \\ & \lor & \left(\neg x_1 \ \land \ \neg x_2 \ \land \ x_1' \ \land \ x_2' \right) \\ & \lor & \left(\neg x_1 \ \land \ x_2 \ \land \ x_1' \ \land \ \neg x_2' \right) \\ & \lor & \left(\neg x_1 \ \land \ x_2 \ \land \ x_1' \ \land \ \neg x_2' \right) \\ & \lor & \cdots \\ & \lor & \left(x_1 \ \land \ x_2 \ \land \ x_1' \ \land \ x_2' \right) \end{array}$$

• Boolean variables, x_1, x_2 .

•
$$x_1 \leftrightarrow (\texttt{request} = 1), \neg x_1 \leftrightarrow (\texttt{request} = 0), x_2 \leftrightarrow (\texttt{state} = \textit{ready}), \neg x_2 \leftrightarrow (\texttt{state} = \textit{busy})$$

• Initial state: $state = ready \longrightarrow x_2$

• Transition relation:

$$egin{aligned} \Delta(ec{x},ec{x}') &= (\textit{state} = \textit{ready} \land \textit{request} = 1 \land \textit{state}' = \textit{busy}) \lor \ & (\neg(\textit{state} = \textit{ready} \land \textit{request} = 1) \land \ & ((\textit{state}' = \textit{ready}) \lor (\textit{state}' = \textit{busy})) \end{aligned}$$

• Transition relation:

$$egin{array}{rll} \Delta(ec x,ec x')&=&(x_2\wedge x_1\wedge
eg x_2')\,ee\,\,(
eg (x_2\wedge x_1)\wedge (x_2'ee
eg x_2'))\ &=&(x_2\wedge x_1\wedge
eg x_2')\,ee\,\,(
eg (x_2\wedge x_1))\ &=&
eg x_2'ee
eg (x_2\wedge x_1)\end{array}$$

3 Symbolic Model Checking Algorithms

Hao Zheng (Department of Computer Scient

Computation of Sat - Review

 $switch(\Phi)$:

end switch

Hao Zheng (Department of Computer Sci

Symbolic Model Checking

• Preimage of state set B: Pre(B) = Sat(EX B).

$$Pre(B) = \{s \in S \mid Post(s) \cap B \neq \emptyset\}$$

- Take a symbolic representation of a transition system (Δ and χ_B).
- *Pre*(*B*) can be symbolically computed as

$$\chi_{\mathsf{EX}B}(\overline{x}) = \exists \overline{x}'. \left(\underbrace{\Delta(\overline{x}, \overline{x}')}_{s' \in \mathit{Post}(s)} \land \underbrace{\chi_B(\overline{x}')}_{s' \in B} \right).$$

• $\chi_B(\overline{x}')$ is χ_B after renaming the variables x_i to their primed copies x'_i .

$$\begin{array}{rcl} \Delta(x_1,x_2,x_1',x_2')=& & \left(\neg x_1 \ \land \ \neg x_2 \ \land \ \neg x_1' \ \land \ x_2'\right) \\ & \lor & \ldots \\ & \lor & \left(\neg x_1 \ \land \ x_2 \ \land \ x_1' \ \land \ \neg x_2'\right) \\ & \lor & \left(x_1 \ \land \ \neg x_2 \ \land \ x_1' \ \land \ \neg x_2'\right) \\ & \lor & \left(x_1 \ \land \ x_2 \ \land \ x_1' \ \land \ \neg x_2'\right) \end{array}$$

Compute Preimage of s_2 $(x_1 \land \neg x_2)$

$$\exists x_1', x_2', \ \Delta(x_1, x_2, x_1', x_2') \land x_1' \land \neg x_2' = \\ (\neg x_1 \land \neg x_2 \land \neg x_1' \land x_2') \\ \lor \dots \\ \forall (\neg x_1 \land x_2 \land x_1' \land \neg x_2') \\ \lor (x_1 \land \neg x_2 \land x_1' \land \neg x_2') \\ \lor (x_1 \land x_2 \land x_1' \land \neg x_2') \end{pmatrix} \land (x_1' \land \neg x_2')$$

$$\exists x_1', x_2', \left(\begin{array}{cccc} & \lor & (\neg x_1 \land x_2 \land x_1' \land \neg x_2') \\ & \lor & (x_1 \land \neg x_2 \land x_1' \land \neg x_2') \\ & \lor & (x_1 \land x_2 \land x_1' \land \neg x_2') \end{array}\right)$$

$$(\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (x_1 \land x_2)$$

= $x_1 \lor x_2$

CDA 5416: CAV

Symbolic Computation of $Sat(\exists (C \cup B))$

$$f_0(\overline{x}) := \chi_B(\overline{x});$$

$$j := 0;$$

repeat

$$\begin{split} f_{j+1}(\overline{x}) &:= f_j(\overline{x}) \lor (\chi_C(\overline{x}) \land \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}'))); \\ j &:= j + 1 \\ \text{until } f_j(\overline{x}) &= f_{j-1}(\overline{x}); \\ \text{return } f_j(\overline{x}). \end{split}$$

CDA 5416: CAV

Compute the largest set $T \subseteq B$ with $Post(t) \cap T \neq \emptyset$ for all $t \in T$ Take $T_0 = B$, repeat

$$T_j = T_{j-1} \cap \{s \in S \mid \exists s' \in S. \ s' \in \textit{Post}(s) \land s' \in T_{j-1} \}$$

Intil $T_j = T_{j-1}$

L

Symbolic Computation of *Sat*(EG *B*)

$$f_0(\overline{x}) := \chi_B(\overline{x});$$

 $j := 0;$

repeat

$$\begin{array}{l} f_{j+1}(\overline{x}) := f_j(\overline{x}) \land \exists \overline{x}'. \left(\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}') \right); \\ j := j+1 \\ \text{until } f_j(\overline{x}) = f_{j-1}(\overline{x}); \\ \text{return } f_j(\overline{x}). \end{array}$$

CDA 5416: CAV

Symbolic Composition

- How to compose $TS_i = (\Delta_i(\vec{x_i}, \vec{x_i}'), \chi_{l_i}(\vec{x_i})), \ 0 \le i \le n$?
- Synchronous systems

$$\chi_{I} = \bigwedge_{0 \le i \le n} \chi_{I_{i}}(\vec{x_{i}})$$
(1)
$$\Delta = \bigwedge_{0 \le i \le n} \Delta_{i}(\vec{x_{i}}, \vec{x_{i}}')$$
(2)

• Asynchronous systems

$$\chi_I = \bigwedge_{0 \le i \le n} \chi_{I_i}(\vec{x_i}) \tag{3}$$

$$\Delta = igvee_{0 \leq i \leq n} \left(\Delta_i(ec{x_i}, ec{x_i'}) igwedge_{0 \leq j \leq n, j
eq i} ec{x_j} = ec{x_j'}
ight)$$

(4)

Synchronous Counter

• Consider a 3-bit synchronous counter (x₀, x₁, x₂)

•
$$\chi_{I_0} = \neg x_0, \ \chi_{I_1} = \neg x_1, \ \chi_{I_2} = \neg x_2.$$

•
$$\Delta_0 = x'_0 \Leftrightarrow \neg x_0$$

• $\Delta_1 = x'_1 \Leftrightarrow x_0 \oplus x_1$
• $\Delta_2 = x'_2 \Leftrightarrow (x_2 \land (x'_0 = \neg x_0)) \lor (x_1 \land (x_2 \oplus x_0))$

• The system

$$\chi_{I} = \bigwedge_{0 \le i \le 2} \chi_{I_{i}}(\vec{x_{i}}) = \neg x_{0} \land \neg x_{1} \land \neg x_{2}$$
(5)
$$\Delta = \bigwedge_{0 \le i \le 2} \Delta_{i}(\vec{x_{i}}, \vec{x_{i}}')$$
(6)

Peterson's Mutual Exclusion Algorithm

• Encode program locations and propositions

Peterson's Mutual Exclusion Algorithm

- Initial state:
 - Global variable: $\neg w_1 \land \neg w_0$ (x = 0)
 - Local variables of PG₁: ¬v₁ ∧ ¬v₀ ∧ ¬b₁
 - Local variables of PG_2 : $\neg u_1 \land \neg u_0 \land \neg b_2$

Peterson's Mutual Exclusion Algorithm

• Transition relation of *PG*₁:

• *noncrit*₁ \hookrightarrow *wait*₁: $\neg v_1 \land \neg v_0 \land \neg v_1' \land v_0' \land b_1' \land w_1' \land \neg w_0'$

- wait₁ \hookrightarrow crit₁:
- $crit_1 \hookrightarrow wait_1$:

•
$$\Delta_{PG_1} = \Delta_{noncrit_1 \hookrightarrow wait_1} \lor \Delta_{wait_1 \hookrightarrow crit_1} \lor \Delta_{crit_1 \hookrightarrow wait_1}$$

CDA 5416: CAV