
A	Tutorial	on	Model	Checker	SPIN

Instructor:	Hao	Zheng
Department	of	Computer	Science	and	Engineering	

University	of	South	Florida
Tampa,	FL	33620

Email:	haozheng@usf.edu
Phone:	(813)974-4757
Fax:	(813)974-5456	

1

Overview	of	Concurrent	Systems

2

Shared	Memory	Model

3

Distributed	Memory	Model	

4

SPIN	&	PROMELA

• SPIN	is	an	explicit	model	checker
– State	space	represented	as	a	directed	graph
– Can	also	perform	random	simulation

• PROMELA	is	the	modeling	language	for	SPIN
• A	model	is	a	set	of	sequential	processes	
communicating	over	
– Global	variables	for	modeling	shared	memory	
structures

– Channels for	modeling	distributed	structures
• PROMELA	is	NOT	a	programming	language

5

Download	&	Install	SPIN

• Go	to	http://spinroot.com/

6

7

Modeling	Language	Promela – Overview

The	“Hello	World”	Example

8

/* hello.pml */
active proctype hello()
{
printf(“Hello world!\n”);

}

> spin hello.pml
Hello world

9

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 10

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 19

Hello World!
/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {

printf("Hello process, my pid is: %d\n", _pid);
}
init {

int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

$ spin -n2 hello.pr
init process, my pid is: 1

last pid was: 2
Hello process, my pid is: 0

Hello process, my pid is: 2
3 processes created

running SPIN in
random simulation mode

random seed

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20

Basic types

bit turn=1; [0..1]
bool flag; [0..1]
byte counter; [0..255]
short s; [-216-1.. 216 –1]
int msg; [-232-1.. 232 –1]

Arrays
byte a[27];
bit flags[4];

Typedef (records)
typedef Record {

short f1;
byte f2;

}
Record rr;
rr.f1 = ..

Variables and Types (1)

• Five different (integer)
basic types.

• Arrays

• Records (structs)

• Type conflicts are detected
at runtime.

• Default initial value of basic
variables (local and global)
is 0.

array
indicing

start at 0

variable
declaration

instantiate	a	copy	of	process	Hello

10

Promela Model	Structure

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 8

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 15

mtype = {MSG, ACK};
chan toS = ...
chan toR = ...
bool flag;

proctype Sender() {
...

}

proctype Receiver() {
...

}

init {
...

}

Promela Model

• Promela model consist of:
– type declarations
– channel declarations
– variable declarations
– process declarations
– [init process]

• A Promela model corresponds
with a (usually very large, but)
finite transition system, so
– no unbounded data
– no unbounded channels
– no unbounded processes
– no unbounded process creation

process body

creates processes

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 16

Processes (1)

• A process type (proctype) consist of
– a name
– a list of formal parameters
– local variable declarations
– body

proctype Sender(chan in; chan out) {
bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi

od
}

name

local variables

body

formal parameters

The body consist of a
sequence of statements.

11

Processes	– 1	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 8

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 15

mtype = {MSG, ACK};
chan toS = ...
chan toR = ...
bool flag;

proctype Sender() {
...

}

proctype Receiver() {
...

}

init {
...

}

Promela Model

• Promela model consist of:
– type declarations
– channel declarations
– variable declarations
– process declarations
– [init process]

• A Promela model corresponds
with a (usually very large, but)
finite transition system, so
– no unbounded data
– no unbounded channels
– no unbounded processes
– no unbounded process creation

process body

creates processes

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 16

Processes (1)

• A process type (proctype) consist of
– a name
– a list of formal parameters
– local variable declarations
– body

proctype Sender(chan in; chan out) {
bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi

od
}

name

local variables

body

formal parameters

The body consist of a
sequence of statements.

12

Processes	– 2	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 9

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 17

Processes (2)

• A process
– is defined by a proctype definition
– executes concurrently with all other processes,

independent of speed of behaviour
– communicate with other processes

• using global (shared) variables
• using channels

• There may be several processes of the same type.

• Each process has its own local state:
– process counter (location within the proctype)
– contents of the local variables

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 18

proctype Foo(byte x) {
...

}

init {
int pid2 = run Foo(2);
run Foo(27);

}

active[3] proctype Bar() {
...

}

Processes (3)

� Process are created using
the run statement (which
returns the process id).

� Processes can be created
at any point in the execution
(within any process).

� Processes start executing
after the run statement.

� Processes can also be
created by adding active
in front of the proctype
declaration.

number of procs. (opt.)

parameters will be
initialised to 0

13

A	Simple	Multi-Thread	Program

byte	a;	 //	global	variable

active	proctype p1()	{
byte	b	=	0;		//	local	variable
a=1;	
b=a+b

}	

active	proctype p2()	{	
a=2;	

}	

14

Processes	– 3	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 9

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 17

Processes (2)

• A process
– is defined by a proctype definition
– executes concurrently with all other processes,

independent of speed of behaviour
– communicate with other processes

• using global (shared) variables
• using channels

• There may be several processes of the same type.

• Each process has its own local state:
– process counter (location within the proctype)
– contents of the local variables

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 18

proctype Foo(byte x) {
...

}

init {
int pid2 = run Foo(2);
run Foo(27);

}

active[3] proctype Bar() {
...

}

Processes (3)

� Process are created using
the run statement (which
returns the process id).

� Processes can be created
at any point in the execution
(within any process).

� Processes start executing
after the run statement.

� Processes can also be
created by adding active
in front of the proctype
declaration.

number of procs. (opt.)

parameters will be
initialised to 0

15

Variables	&	Types	– 1	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 10

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 19

Hello World!
/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {

printf("Hello process, my pid is: %d\n", _pid);
}
init {

int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

$ spin -n2 hello.pr
init process, my pid is: 1

last pid was: 2
Hello process, my pid is: 0

Hello process, my pid is: 2
3 processes created

running SPIN in
random simulation mode

random seed

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20

Basic types

bit turn=1; [0..1]
bool flag; [0..1]
byte counter; [0..255]
short s; [-216-1.. 216 –1]
int msg; [-232-1.. 232 –1]

Arrays
byte a[27];
bit flags[4];

Typedef (records)
typedef Record {

short f1;
byte f2;

}
Record rr;
rr.f1 = ..

Variables and Types (1)

• Five different (integer)
basic types.

• Arrays

• Records (structs)

• Type conflicts are detected
at runtime.

• Default initial value of basic
variables (local and global)
is 0.

array
indicing

start at 0

variable
declaration

16

Variables	&	Types	– 2	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

17

Statements	– Specifying	Behavior	

18

Statements	– 1

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

19

Peterson’s	Algorithm	for	Mutual	Exclusion	

bool	turn,	flag[2];	
byte	cnt;	
active	[2]	proctype proc()	{	

pid i,j;	
i =	_pid;	 //	acquire	pid of	the	calling	proc
j	=	1	- _pid;	//	pid of	the	other	process

again: flag[i]=true;
turn=i;
(flag[j]==false	||	turn	!=i)	->	
cnt++;				//enter	critical	section
assert(cnt==1);	//only	one	proc	can	be	in	critical	section
cnt - -;			//exit	critical	section
goto again;	

}	

20

Statements	– 2

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.
– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be
created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not
evaluated during verification, of course).

int x;
proctype Aap()
{

int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.
– If <expr> evaluates to zero, SPIN will exit with an error, as

the <expr> “has been violated”.
– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.
proctype monitor() {

assert(n <= 3);
}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

21

Statement	– goto

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 28

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 55

Alternating Bit Protocol (3)

• abp-1.pr
– perfect lines

• abp-2.pr
– stealing daemon (models lossy channels)
– how do we know that the protocol works correctly?

• abp-3.pr
– model different messages by a sequence number
– assert that the protocol works correctly
– how can we be sure that different messages are being

transmitted?

How large should MAX be
such that we are sure that
the ABP works correctly?

only
three!

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 56

goto

goto label
– transfers execution to label
– each Promela statement might be labelled
– quite useful in modelling communication protocols

wait_ack:
if
:: B?ACK -> ab=1-ab ; goto success
:: ChunkTimeout?SHAKE ->

if
:: (rc < MAX) -> rc++; F!(i==1),(i==n),ab,d[i];

goto wait_ack
:: (rc >= MAX) -> goto error
fi

fi ;

Timeout modelled by a channel.

Part of model of BRP

22

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 16

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {

do

:: turn[i] = 1;

turn[i] = turn[1-i] + 1;

(turn[1-i] == 0) || (turn[i] < turn[1-i]);

mutex++;

mutex--;

turn[i] = 0;

od

}

proctype monitor() { assert(mutex != 2); }

init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/SPIN):
turn[i] will overrun after 255.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.

• The operator “->” is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

if

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

fi;

inspired by:
Dijkstra’s guarded
command language

23

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

IF-Statement

24

if
:: a	>	b	 ->	c++
:: else ->	c=0
fi

if
:: a	>	b	 ->	c++
:: true ->	c=0
fi

• The else branch is selected only when all other
branches are not selected

• The true branch is always selected
• The above if statements are always executable

25

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Statement	do-od

26

/* Traffic light controller */
mtype = {RED, GREEN YELLOW};

active proctype TrafficLight() {
do
:: (state == RED) -> state = GREEN;
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
od

}

enumeration type

27

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.
– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be
created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not
evaluated during verification, of course).

int x;
proctype Aap()
{

int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.
– If <expr> evaluates to zero, SPIN will exit with an error, as

the <expr> “has been violated”.
– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.
proctype monitor() {

assert(n <= 3);
}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Conditional	Expressions

28

max	=	(a	>	b	->	a	:	b)

• Conditional expressions must be contained in
parentheses.

• The following causes syntax errors
max	=	a	>	b	->	a	:	b

29

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 23

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 45

Promela Model

• A Promela model consist of:

– type declarations

– channel declarations

– global variable declarations

– process declarations

– [init process]

Basic SPIN

behaviour of the processes:

local variables + statements

can be accessed

by all processes

initialises variables and

starts processes

chan ch = [dim] of {type, …}
asynchronous: dim > 0
rendez-vous: dim == 0

mtype, typedefs,

constants

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 46

Promela statements

skip always executable
assert(<expr>) always executable
expression executable if not zero
assignment always executable
if executable if at least one guard is executable
do executable if at least one guard is executable
break always executable (exits do-statement)
send (ch!) executable if channel ch is not full
receive (ch?) executable if channel ch is not empty

are either executable

or blocked

Basic SPIN

30

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 23

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 45

Promela Model

• A Promela model consist of:

– type declarations

– channel declarations

– global variable declarations

– process declarations

– [init process]

Basic SPIN

behaviour of the processes:

local variables + statements

can be accessed

by all processes

initialises variables and

starts processes

chan ch = [dim] of {type, …}
asynchronous: dim > 0
rendez-vous: dim == 0

mtype, typedefs,

constants

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 46

Promela statements

skip always executable
assert(<expr>) always executable
expression executable if not zero
assignment always executable
if executable if at least one guard is executable
do executable if at least one guard is executable
break always executable (exits do-statement)
send (ch!) executable if channel ch is not full
receive (ch?) executable if channel ch is not empty

are either executable

or blocked

Basic SPIN

31

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 29

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 57

unless

{ <stats> } unless { guard; <stats> }

– Statements in <stats> are executed until the first
statement (guard) in the escape sequence becomes
executable.

– resembles exception handling in languages like Java
– Example:

proctype MicroProcessor() {
{

...
/* execute normal instructions */

}
unless { port ? INTERRUPT; ... }

}

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 58

macros – cpp preprocessor
• Promela uses cpp, the C preprocessor to preprocess

Promela models. This is useful to define:

– constants

– macros

– conditional Promela model fragments

All cpp commands start with a hash:
#define, #ifdef, #include, etc.#define MAX 4

#define RESET_ARRAY(a) \
d_step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

#define LOSSY 1
…
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif

A	FSM	Example

32

33

#define cooling 0
#define heating 1

proctype thermalStat(byte temp) {
byte state = cooling;
bool heaton = false;
bool heatoff = false;
do
:: state==cooling && temp <= 18 ->

heaton = true;
heatoff = false;
state = heating;

:: state==heating && temp >= 22 ->
heaton = false;
heatoff = true;
state = cooling;

od;
}

proctype thermalStat(byte temp) {
bool heaton = false;
bool heatoff = false;

cooling: temp <= 18 ->
heaton = true;
heatoff = false;
goto heating;

heating: temp >= 22 ->
heaton = false;
heatoff = true;
goto cooling;

}

34

Another	Example
int x = 0;

proctype Inc() { do
::true -> if :: (x < 200) -> x = x+1 fi
od

}
proctype Dec() { do

:: true -> if :: (x > 0) -> x = x-1 fi
od

}
proctype Reset() {do

:: true -> if :: (x == 200) -> x = 0 fi
od

}
proctype Check() { assert (x >= 0 && x <= 200) }

init { atomic {
run Inc(); run Dec(); run Reset(); run Ceck();

}}

35

Operational	Semantics

Interleaving

• Processes	execute	concurrently
• A	process	is	suspended	if	

– next	statement	is	blocked
• Only	one	process	executes	at	a	time.

– Process	executions	are	interleaved
• Execution	scheduling	is	non-deterministic.
• Each	basic	statement	executes	atomically

– e.g.	a = 5;
• Each	process	may	have	more	than	one	statements	
enabled	to	execute.
– Selection	is	non-deterministic

36

Why	this	Example	Fails?

37

int x = 0;

proctype Inc() { do
::true -> if :: (x < 200) -> x = x+1 fi
od

}
proctype Dec() { do

:: true -> if :: (x > 0) -> x = x-1 fi
od

}
proctype Reset() {do

:: true -> if :: (x == 200) -> x = 0 fi
od

}
proctype Check() { assert (x >= 0 && x <= 200) }

init { atomic {
run Inc(); run Dec(); run Reset(); run Ceck();

}}

What	happens	when	x	=	200?

Why	this	Example	Fails?

38

int x = 0;

proctype Inc() { do
::true -> if :: (x < 200) -> x = x+1 fi
od

}
proctype Dec() { do

:: true -> if :: (x > 0) -> x = x-1 fi
od

}
proctype Reset() {do

:: true -> if :: (x == 200) -> x = 0 fi
od

}
proctype Check() { assert (x >= 0 && x <= 200) }

init { atomic {
run Inc(); run Dec(); run Reset(); run Ceck();

}}

x	==	0

Why	this	Example	Fails?

39

int x = 0;

proctype Inc() { do
::true -> if :: (x < 200) -> x = x+1 fi
od

}
proctype Dec() { do

:: true -> if :: (x > 0) -> x = x-1 fi
od

}
proctype Reset() {do

:: true -> if :: (x == 200) -> x = 0 fi
od

}
proctype Check() { assert (x >= 0 && x <= 200) }

init { atomic {
run Inc(); run Dec(); run Reset(); run Ceck();

}}

x	==	-1

Atomic	Sequences

40

atomic { stmt1; stmt2, ..., stmtn}

• Group statements in an atomic sequence; all statements are executed in
a single step.

• If stmti is blocked, the sequence is suspended.

d_step { stmt1; stmt2, ..., stmtn}

• More efficient than atomic: no intermediate states are
generated.

• Only the first statement in the sequence stmt1 can be
blocked.

• It is a runtime error if stmti (i > 1) is blocked.
• No goto or break statements in the sequence.

Atomic	Sequences:	Example

41

int x = 0;

proctype Inc() {
do
:: true -> atomic { if :: (x < 200) -> x = x+1 fi }
od

}
proctype Dec() {

do
:: true -> atomic { if :: (x > 0) -> x = x-1 fi }
od

}
proctype Reset() {

do
:: true -> atomic { if :: (x == 200) -> x = 0 fi }
od

}
...

Interleaving	or	Not?

• Using	atomic reduces	interleavings
– Can	eliminate	errors	caused	by	interleavings
– Can	also	reduce	state	space	significantly
– e.g.	8400	states	(no	atomic)	vs	4010	states	(w.	atomic)	
for	the	previous	example.

• Whether	to	use	atomic	is	a	modeling	decision.	
– Need	to	consider	the	granularity	of	execution	of	
individual	threads.

42

Conditional	Execution	of	Processes

• Process	A()	is	executable	in	any	global	state	where	
(a>b)	evaluates	to	true

• Can	be	used	to	schedule	executions	of	process
– Avoid	non-deterministic	interleavings

43

byte	a,	b;	
active proctype A()	provided (a	>	b)		{	

...	
}

System	States

• A	system	state	is	uniquely	defined	by	a	state	
vector,	which	consists	of	
– All	global	variables
– Contents	of	all	message	channels
– Local	states	of	all	processes

• All	local	variables
• Process	counters

• It	is	important	to	minimize	size of	state	vector

44

45

Modeling	Inter-Process	Communications

46

Communication	via	Shared	Variables

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 15

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 ||
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}
active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 ||
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

47

Communications	by	Channels

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 18

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

do-statement (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36

Communication (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving

48

Communications	by	Channels

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

49

Communications	by	Channels

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37

Communication (2)

• Communication between processes is via channels:
– message passing
– rendez-vous synchronisation (handshake)

• Both are defined as channels:
chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

type of the elements that will be
transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

name of
the channel

also called:
queue or buffer

array of
channels

chan c = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38

Communication (3)

• channel = FIFO-buffer (for dim>0)

! Sending - putting a message into a channel
ch ! <expr1>, <expr2>, … <exprn>;

• The values of <expri> should correspond with the types of the
channel declaration.

• A send-statement is executable if the channel is not full.

? Receiving - getting a message out of a channel
ch ? <var1>, <var2>, … <varn>;

• If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;
• If the channel is not empty and the message at the front of the

channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

message passing

message testing

<var> +
<const>
can be
mixed

50

Communications	by	Channels

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 20

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 39

Communication (4)

• Rendez-vous communication
<dim> == 0
The number of elements in the channel is now zero.

– If send ch! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

– Both statements will “handshake” and together
take the transition.

• Example:
chan ch = [0] of {bit, byte};

– P wants to do ch ! 1, 3+7
– Q wants to do ch ? 1, x
– Then after the communication, x will have the value 10.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 40

Alternating Bit Protocol (1)

• Alternating Bit Protocol

– To every message, the sender adds a bit.

– The receiver acknowledges each message by sending
the received bit back.

– To receiver only excepts messages with a bit that it
excepted to receive.

– If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

DEMO

Predefined	Functions	for	Channels

• len(c):	returns	the	number	of	messages	in	c.
• empty(c):	return	true	if	channel	c is	empty.
• nempty(c):	return	true	if	channel	c is	not	empty.

– Writing !empty(c) not	allowed	in	Promela.
• full(c):	return	true	if	channel	c contains	the	maximal	
number	of	messages.

• nfull(c):	return	true	if	channel	c is	not	full.
– Writing	!full(c) not	allowed	in	Promela.

• More details on predefined functions can be found at

51

http://spinroot.com/spin/Man/promela.html#section5

52

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

Randez-vous
Communication
Example

redch! ch ?	color,	time,	flash;

53

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

Randez-vous
Communication
Example

redch! ch ?	color,	time,	flash;

54

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

Randez-vous
Communication
Example

redch! ch ?	color,	time,	flash;

55

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

7.2 Rendezvous channels 109

Listing 7.2. Simple program with rendezvous

1 mtype { red, yellow, green };
2 chan ch = [0] of { mtype, byte, bool };
3

4 active proctype Sender() {
5 ch ! red, 20, false;
6 printf("Sent message\n")
7 }
8

9 active proctype Receiver() {
10 mtype color;
11 byte time;
12 bool flash;
13 ch ? color, time, flash;
14 printf("Received message %e, %d, %d\n",
15 color, time, flash)
16 }

7.2 Rendezvous channels

A channel declared with a capacity of zero is a rendezvous channel. This means
that the transfer of the message from the sender (a process with a send state-
ment) to the receiver (a process with a receive statement) is synchronous and
is executed as a single atomic operation. For the program in Listing 7.2, the
atomic transfer is suggested by the arrow in the following diagram that goes
directly from the send statement to the receive statement, so that there is no
state between sending and receiving:

...
(green,20,false)

...

...
(color,time,flash)

...

-

Sender Receiver

When the location counter of the sender is at the send statement (line 5),
it is said to offer to engage in a rendezvous. If the location counter of the
receiver is at the matching receive statement (line 13), the rendezvous can
be accepted and the values of the data in the send statement are copied to the

Randez-vous
Communication
Example

redch! ch ?	color,	time,	flash;

56

Use	of	SPIN

Architecture	of	SPIN

57

Figure 2.1: The architecture of Spin

5 / 31

Promela
program

Generation Verifier
(C)✲

Compilation Verifier
(executable)✲

Trail Report

❄

Execution

❄

xyz.pml pan.c a.out

58

How	to	Run	SPIN

/* Use SPIN to generate a verification model in pan.c */
../Src6.2.5/spin -a model.pml

/* Compile pan.c to an executable */
gcc -O2 -DNOFAIR -DNOREDUCE -DSAFETY -o pan pan.c

/* Run the executable */
./pan

SPIN	Output

59

pan:1: invalid end state (at depth 188)
pan: wrote hw3-p2.pml.trail

(Spin Version 6.2.5 -- 3 May 2013)
Warning: Search not completed

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 36 byte, depth reached 263, errors: 1
453 states, stored
192 states, matched
645 transitions (= stored+matched)
65 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.024 equivalent memory usage for states (stored*(State-vector + overhead))
0.285 actual memory usage for states

128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)

128.653 total actual memory usage

SPIN	Output:	Dissection

60

pan:1: invalid end state (at depth 188)
pan: wrote hw3-p2.pml.trail

(Spin Version 6.2.5 -- 3 May 2013)
Warning: Search not completed

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

SPIN	Output:	Dissection

61

State-vector 36 byte, depth reached 263, errors: 1
453 states, stored
192 states, matched
645 transitions (= stored+matched)
65 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.024 equivalent memory usage for states (...)
0.285 actual memory usage for states

128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)

128.653 total actual memory usage

62

Specification	of	Requirements

63

Properties	– 1

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 30

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 59

inline init_array(a) {
d_step {
i=0;
do
:: i<N -> a[i] = 0; i++
:: else -> break
od;
i=0;

}
}

inline – poor man’s procedures
• Promela also has its own macro-expansion feature using

the inline-construct.

ಥ HUURU�PHVVDJHV�DUH�PRUH�XVHIXO WKDQ�ZKHQ�XVLQJ�#define
ಥ FDQQRW EH�XVHG�DV�H[SUHVVLRQ
ಥ DOO�YDULDEOHV VKRXOG�EH�GHFODUHG�VRPHZKHUH�HOVH

Should be declared somewhere
else (probably as a local variable).

Be sure to reset temporary variables.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 60

Properties (1)

• With SPIN one may check the following type of properties:

– deadlocks (invalid endstates)

– assertions

– unreachable code

– LTL formulae

– liveness properties
• non-progress cycles (livelocks)
• acceptance cycles

I |M
 0RGHO�FKHFNLQJ�WRROV�DXWRPDWLFDOO\ YHULI\�ZKHWKHU

KROGV��ZKHUH�M LV�D��ILQLWH�VWDWH��PRGHO RI�D�V\VWHP�DQG�
SURSHUW\ I LV�VWDWHG�LQ�VRPH�IRUPDO�QRWDWLRQ�

(M includes all execution traces)

64

Properties	– 2	

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 31

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 61

Properties (2)

safety property
– “nothing bad ever happens”

– invariant
x is always less than 5

– deadlock freedom
the system never reaches a
state where no actions are
possible

– SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is
satisfied.

liveness property
– “something good will eventually

happen”

– termination
the system will eventually
terminate

– response
if action X occurs then
eventually action Y will occur

– SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

Historical
Classification

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 62

Properties (3)

• LTL formulae are used to specify liveness properties.
LTL { propositional logic + temporal operators
– []P always P
– <>P eventually P
– P U Q P is true until Q becomes true

• Some LTL patterns
– invariance [] (p)
– response [] ((p) -> (<> (q)))
– precedence [] ((p) -> ((q) U (r)))
– objective [] ((p) -> <>((q) || (r)))

Xspin contains a special
“LTL Manager” to edit,

save and load LTL properties.

65

LTL	Specification

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 31

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 61

Properties (2)

safety property
– “nothing bad ever happens”

– invariant
x is always less than 5

– deadlock freedom
the system never reaches a
state where no actions are
possible

– SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is
satisfied.

liveness property
– “something good will eventually

happen”

– termination
the system will eventually
terminate

– response
if action X occurs then
eventually action Y will occur

– SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

Historical
Classification

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 62

Properties (3)

• LTL formulae are used to specify liveness properties.
LTL { propositional logic + temporal operators
– []P always P
– <>P eventually P
– P U Q P is true until Q becomes true

• Some LTL patterns
– invariance [] (p)
– response [] ((p) -> (<> (q)))
– precedence [] ((p) -> ((q) U (r)))
– objective [] ((p) -> <>((q) || (r)))

Xspin contains a special
“LTL Manager” to edit,

save and load LTL properties.

Checking	LTL	Properties	in	SPIN

66

G(a ! Fb)

[](a -> <>b)

Operator Math SPIN

NOT ¬ !

AND ^ &&

OR _ ||
implies ! ->

equal $ <->

always G []

eventually F <>

until U U

LTL formula

In SPIN

release R R

Checking LTL Properties in SPIN

67

Use	the	following	command	to	generate	a	pan	verifier	
including	the	LTL	formula	to	check.

spin	–a	–f	`[]p’	x.pml

ltl [name]	'{'		formula	'}'

Inline LTL formulas must be placed outside all
proctype or init process.

Inline	properties	are	taken	as	positive	properties	that	
must	be	satisfied	by	the	model.

Checking LTL Properties in SPIN

68

http://spinroot.com/spin/Man/ltl.html

• Store a LTL formula in a one-line file
• Ex: Store !([]p) in file model.prp
• Use the following command to compile the model.

• Note that the inline formula is positive while the
formula provided on the commandline or from a
file is negative.

spin –a –F model.prp model.pml

