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Explicit Algorithms

• Transition systems are stored as graphs using hash tables.

• States are labeled with appropriate AP/subformlas.

• Complexity of model checking algorithms is linear in the structure
sizes.
• Structure size can be exponential!

• Problems
• Demand of large amount of memory.
• Low performance.
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Symbolic CTL Model Checking

• Idea: reformulate model-checking in a symbolic way.

• Concept: represent sets of states and transitions symbolically.

• Approach: binary encoding of states + switching functions for sets.

• Compact representation of switching functions is possible using
binary decision diagrams (BDDs).

• Alternative representation is the conjunctive normal form which is
the basis for SAT-based model checking.
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Switching Functions

• Let Var = {z1, . . . , zm} be a finite set of Boolean variables, m ≥ 0.

• An evaluation is a function η : Var→ { 0, 1 }.
• Let Eval(z1, . . . , zm) denote the set of evaluations for z1, . . . , zm.
• Shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm.

• f : Eval(Var)→ { 0, 1 } is a switching function for
Var = {z1, . . . , zm}.
• Can be defined by Boolean expressions, i.e. (z1 ∨ ¬z2) ∧ z3
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Switching Functions: Definitions

• f1 ∧ f2 = min{ f1, f2 }

• f1 ∨ f2 = max{ f1, f2 }

• f |zi=bi (z1, . . . , zi , . . . , zm) = f (z1, . . . , bi , . . . , zm) (cofactor).

e.g. ((a ∧ b)∨ c)|b=1 = a ∨ c

• f |zi=bi ,...,zk=bk = ((f |zi=bi ) . . .)|zk=bk (iterated cofactor).

• If f |zi=0 6= f |zi=1 then zi is an essential variable.
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Switching Functions: Definitions (1)

• f = (¬z ∧ f |z=0) ∨ (z ∧ f |z=1) (Shannon expansion).

• ∃z . f = f |z=0 ∨ f |z=1 (existential quantification).

e.g. ∃b.((a ∧ b)∨ c) = (c)∨ (a ∨ c) = a ∨ c

• ∀z . f = f |z=0 ∧ f |z=1 (universal quantification).

e.g. ∀b.((a ∧ b)∨ c) = (c)∧ (a ∨ c) = c

• f {z ← y}(s) = f (s{y ← z}) (rename operator).
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Switching Functions − Shannon Expansion

f = (¬z1 ∧ f |z1=0) ∨ (z1 ∧ f |z1=1)

Symbolic CTL Model Checking 385

z1

z2 z2

z3 z3 z3 z3

1 0 1 1 0 0 0 0

Figure 6.20: Binary decision tree for z1 ∧ (¬z2 ∨ z3).

Remark 6.53. Binary Decision Trees

The Shannon expansion is inherent in the representation of switching functions by binary
decision trees. Given a switching function f for some variable set Var, one first fixes an
arbitrary enumeration z1, . . . , zm for the variables in Var and then represents f by a binary
tree of height m such that the two outgoing edges of the inner nodes at level i stand for
the cases zi = 0 (depicted by a dashed line) and zi = 1 (depicted by a solid line). Thus, the
paths from the root to a leaf in that tree represent the evaluations and the corresponding
value. The leaves stand for the function values 0 or 1 of f . That is, given the evaluation
s = [z1 = b1, . . . , zm = bm], then f(s) is the value of the terminal node that is reached
by traversing the tree from the root using the branch zi = bi for the node at level i. The
subtree of node v of the binary decision tree for f and the variable ordering z1, . . . , zm

yields a representation of the iterated cofactor f |z1=b1,...,zi−1=bi−1
(viewed as a switching

function for {zi, . . . , zm}) where z1 = b1, . . ., zi−1 = bi−1 is the sequence of decisions made
along the path from the root to node v.

An example of a binary decision tree for f(z1, z2, z3) = z1 ∧ (¬z2 ∨ z3) is given in Figure
6.20. We use dashed lines for the edges from an inner node for variable z representing the
case z = 0 and solid edges for the case z = 1.

Further operators on switching functions that will be needed later are existential quantifi-
cation over variables and renaming of variables.

Notation 6.54. Existential and Universal Quantification

Let f be a switching function for Var and z ∈ Var. Then, ∃z .f is the switching function
given by:

∃z .f = f |z=0 ∨ f |z=1.
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Symbolic Representation of TS

• Let TS = (S ,→, I ,AP, L) be a “large” finite transition system.

Note: the set of actions is irrelevant and has been omitted, i.e.,
→⊆ S × S .

• For n ≥ dlog |S |e, let injective function

enc : S → { 0, 1 }n

be the encoding of the states by bit vectors of length n.

• Identify:
• Each states s ∈ S has an unique enc(s) ∈ {0, 1}n.
• B ⊆ S by its characteristic function χB : { 0, 1 }n → { 0, 1 }, that is
χB(enc(s)) = 1 if and only if s ∈ B.

• →⊆ S × S by the Boolean function ∆ : { 0, 1 }2n → { 0, 1 }, such
that ∆ (enc(s), enc(s ′)) = 1 if and only if s → s ′.
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Symbolic Representation of TS: Example

Example Symbolic Representation of a Transition System

/0 s0 s1

s3 s2

a

b{a,b}

Switching function: �(x1,x2| {z }
s

,x 01,x
0
2| {z }

s0

) = 1 if and only if s! s0

�(x1,x2,x 01,x
0
2) = (¬x1 ^ ¬x2 ^ ¬x 01 ^ x 02)

_ (¬x1 ^ ¬x2 ^ x 01 ^ x 02)
_ (¬x1 ^ x2 ^ x 01 ^ ¬x 02)
_ . . .
_ (x1 ^ x2 ^ x 01 ^ x 02)

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 100 / 155

• Four states: two Boolean variables needed for encoding, i.e. x1, x2.
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Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 100 / 155

• State encoding on variables x1, x2:

fS = 1
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Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 100 / 155

• Switching function: ∆(x1, x2︸ ︷︷ ︸
s

, x ′1, x
′
2︸ ︷︷ ︸

s′

) = 1 if and only if s → s ′

∆(x1, x2, x
′
1, x
′
2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x ′1 ∧ x ′2)

∨ (¬ x1 ∧ ¬ x2 ∧ x ′1 ∧ x ′2)
∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬ x ′2)
∨ . . .
∨ (x1 ∧ x2 ∧ x ′1 ∧ x ′2)
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Another Encoding Example

ready busy

request	=	1

*

*
request	=	0

• Boolean variables, x1, x2.
• x1 ↔ (request = 1), ¬x1 ↔ (request = 0),
x2 ↔ (state = ready), ¬x2 ↔ (state = busy)
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Another Encoding Example

ready busy

request	=	1

*

*
request	=	0

• Initial state: state = ready −→ x2
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Another Encoding Example

ready busy

request	=	1

*

*
request	=	0

• Transition relation:

∆(~x , ~x ′) = (state = ready ∧ request = 1 ∧ state ′ = busy) ∨(
¬(state = ready ∧ request = 1)∧

((state ′ = ready) ∨ (state ′ = busy)
)
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Another Encoding Example

ready busy

request	=	1

*

*
request	=	0

• Transition relation:

∆(~x , ~x ′) = (x2 ∧ x1 ∧ ¬x ′2) ∨ (¬(x2 ∧ x1) ∧ (x ′2 ∨ ¬x ′2))
= (x2 ∧ x1 ∧ ¬x ′2) ∨ (¬(x2 ∧ x1))
= ¬x ′2 ∨ ¬(x2 ∧ x1)
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Computation of Sat - Review

switch(Φ):

EX Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) 6= ∅ };
∃(Φ1 U Φ2) : T := Sat(Φ2); compute the smallest fixed point

while { s ∈ Sat(Φ1) \ T | Post(s) ∩ T 6= ∅ } 6= ∅ do
let s ∈ { s ∈ Sat(Φ1) \ T | Post(s) ∩ T 6= ∅ };
T := T ∪ { s };

od;
return T ;

EG Φ : T := Sat(Φ); compute the greatest fixed point
while { s ∈ T | Post(s) ∩ T = ∅ } 6= ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch
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Symbolic Model Checking

• Preimage of state set B : Pre(B) = Sat(EXB).

Pre(B) = {s ∈ S | Post(s) ∩ B 6= ∅}

• Take a symbolic representation of a transition system (∆ and χB).

• Pre(B) can be symbolically computed as

χEXB(x) = ∃x ′. ( ∆(x , x ′)︸ ︷︷ ︸
s ′ ∈ Post(s)

∧ χB(x ′)︸ ︷︷ ︸
s′∈B

).

• χB(x ′) is χB after renaming the variables xi to their primed copies
x ′i .
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Preimage Computatioin: ExampleExample Symbolic Representation of a Transition System

/0 s0 s1

s3 s2

a

b{a,b}

Switching function: �(x1,x2| {z }
s

,x 01,x
0
2| {z }

s0

) = 1 if and only if s! s0

�(x1,x2,x 01,x
0
2) = (¬x1 ^ ¬x2 ^ ¬x 01 ^ x 02)

_ (¬x1 ^ ¬x2 ^ x 01 ^ x 02)
_ (¬x1 ^ x2 ^ x 01 ^ ¬x 02)
_ . . .
_ (x1 ^ x2 ^ x 01 ^ x 02)

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 100 / 155

∆(x1, x2, x
′
1, x
′
2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x ′1 ∧ x ′2)

∨ . . .
∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬x ′2)
∨ (x1 ∧ ¬x2 ∧ x ′1 ∧ ¬ x ′2)
∨ (x1 ∧ x2 ∧ x ′1 ∧ ¬x ′2)

Compute Preimage of s2 (x1 ∧ ¬x2)
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∃x ′1, x ′2, ∆(x1, x2, x
′
1, x
′
2) ∧ x ′1 ∧ ¬x ′2 =

∃x ′1, x ′2,




(¬ x1 ∧ ¬ x2 ∧ ¬ x ′1 ∧ x ′2)
∨ . . .
∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬x ′2)
∨ (x1 ∧ ¬x2 ∧ x ′1 ∧ ¬ x ′2)
∨ (x1 ∧ x2 ∧ x ′1 ∧ ¬x ′2)


 ∧ (x ′1 ∧ ¬x ′2)
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∃x ′1, x ′2,




∨ (¬ x1 ∧ x2 ∧ x ′1 ∧ ¬x ′2)
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(¬x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x1 ∧ x2)

=x1 ∨ x2
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Symbolic Computation of Sat(∃(C UB))

f0(x) := χB(x);
j := 0;
repeat
fj+1(x) := fj(x) ∨

(
χC (x) ∧ ∃x ′. ( ∆(x , x ′) ∧ fj(x ′) )

)
;

j := j + 1
until fj(x) = fj−1(x);
return fj(x).

f0
B... C

f1

C

fj
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Symbolic Computation of Sat(EGB)

Compute the largest set T ⊆ B with Post(t) ∩ T 6= ∅ for all t ∈ T

Take T0 = B , repeat

Tj = Tj−1 ∩ {s ∈ S | ∃s ′ ∈ S . s ′ ∈ Post(s) ∧ s ′ ∈ Tj−1 }

until Tj = Tj−1
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Symbolic Computation of Sat(EGB)

f0(x) := χB(x);
j := 0;
repeat
fj+1(x) := fj(x) ∧ ∃x ′. ( ∆(x , x ′) ∧ fj(x ′) );
j := j + 1

until fj(x) = fj−1(x);
return fj(x).

f0 ...f1 fj
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Symbolic Composition

• How to compose TSi = (∆i(~xi , ~xi
′), χIi (~xi)), 0 ≤ i ≤ n?

• Synchronous systems

χI =
∧

0≤i≤n
χIi (~xi) (1)

∆ =
∧

0≤i≤n
∆i(~xi , ~xi

′) (2)

• Asynchronous systems

χI =
∧

0≤i≤n
χIi (~xi) (3)

∆ =
∨

0≤i≤n

(
∆i(~xi , ~xi

′)
∧

0≤j≤n,j 6=i

~xj = ~xj
′
)

(4)
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Synchronous Counter

• Consider a 3-bit synchronous counter (x0, x1, x2)
• χI0 = ¬x0, χI1 = ¬x1, χI2 = ¬x2.
• ∆0 = x ′0 ⇔ ¬x0
• ∆1 = x ′1 ⇔ x0 ⊕ x1
• ∆2 = x ′2 ⇔

(
x2 ∧ (x ′0 = ¬x0)

)
∨
(
x1 ∧ (x2 ⊕ x0)

)

• The system

χI =
∧

0≤i≤2
χIi (~xi) = ¬x0 ∧ ¬x1 ∧ ¬x2 (5)

∆ =
∧

0≤i≤2
∆i(~xi , ~xi

′) (6)
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Peterson’s Mutual Exclusion Algorithm46 Modelling Concurrent Systems

wait1

crit1

noncrit1

b1 := true;x := 2

b1 := false

x=1 ∨ ¬b2

wait1

crit1

noncrit1

b2 := true;x := 1

b2 := false

x=2 ∨ ¬b1

PG1 : PG2 :

Figure 2.9: Program graphs for Peterson’s mutual exclusion algorithm.

P1 loop forever
... (* noncritical actions *)
⟨b1 := true; x := 2⟩; (* request *)
wait until (x = 1 ∨ ¬b2)
do critical section od
b1 := false (* release *)
... (* noncritical actions *)
end loop

Process Pi is represented by program graph PGi over Var = {x, b1, b2 } with locations
noncriti, waiti, and criti, see Figure 2.9 above. The reachable part of the underlying tran-
sition system TSPet = TS(PG1 |||PG2) has the form as indicated in Figure 2.10 (page 47),
where for convenience ni, wi, ci are used for noncriti, waiti, and criti, respectively. The
last digit of the depicted states indicates the evaluation of variable x. For convenience, the
values for bi are not indicated. Its evaluation can directly be deduced from the location
of PGi. Further, b1 = b2 = false is assumed as the initial condition.

Each state in TSPet has the form ⟨loc1, loc2, x, b1, b2⟩. As PGi has three possible locations
and bi and x each can take two different values, the total number of states of TSPet is 72.
Only ten of these states are reachable. Since there is no reachable state with P1 and P2

being in their critical section, it can be concluded that Peterson’s algorithm satisfies the
mutual exclusion property.

In the above program, the multiple assignments b1 := true;x := 2 and b2 := true;x := 1
are considered as indivisible (i.e., atomic) actions. This is indicated by the brackets ⟨

• Encode program locations and propositions

noncrit1 : ¬v1 ∧ ¬v0
wait1 : ¬v1 ∧ v0
crit1 : v1 ∧ ¬v0

x = 1 : ¬w1 ∧ w0

x = 2 : w1 ∧ ¬w0

noncrit2 : ¬u1 ∧ ¬u0
wait2 : ¬u1 ∧ u0
crit2 : u1 ∧ ¬u0

x = 0 : ¬w1 ∧ ¬w0
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Figure 2.9: Program graphs for Peterson’s mutual exclusion algorithm.

P1 loop forever
... (* noncritical actions *)
⟨b1 := true; x := 2⟩; (* request *)
wait until (x = 1 ∨ ¬b2)
do critical section od
b1 := false (* release *)
... (* noncritical actions *)
end loop

Process Pi is represented by program graph PGi over Var = {x, b1, b2 } with locations
noncriti, waiti, and criti, see Figure 2.9 above. The reachable part of the underlying tran-
sition system TSPet = TS(PG1 |||PG2) has the form as indicated in Figure 2.10 (page 47),
where for convenience ni, wi, ci are used for noncriti, waiti, and criti, respectively. The
last digit of the depicted states indicates the evaluation of variable x. For convenience, the
values for bi are not indicated. Its evaluation can directly be deduced from the location
of PGi. Further, b1 = b2 = false is assumed as the initial condition.

Each state in TSPet has the form ⟨loc1, loc2, x, b1, b2⟩. As PGi has three possible locations
and bi and x each can take two different values, the total number of states of TSPet is 72.
Only ten of these states are reachable. Since there is no reachable state with P1 and P2

being in their critical section, it can be concluded that Peterson’s algorithm satisfies the
mutual exclusion property.

In the above program, the multiple assignments b1 := true;x := 2 and b2 := true;x := 1
are considered as indivisible (i.e., atomic) actions. This is indicated by the brackets ⟨

• Initial state:
• Global variable: ¬w1 ∧ ¬w0 (x = 0)
• Local variables of PG1: ¬v1 ∧ ¬v0 ∧ ¬b1
• Local variables of PG2: ¬u1 ∧ ¬u0 ∧ ¬b2
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Figure 2.9: Program graphs for Peterson’s mutual exclusion algorithm.

P1 loop forever
... (* noncritical actions *)
⟨b1 := true; x := 2⟩; (* request *)
wait until (x = 1 ∨ ¬b2)
do critical section od
b1 := false (* release *)
... (* noncritical actions *)
end loop

Process Pi is represented by program graph PGi over Var = {x, b1, b2 } with locations
noncriti, waiti, and criti, see Figure 2.9 above. The reachable part of the underlying tran-
sition system TSPet = TS(PG1 |||PG2) has the form as indicated in Figure 2.10 (page 47),
where for convenience ni, wi, ci are used for noncriti, waiti, and criti, respectively. The
last digit of the depicted states indicates the evaluation of variable x. For convenience, the
values for bi are not indicated. Its evaluation can directly be deduced from the location
of PGi. Further, b1 = b2 = false is assumed as the initial condition.

Each state in TSPet has the form ⟨loc1, loc2, x, b1, b2⟩. As PGi has three possible locations
and bi and x each can take two different values, the total number of states of TSPet is 72.
Only ten of these states are reachable. Since there is no reachable state with P1 and P2

being in their critical section, it can be concluded that Peterson’s algorithm satisfies the
mutual exclusion property.

In the above program, the multiple assignments b1 := true;x := 2 and b2 := true;x := 1
are considered as indivisible (i.e., atomic) actions. This is indicated by the brackets ⟨

• Transition relation of PG1:
• noncrit1 ↪→ wait1: ¬v1 ∧ ¬v0 ∧ ¬v1′ ∧ v0

′ ∧ b1
′ ∧ w ′1 ∧ ¬w0

′

• wait1 ↪→ crit1:
• crit1 ↪→ wait1:
• ∆PG1 = ∆noncrit1↪→wait1 ∨∆wait1↪→crit1 ∨∆crit1↪→wait1
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