CDA 5416: CAV

Symbolic CTL Model Checking

Hao Zheng

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
Email: zheng@cse.usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

(1) Switching Functions

(2) Symbolic Encoding

(3) Symbolic Model Checking Algorithms

Explicit Algorithms

- Transition systems are stored as graphs using hash tables.
- States are labeled with appropriate AP/subformlas.
- Complexity of model checking algorithms is linear in the structure sizes.
- Structure size can be exponential!
- Problems
- Demand of large amount of memory.
- Low performance.

Symbolic CTL Model Checking

- Idea: reformulate model-checking in a symbolic way.
- Concept: represent sets of states and transitions symbolically.
- Approach: binary encoding of states + switching functions for sets.
- Compact representation of switching functions is possible using binary decision diagrams (BDDs).
- Alternative representation is the conjunctive normal form which is the basis for SAT-based model checking.

Contents

(1) Switching Functions

(2) Symbolic Encoding

(3) Symbolic Model Checking Algorithms

Switching Functions

- Let $\operatorname{Var}=\left\{z_{1}, \ldots, z_{m}\right\}$ be a finite set of Boolean variables, $m \geq 0$.
- An evaluation is a function $\eta: \operatorname{Var} \rightarrow\{0,1\}$.
- Let Eval $\left(z_{1}, \ldots, z_{m}\right)$ denote the set of evaluations for z_{1}, \ldots, z_{m}.
- Shorthand $\left[z_{1}=\mathfrak{b}_{1}, \ldots, z_{m}=\mathfrak{b}_{m}\right]$ for $\eta\left(z_{1}\right)=\mathfrak{b}_{1}, \ldots, \eta\left(z_{m}\right)=\mathfrak{b}_{m}$.
- $f: \operatorname{Eval}(\operatorname{Var}) \rightarrow\{0,1\}$ is a switching function for
$\operatorname{Var}=\left\{z_{1}, \ldots, z_{m}\right\}$.
- Can be defined by Boolean expressions, i.e. $\left(z_{1} \vee \neg z_{2}\right) \wedge z_{3}$

Switching Functions: Definitions

- $f_{1} \wedge f_{2}=\min \left\{f_{1}, f_{2}\right\}$
- $f_{1} \vee f_{2}=\max \left\{f_{1}, f_{2}\right\}$
- $\left.f\right|_{z_{i}=b_{i}}\left(z_{1}, \ldots, z_{i}, \ldots, z_{m}\right)=f\left(z_{1}, \ldots, b_{i}, \ldots, z_{m}\right)$
(cofactor).

$$
\text { e.g. }\left.\quad((a \wedge b) \vee c)\right|_{b=1}=a \vee c
$$

- $\left.f\right|_{z_{i}=b_{i}, \ldots, z_{k}=b_{k}}=\left.\left(\left(\left.f\right|_{z_{i}=b_{i}}\right) \ldots\right)\right|_{z_{k}=b_{k}}$
(iterated cofactor).
- If $\left.f\right|_{z_{i}=0} \neq\left. f\right|_{z_{i}=1}$ then z_{i} is an essential variable.

Switching Functions: Definitions (1)

- $f=\left(\left.\neg z \wedge f\right|_{z=0}\right) \vee\left(\left.z \wedge f\right|_{z=1}\right)$
(Shannon expansion).
- $\exists z . f=\left.\left.f\right|_{z=0} \vee f\right|_{z=1}$
(existential quantification).

$$
\text { e.g. } \exists b .((a \wedge b) \vee c)=(c) \vee(a \vee c)=a \vee c
$$

- $\forall z . f=\left.\left.f\right|_{z=0} \wedge f\right|_{z=1}$
(universal quantification).

$$
\text { e.g. } \forall b .((a \wedge b) \vee c)=(c) \wedge(a \vee c)=c
$$

- $f\{z \leftarrow y\}(s)=f(s\{y \leftarrow z\})$
(rename operator).

Switching Functions - Shannon Expansion

$$
f=\left(\left.\neg z_{1} \wedge f\right|_{z_{1}=0}\right) \vee\left(\left.z_{1} \wedge f\right|_{z_{1}=1}\right)
$$

Contents

(1) Switching Functions

(2) Symbolic Encoding

(3) Symbolic Model Checking Algorithms

Symbolic Representation of TS

- Let $T S=(S, \rightarrow, I, A P, L)$ be a "large" finite transition system.

Note: the set of actions is irrelevant and has been omitted, i.e., $\rightarrow \subseteq S \times S$.

- For $n \geq\lceil\log |S|\rceil$, let injective function

$$
\text { enc }: S \rightarrow\{0,1\}^{n}
$$

be the encoding of the states by bit vectors of length n.

- Identify:
- Each states $s \in S$ has an unique enc $(s) \in\{0,1\}^{n}$.
- $B \subseteq S$ by its characteristic function $\chi_{B}:\{0,1\}^{n} \rightarrow\{0,1\}$, that is $\chi_{B}(e n c(s))=1$ if and only if $s \in B$.
- $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta:\{0,1\}^{2 n} \rightarrow\{0,1\}$, such that $\Delta\left(e n c(s), \operatorname{enc}\left(s^{\prime}\right)\right)=1$ if and only if $s \rightarrow s^{\prime}$.

Symbolic Representation of TS: Example

- Four states: two Boolean variables needed for encoding, i.e. x_{1}, x_{2}.

Symbolic Representation of TS: Example

- State encoding on variables x_{1}, x_{2} :

$$
f_{S}=1
$$

Symbolic Representation of TS: Example

- Switching function: $\Delta(\underbrace{x_{1}, x_{2}}_{s}, \underbrace{x_{1}^{\prime}, x_{2}^{\prime}}_{s^{\prime}})=1$ if and only if $s \rightarrow s^{\prime}$

$$
\begin{aligned}
\Delta\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\quad & \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{1}^{\prime} \wedge x_{2}^{\prime}\right) \\
& \left(\neg x_{1} \wedge \neg x_{2} \wedge x_{1}^{\prime} \wedge x_{2}^{\prime}\right) \\
& \vee \\
& \left(\neg x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
& \cdots \\
& \vee\left(x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge x_{2}^{\prime}\right)
\end{aligned}
$$

Another Encoding Example

- Boolean variables, x_{1}, x_{2}.
- $x_{1} \leftrightarrow($ request $=1), \quad \neg x_{1} \leftrightarrow($ request $=0)$, $x_{2} \leftrightarrow($ state $=$ ready $), \quad \neg x_{2} \leftrightarrow($ state $=$ busy $)$

Another Encoding Example

- Initial state: state $=$ ready $\longrightarrow x_{2}$

Another Encoding Example

- Transition relation:

$$
\begin{aligned}
\Delta\left(\vec{x}, \vec{x}^{\prime}\right)= & \left(\text { state }=\text { ready } \wedge \text { request }=1 \wedge \text { state }{ }^{\prime}=\text { busy }\right) \vee \\
& (\neg(\text { state }=\text { ready } \wedge \text { request }=1) \wedge \\
& \left(\left(\text { state }^{\prime}=\text { ready }\right) \vee\left(\text { state }^{\prime}=\text { busy }\right)\right)
\end{aligned}
$$

Another Encoding Example

- Transition relation:

$$
\begin{aligned}
\Delta\left(\vec{x}, \vec{x}^{\prime}\right) & =\left(x_{2} \wedge x_{1} \wedge \neg x_{2}^{\prime}\right) \vee\left(\neg\left(x_{2} \wedge x_{1}\right) \wedge\left(x_{2}^{\prime} \vee \neg x_{2}^{\prime}\right)\right) \\
& =\left(x_{2} \wedge x_{1} \wedge \neg x_{2}^{\prime}\right) \vee\left(\neg\left(x_{2} \wedge x_{1}\right)\right) \\
& =\neg x_{2}^{\prime} \vee \neg\left(x_{2} \wedge x_{1}\right)
\end{aligned}
$$

Contents

(1) Switching Functions

2) Symbolic Encoding

(3) Symbolic Model Checking Algorithms

Computation of Sat - Review

switch (Φ) :

Symbolic Model Checking

- Preimage of state set $B: \quad \operatorname{Pre}(B)=\operatorname{Sat}(E X B)$.

$$
\operatorname{Pre}(B)=\{s \in S \mid \operatorname{Post}(s) \cap B \neq \emptyset\}
$$

- Take a symbolic representation of a transition system (Δ and χ_{B}).
- $\operatorname{Pre}(B)$ can be symbolically computed as

$$
\chi_{\operatorname{EXB} B}(\bar{x})=\exists \bar{x}^{\prime} \cdot(\underbrace{\Delta\left(\bar{x}, \bar{x}^{\prime}\right)}_{s^{\prime} \in \operatorname{Post}(s)} \wedge \underbrace{\chi_{B}\left(\bar{x}^{\prime}\right)}_{s^{\prime} \in B}) .
$$

- $\chi_{B}\left(\bar{x}^{\prime}\right)$ is χ_{B} after renaming the variables x_{i} to their primed copies x_{i}^{\prime}.

Preimage Computatioin: Example

$$
\begin{aligned}
& \Delta\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{1}^{\prime} \wedge x_{2}^{\prime}\right) \\
& \vee \\
& \vee \\
&\left(\neg x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
& \vee\left(x_{1} \wedge \neg x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
& \vee \\
&\left(x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right)
\end{aligned}
$$

Compute Preimage of $s_{2}\left(x_{1} \wedge \neg x_{2}\right)$

Preimage Computatioin: Example

$$
\begin{aligned}
& \exists x_{1}^{\prime}, x_{2}^{\prime}, \Delta\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}= \\
& \exists x_{1}^{\prime}, x_{2}^{\prime},\left(\begin{array}{ll}
& \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{1}^{\prime} \wedge x_{2}^{\prime}\right) \\
\vee & \cdots \\
\vee & \left(\neg x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
\vee & \left(x_{1} \wedge \neg x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
\vee & \left(x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right)
\end{array}\right) \wedge\left(x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right)
\end{aligned}
$$

Preimage Computatioin: Example

$$
\exists x_{1}^{\prime}, x_{2}^{\prime},\left(\begin{array}{cc}
\vee & \left(\neg x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
\vee & \left(x_{1} \wedge \neg x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right) \\
\vee & \left(x_{1} \wedge x_{2} \wedge x_{1}^{\prime} \wedge \neg x_{2}^{\prime}\right)
\end{array}\right)
$$

Preimage Computatioin: Example

$$
\begin{aligned}
& \left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right) \\
= & x_{1} \vee x_{2}
\end{aligned}
$$

Symbolic Computation of $\operatorname{Sat}(\exists(C \cup B))$

$$
\begin{aligned}
& f_{0}(\bar{x}):=\chi_{B}(\bar{x}) ; \\
& j:=0 ;
\end{aligned}
$$

repeat

$$
\begin{aligned}
& f_{j+1}(\bar{x}):=f_{j}(\bar{x}) \vee\left(\chi c(\bar{x}) \wedge \exists \bar{x}^{\prime} \cdot\left(\Delta\left(\bar{x}, \bar{x}^{\prime}\right) \wedge f_{j}\left(\bar{x}^{\prime}\right)\right)\right) ; \\
& j:=j+1
\end{aligned}
$$

until $f_{j}(\bar{x})=f_{j-1}(\bar{x})$;
return $f_{j}(\bar{x})$.

Symbolic Computation of $\operatorname{Sat(EGB)}$

Compute the largest set $T \subseteq B$ with $\operatorname{Post}(t) \cap T \neq \emptyset$ for all $t \in T$ Take $T_{0}=B$, repeat

$$
T_{j}=T_{j-1} \cap\left\{s \in S \mid \exists s^{\prime} \in S . s^{\prime} \in \operatorname{Post}(s) \wedge s^{\prime} \in T_{j-1}\right\}
$$

until $T_{j}=T_{j-1}$

Symbolic Computation of $\operatorname{Sat}($ EG B)

$f_{0}(\bar{x}):=\chi_{B}(\bar{x}) ;$
$j:=0$;
repeat

$$
\begin{aligned}
& f_{j+1}(\bar{x}):=f_{j}(\bar{x}) \wedge \exists \bar{x}^{\prime} .\left(\Delta\left(\bar{x}, \bar{x}^{\prime}\right) \wedge f_{j}\left(\bar{x}^{\prime}\right)\right) ; \\
& j:=j+1
\end{aligned}
$$

until $f_{j}(\bar{x})=f_{j-1}(\bar{x})$;
return $f_{j}(\bar{x})$.

Symbolic Composition

- How to compose $T S_{i}=\left(\Delta_{i}\left(\overrightarrow{x_{i}}, \overrightarrow{x_{i}^{\prime}}\right), \chi_{l_{i}}\left(\overrightarrow{x_{i}}\right)\right), \quad 0 \leq i \leq n$?
- Synchronous systems

$$
\begin{align*}
\chi_{I} & =\bigwedge_{0 \leq i \leq n} \chi_{l_{i}}\left(\overrightarrow{x_{i}}\right) \tag{1}\\
\Delta & =\bigwedge_{0 \leq i \leq n} \Delta_{i}\left(\overrightarrow{x_{i}}, \vec{x}_{i}^{\prime}\right) \tag{2}
\end{align*}
$$

- Asynchronous systems

$$
\begin{align*}
\chi_{I} & =\bigwedge_{0 \leq i \leq n} \chi_{I_{i}}\left(\vec{x}_{i}\right) \tag{3}\\
\Delta & =\bigvee_{0 \leq i \leq n}\left(\Delta_{i}\left(\vec{x}_{i}, \vec{x}_{i}^{\prime}\right) \bigwedge_{0 \leq j \leq n, j \neq i} \vec{x}_{j}=\vec{x}_{j}^{\prime}\right) \tag{4}
\end{align*}
$$

Synchronous Counter

- Consider a 3-bit synchronous counter $\left(x_{0}, x_{1}, x_{2}\right)$
- $\chi_{I_{0}}=\neg x_{0}, \chi_{I_{1}}=\neg x_{1}, \chi_{I_{2}}=\neg x_{2}$.
- $\Delta_{0}=x_{0}^{\prime} \Leftrightarrow \neg x_{0}$
- $\Delta_{1}=x_{1}^{\prime} \Leftrightarrow x_{0} \oplus x_{1}$
- $\Delta_{2}=x_{2}^{\prime} \Leftrightarrow\left(x_{2} \wedge\left(x_{0}^{\prime}=\neg x_{0}\right)\right) \vee\left(x_{1} \wedge\left(x_{2} \oplus x_{0}\right)\right)$
- The system

$$
\begin{align*}
\chi_{I} & =\bigwedge_{0 \leq i \leq 2} \chi_{I_{i}}\left(\vec{x}_{i}\right)=\neg x_{0} \wedge \neg x_{1} \wedge \neg x_{2} \tag{5}\\
\Delta & =\bigwedge_{0 \leq i \leq 2} \Delta_{i}\left(\vec{x}_{i}, \vec{x}_{i}^{\prime}\right) \tag{6}
\end{align*}
$$

Peterson's Mutual Exclusion Algorithm

- Encode program locations and propositions

$$
\begin{array}{rlrll}
\text { noncrit }_{1} & : \neg v_{1} \wedge \neg v_{0} & \text { noncrit }_{2} & : \neg u_{1} \wedge \neg u_{0} \\
\text { wait }_{1} & : \neg v_{1} \wedge v_{0} & \text { wait }_{2} & : \neg u_{1} \wedge u_{0} \\
\text { crit }_{1} & : v_{1} \wedge \neg v_{0} & \text { crit }_{2} & : u_{1} \wedge \neg u_{0} \\
x=1 & : \neg w_{1} \wedge w_{0} & x=0 & : \neg w_{1} \wedge \neg w_{0} \\
x=2 & : & w_{1} \wedge \neg w_{0} & &
\end{array}
$$

Peterson's Mutual Exclusion Algorithm

- Initial state:
- Global variable: $\neg w_{1} \wedge \neg w_{0}(x=0)$
- Local variables of $P G_{1}: \neg v_{1} \wedge \neg v_{0} \wedge \neg b_{1}$
- Local variables of $P G_{2}: \neg u_{1} \wedge \neg u_{0} \wedge \neg b_{2}$

Peterson's Mutual Exclusion Algorithm

$$
P G_{1}: \quad P G_{2}:
$$

- Transition relation of $P G_{1}$:
- noncrit n $_{1} \hookrightarrow$ wait $_{1}: \neg v_{1} \wedge \neg v_{0} \wedge \neg v_{1}{ }^{\prime} \wedge v_{0}{ }^{\prime} \wedge b_{1}{ }^{\prime} \wedge w_{1}^{\prime} \wedge \neg w_{0}{ }^{\prime}$
- wait $_{1} \hookrightarrow$ crit $_{1}$:
- crit $_{1} \hookrightarrow$ wait $_{1}$:
- $\Delta_{P G_{1}}=\Delta_{\text {noncrit }_{1} \hookrightarrow \text { wait }_{1}} \vee \Delta_{\text {wait }_{1} \hookrightarrow \text { crit }_{1}} \vee \Delta_{\text {crit }_{1} \hookrightarrow \text { wait }_{1}}$

