Modeling Concurrent Systems

Hao Zheng

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
Email: haozheng@usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Hao Zheng (CSE, USF) Comp Sys Verification 1/57

Overview

0 Modeling Formalisms
@ Transition Systems
@ Modeling HW
@ Modeling SW

e Parallel Composition
@ Composing Independent Processes
@ Composing Concurrent Processes: Shared Variables
@ Composing Concurrent Processes: Handshaking
@ Synchronous Composition

9 Understanding State Space Explosion

Hao Zheng (CSE, USF) Comp Sys Verification 2/57

Principle of Model Checking, Chapter 2]

Hao Zheng (CSE, USF) Comp Sys Verification 3/57

0 Modeling Formalisms
@ Transition Systems
@ Modeling HW
@ Modeling SW

Hao Zheng (CSE, USF) Comp Sys Verification 4/57

2.1 Transition Systems

Transition system is a common semantic model to describe
computation/communcation in HW/SW systems.

Definition 2.1 Transition Systems
A transition system TS is a tuple (S,Act,—,I1,AP, L) where:
e Sis a set of states.

Actis a set of actions.
—>C S X Act x S is a transition relation (denoted s LN s).

I C S is a set of initial states.

AP is a set of atomic propositions.

e L:S— 247 is alabeling function.

e Note that S and Act can be finite or countably infinite.

Hao Zheng (CSE, USF) Comp Sys Verification 5/57

Example 2.2 Beverage Vending Machine

get_soda

get _beer

insert_coin

select

e S ={pay, select,soda,beer}
e Act = {insert_coin,get_soda, get_beer, 1}

o I ={pay}
e AP=S
o L(s) = {s}

Hao Zheng (CSE, USF) Comp Sys Verification 6/57

Example 2.2 Beverage Vending Machine

get_soda

get _beer

insert_coin

select

S = {pay, select, soda, beer}

e Act = {insert_coin,get_soda, get_beer, 1}

1= {pay}

AP = {paid, drink}

L(pay) = 0, L(select) = {paid},L(soda) = L(beer) = {paid, drink}

Hao Zheng (CSE, USF) Comp Sys Verification 6/57

The Role of Nondeterminism

e Used to model concurrency by interleaving.

e No assumption about the relative speed of processes.
e Used to model implementation freedom.

e Only describes what a system should do, not how.

e Used to model under-specified systems, or abstractions of real
systems.

e Use incomplete information.

Hao Zheng (CSE, USF) Comp Sys Verification 7157

Definition 2.3 Direct Successors and Predecessors

Post(s, o) = { ses| sy }, Post(s) = |J Post(s,a)
acAct
Pre(s,0) = {S’ES | s’&s}, Pre(s) = |J Pre(s,o).
acAct
Post(C,a) = | J Post(s,a), Post(C) = | J Post(s) for C CS.
seC seC
Pre(C,o) = | J Pre(s,a), Pre(C) = | Pre(s) for CCS.
seC seC

Definition 2.4 Terminal State

State s is called terminal if and only if Post(s) = 0.

Hao Zheng (CSE, USF) Comp Sys Verification 8/57

Successors and Predecessors: Example

get_soda get_beer

insert_coin

select

e Post(pay,insert_coin) = {select}
e Pre(pay,get _soda) = {soda}
e Pre(pay) = {soda, beer}

Hao Zheng (CSE, USF) Comp Sys Verification 9/57

Definition 2.5 Deterministic Transition

Systems

e Transition system TS = (S, Act,—,I,AP, L) is action-deterministic iff:

|[I| <1 and |Post(s,a)| < 1 foralls,o

e No more than 2 successor states due to the same action
e Transition system TS = (S, Act,—,1,AP, L) is AP-deterministic iff:

1] <1 and | Post(s) N {s’ € S|L(s') =A}| <1 foralls,Ac2”P

Vv
equally labeled successors of s

e No more than 2 successor states of same labeling

Hao Zheng (CSE, USF) Comp Sys Verification 10/57

Deterministic Transition Systems: Example

get_soda get _beer

insert_coin

select

e |s this TS action-deterministic?

Hao Zheng (CSE, USF) Comp Sys Verification 11/57

e An execution (run) is a linear sequence of state transitions.

e Used to describe dynamic behavior of transition systems.

Definition 2.6 Execution Fragments

¢ A finite execution fragment p of TS is an alternating sequence of
states and actions ending with a state:

o 9
= 5001 510 ...0Q s, such that s; Ll)s,- forall0 <i<n.
+

e An infinite execution fragment p of TS is an infinite, alternating
sequence of states and actions:

o .
= SoO1 5100 5203... SUC at s; A Si+1 T0r a ST
Oy 51 0l 52 O h that s; —— s;,.1 forall 0 <

Hao Zheng (CSE, USF) Comp Sys Verification 12/57

Definition 2.7 Maximal and Initial Execution
An execution of TS is an initial, maximal execution fragment

e An execution fragment is initial if so € 1.

e A maximal execution fragment can be finite, ending in a terminal state,
or infinite.

Definition 2.9 Executions

An execution of transition system 75 is an initial, maximal execution
fragment.

Hao Zheng (CSE, USF) Comp Sys Verification 13/57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda — pay — select — soda — ...
T sget] T bget
p2 = select — soda —g——>pay oM select = beer =% ..
coin T sget coin T
p3 = pay — select = soda — pay — select — soda

e Which execution fragments are initial?

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda — pay — select — soda — ...
T sget i T bget
p2 = select — soda g—)pay O, select =5 beer =2 ..
coin T sget coin T
p3 = pay — select — soda — pay — select — soda

e Which execution fragments are initial? p; and p3

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda — pay — select — soda — ...
T sget coin T bget
p2 = select — soda f——>pay oM select <5 beer 5= ..
coin T sget coin T
p3 = pay — select = soda — pay — select — soda

e Which execution fragments are initial? p; and p3
e Which execution fragments are maximal?

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda —— pay — select — soda — ...
T sget] T bget
p2 = select — soda g—>pay O, select =5 beer =22 ..
coin T sget coin T
p3 = pay — select — soda — pay — select — soda

e Which execution fragments are initial? p; and p3
e Which execution fragments are maximal? p; and p;

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda — pay — select — soda — ...
T sget in T bget
p2 = select — soda —5—>pay L, select — beer ——» . ..
coin T sget coin T
p3 = pay — select = soda — pay — select — soda

e Which execution fragments are initial? p; and p3
e Which execution fragments are maximal? p; and p;
e Which execution fragments are “executions”?

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Example 2.8 Executions of the Vending

W ET I

coin T sget coin T sget
p1 = pay — select = soda — pay — select — soda — ...
T sget j T bget
p2 = select — soda g—>pay O, select =5 beer =52 ..
coin T sget coin T
p3 = pay — select = soda — pay — select — soda

e Which execution fragments are initial? p; and p3
e Which execution fragments are maximal? p; and p;
e Which execution fragments are “executions”? p;

Hao Zheng (CSE, USF) Comp Sys Verification 14 /57

Executions: Another Example

get_soda

get_beer

insert_coin

(error)

e An execution

insert _coin
P4 = pay ——— select P error

Hao Zheng (CSE, USF) Comp Sys Verification 15/57

Definition 2.10 Reachable States

e State s € S is called reachable in TS if there exists an initial, finite
execution fragment (execution)

O (05 Oy
So — S| — ... DB os, =s.

e Reach(TS) denotes the set of all reachable states in TS.

get_soda get_beer

insert_coin

Hao Zheng (CSE, USF) Comp Sys Verification 16/57

2.1.2 Modeling Sequential Circuits

€ T EXORI—{NOT [
o ——
L] {r} {xny}

e Transition system representation of a simple hardware circuit.
e Input variable x, output variable y, and register r.

e Output function —(x @ r) and register evaluation function x\ r.
e Actions in Act are irrelevant here.

Hao Zheng (CSE, USF) Comp Sys Verification 17/57

Atomic Propositions

Consider three possible state-labelings:

o Let AP={x,y,r}
e L((x=0,r=1))={r}and L({(x=1,r=1)) ={x,r,y}
e L({x=0,r=0))={y}and L({x=1,r=0)) ={x}
e Property e.g., “once the register is one, it remains one”

e Let AP = {x,y} — the register evaluations are now “invisible”
o L((x=0,r=1))=0and L((x=1,r=1)) ={x,y}
e L((x=0,r=0))={y}and L({x=1,r=0)) = {x}
e Property e.g., “the output bit y is set infinitely often”

e Let AP ={x,r} —output y can be derived from x and r.
e L((x=0,r=1))={ tand L({(x=1,r=1))={ }
e L({x=0,r=0))={ tand L((x=1,r=0)) ={ }
e How to check “the output bit y is set infinitely often”?

Hao Zheng (CSE, USF) Comp Sys Verification 18/57

Atomic Propositions

Consider three possible state-labelings:

o Let AP={x,y,r}
e L((x=0,r=1))={r}and L({(x=1,r=1)) ={x,r,y}
e L({x=0,r=0))={y}and L({x=1,r=0)) ={x}
e Property e.g., “once the register is one, it remains one”

e Let AP = {x,y} — the register evaluations are now “invisible”
o L((x=0,r=1))=0and L((x=1,r=1)) ={x,y}
e L((x=0,r=0))={y}and L({x=1,r=0)) = {x}
e Property e.g., “the output bit y is set infinitely often”

e Let AP ={x,r} —output y can be derived from x and r.
e L((x=0,r=1))={ tand L({(x=1,r=1))={ }
e L({x=0,r=0))={ tand L((x=1,r=0)) ={ }
e How to check “the output bit y is set infinitely often”?

e Convert to check “—(x & r) holds infinitely often”

Hao Zheng (CSE, USF) Comp Sys Verification 18/57

Sequential Circuit Representation

A sequential circuit is typically represented in an intermediate format
below before its TS is derived.

Cir = (X,Reg,I,R,AP,L)

where
e X is a set of input variables.
® Reg is a set of registers.

e I={co1,...,cok}: asetofinitial states. — values assigned to Reg
e R is the transition relation of the following form

/\ Fo=f(X1, ey X, Ly e s Tk

ri€Reg

where r} represents the value of r; in the next state.

Hao Zheng (CSE, USF) Comp Sys Verification 19/57

Sequential Circuit Representation — Example

How to represent the previous circuit example and find it 7.S?

{r} {xry}

Hao Zheng (CSE, USF) Comp Sys Verification 20/57

2.1.2 Modeling SW: Program Graphs

e How to model the following construct?

if x\%2 = 1 then

X = xt1;
else
X 1= 2 * X

e Two modeling issues:

e Data variables
e Data-dependent control

Hao Zheng (CSE, USF) Comp Sys Verification 21/57

2.1.2 Modeling SW: Program Graphs

Definition 2.13 Program Graphs

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,—, Locy,go) Where

e [ocis a set of locations with initial locations Locy C Loc

Actis a set of actions

Effect: Act x Eval(Var) — Eval(Var) is the effect function

e — C Locx Cond(Var) xActx Loc, is the transition relation
———r

Boolean conditions over Var

go € Cond(Var) is the initial condition.

Notation: ¢ £% ¢/ denotes (l,g,0,0) € —

Hao Zheng (CSE, USF) Comp Sys Verification 22 /57

Example 2.12 — Beverage VM Revisited

Suppose the VM keeps track of number of beer or soda bottles sold.
e Loc = {start,select } with Locy = { start }

e Act={bget,sget,coin,ret_coin,refill }

o Var= {nsoda, nbeer} with domain {0,1,...,max}

e go = (nsoda = max N nbeer = max)

Hao Zheng (CSE, USF) Comp Sys Verification 23/57

Example 2.12 — Beverage VM Revisited

e Transition relation — is

true:coin true:refill
start —— select and start ——— start
nsoda>0:sget nbeer>0:bget
select ——— start and select ——— start

nsoda=0A\nbeer=0:ret_coin
select < > start

e Effects of actions
] Action \ Effect on variables

coin

ret_coin

sget nsoda := nsoda — 1

bget nbeer := nbeer — 1

refill nsoda :— max; nbeer := max

Hao Zheng (CSE, USF) Comp Sys Verification 24 /57

Definition 2.15 Transition Systems for

Program Graphs

The transition system TS(PG) of program graph
PG = (Loc, Act, Effect,—, Locy, go)

over set Var of variables is the tuple (S, Act,—, I, AP, L) where
e S=Locx Eval(Var)

o — C SxActxSis defined by the rule:

(50 A g
(m) = (¢, Effect(o,m))
o I={{¢{,m)| L€ Locy,M [~ go}
e AP = {/x property dependent * /}
o L({¢,n)) = {€} U {g € Cond(Var) |n |= g}

Hao Zheng (CSE, USF) Comp Sys Verification

25/57

Transition System for Beverage Machine

true
start — select start
coin [X INele]

true:
start —— start
refill

nsoda>0:
select ——— start
sget

nbeer>0:
select —— start
bget

nsoda=0Anbeer=0:
select « > start
ret_coin

Hao Zheng (CSE, USF) Comp Sys Verification 26 /57

Transition System for Beverage Machine

\

true

start — select start
coin ®® OO
true: refil i
start — start coin
refill
select
nsoda>0: ®e® OO0
select —— start
sget
nbeer>0:
select —— start
bget
nsoda=0 N\ nbeer=0:
select < > start
ret_coin

Hao Zheng (CSE, USF) Comp Sys Verification 26 /57

Transition System for Beverage Machine

\

true

start — select start
coin ®® OO
true: refil, f
start — start coin
refill
select
nsoda>0: ®e® OO0
select ———— start bget sget
sget
nbeer>0:
select —— start start start
bget ® OO e® O
nsoda=0 N\ nbeer=0:
select < > start
ret_coin

Hao Zheng (CSE, USF) Comp Sys Verification 26 /57

Transition System for Beverage Machine
refill m refill

refill
bget

Hao Zheng (CSE, USF) Comp Sys Verification

From Promela to Program Graphs

bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
assert (_pid == || _pid == 1);
again: flag[_pid] = 1;
turn = _pid;
(flag[l - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert (ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;
goto again

Hao Zheng (CSE, USF) Comp Sys Verification 28 /57

From Promela to Program Graphs

bool turn, flag[2];
byte ncrit;

active [2] proctype user()

{

11: assert (_pid == || _pid == 1);

again: flag[_pid] = 1;

12: turn = _pid;

13: (flag[l - _pid] == 0 || turn == 1 - _pid);
14: ncrit++;

15: assert (ncrit == 1); /* critical section */
16: ncrit--;

17: flag[_pid] = 0;

18: goto again

}

Hao Zheng (CSE, USF) Comp Sys Verification 29 /57

e Parallel Composition
@ Composing Independent Processes
@ Composing Concurrent Processes: Shared Variables
@ Composing Concurrent Processes: Handshaking
@ Synchronous Composition

Hao Zheng (CSE, USF) Comp Sys Verification 30/57

2.2 Parallelism and Communications

e Transition systems can model:

e Sequential data-dependent systems.

e Sequential hardware circuits.
e How about concurrent systems?
Multi-threading with shared variables.
Parallel distributed algorithms.
Synchronous/asynchronous communication protocols.
Synchronous/asynchronous composition of hardware.

e Parallel composition ||

TS = TS;||TS;||... || TS,

Hao Zheng (CSE, USF) Comp Sys Verification 31/57

2.2.1 Concurrency and Interleaving

Interleaving is a widely accepted paradigm for parallel systems.

Actions of independent components are merged or “interleaved”.

No assumptions are made on the order of process executions.

Possible orders for non-terminating independent processes P and Q:

PO P OQOPOQOQQOFP
PP QPPOQPTPOQQ
PQPPOQPPPOQQ

Assumption: there is a scheduler with an a priori unknown strategy.
e Scheduling needs to fair.

Hao Zheng (CSE, USF) Comp Sys Verification 32/57

Definition 2.18 Interleaving of Transition

Systems

o Let TS; = (S;,Act;,—i,1;,AP;, L;) i=1,2, be two transition systems
e Transition system

TS ||| TS: = (81 X 82,Acty UActy, —, 1) x I, APy UAP,,L)

where L((s1,s2)) = L1 (s1) U L(s2) and the transition relation — is
defined by the rules:

o / o /
ST —1 5 §2 =2 5
and
o / () /
(51,82) = (5],82) (51,50) = (51,53)
TS and TS, are assumed independent, ie, no shared actions or
variables.

Hao Zheng (CSE, USF) Comp Sys Verification 33/57

Two Independent Traffic Lights

TrLighty, b
——1 (e)
green)
TrLight;, — b—r
ved
green |
3
Triighty ||| TrLights red red

o | T

T
Lgrr:era GrEEn

Hao Zheng (CSE, USF) Comp Sys Verification 34 /57

Justification for Interleaving

e The effect of concurrently executed, independent actions o and 3
equals the effect when a and 3 are successively executed in
arbitrary order

e Symbolically this is stated as:

Effect(a|||B,m) = Effect((a; B)+ (B; o),m)
Effect((o; B),M)
= Effect((B; a),n)

where ||| stands for the (binary) interleaving operator, “;” stands for
sequential execution, and “+” for non-deterministic choice.

Hao Zheng (CSE, USF) Comp Sys Verification 35/57

Another Interleaving Example

x:=x+1]||y:=y—2 withinitiallyx=0andy =7
\“/—/ \—v—/

= —B
x=0 y=7
a § =

Hao Zheng (CSE, USF) Comp Sys Verification 36 /57

2.2.2 Communication via Shared Variables

Example 2.20

x:=2x ||| x:=x+1 withinitially x =3
—— —_———
= B
x=3 x=3

o p =

(x=6,x=4) is an inconsistent state!

= Not a faithful model of the concurrent execution of o and B

Hao Zheng (CSE, USF) Comp Sys Verification

37/57

Interleaving Program Graphs

e For program graphs PG (on Var) and PG, (on Var) without shared
variables (i.e., Var; N Var, = 0):

TS(PG)) ||| TS(PG2)

Interleaving of transition systems
e If PG| and PG, share some variables (i.e., Var; N Var, # 0):

TS(PG ||| PGy)

Interleaving of program graphs
e Ingeneral: TS(PG)) ||| TS(PG,) # TS(PG; ||| PGz)

Hao Zheng (CSE, USF) Comp Sys Verification 38/57

Definition 2.21 Interleaving of Program

Graphs

e Let PG; = (Loc;, Act;, Effect;, — ;, Locy j, 8o.;) over variables Var;.
e Program graph PG ||| PG, over Var, U Var, is defined by:

(Locy x Locy,Act W Acty, Effect,—, Locy 1 < Locy2,80.1 A\ 802)

where — is defined by the inference rules:

0nES g 06ES, 0
o4 N0 4
(1,6) <5 (0], 0) (1,0) <5 (01,05)

and Effect(a,m) = Effect;(o,m) if a0 € Act;.

For PG; and PG, Loc; N Loc, = 0 and Act; N Acty = 0.]

Hao Zheng (CSE, USF) Comp Sys Verification 39/57

Example 2.22 Interleaving of Program Graphs

PG PGs:
® @
::_.m =2z 1‘ =z+1
) (%
P, ||| PGa:
3
[&)
=2z Sri=z+l

.z:—1*+1"--. _.-'-.E;—E-I

| 1

Hao Zheng (CSE, USF) Comp Sys Verification 40 /57

Critical and Noncritical Actions

Actions that access shared variables are critical, otherwise they are
noncritical.

Nondeterminism in a state may be due to:

¢ An internal nondeterministic choice within program graph PG, or PG,.

e The interleaving of noncritical actions of PG and PGj>.

e The resolution of a contention between critical actions of PG| and PG,
(concurrency).

A noncritical action can be executed in parallel with any other action.
The schedule of concurrent critical actions affects the global state.

e Different order of executions of critical actions may lead to different
states.

Hao Zheng (CSE, USF) Comp Sys Verification 41/57

On Atomicity

o Atomicity is used to capture granularity of concurrency.
e Actions o € Act are consider indivisible.

(x:=x+1;y:=2x+1;ifx< 12 then z:= (x—z)z*yfi)

Hao Zheng (CSE, USF) Comp Sys Verification 42 /57

Banking System

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: (by :=true, x:=12;) ne: (by :=true; x:=1;)
wt wait until (x == 1| =b2){ wt wait until (x ==2|| ~b;) {
cs: ...@account...} s ...@account...}
by = false; b, = false;
} }

Can we guarantee that only one person at a time has access to the bank
account?

Hao Zheng (CSE, USF) Comp Sys Verification 43 /57

Peterson’s Mutual Exclusion Algorithm

P1 loop forever

(* non-critical actions *)
(by :=true; x:=2); (* request *)
wait until (x =1 V —by)
do critical section od

by :=false (* release *)

(* non-critical actions *)

end loop

b; is true if and only if process P; is waiting or in critical section
If both processes want to enter their critical section, x decides who gets access

Hao Zheng (CSE, USF) Comp Sys Verification 44 /57

Program Graph Representation

PGI_ H PG; .
R

by = true;r = 2

/ I"-,Ibg:— true; r =1

II
b :=false| ([_waity) bo:= false|

\

=1V by

Hao Zheng (CSE, USF) Comp Sys Verification 45/ 57

Transition System

xX== X==

Is mutual exclusion guaranteed?

Hao Zheng (CSE, USF) Comp Sys Verification 46 / 57

Banking System with Non-atomic Assignment

Person Left behaves as follows:

while true {

ne: x:=2;
rq: by := true;
wt wait until (x=1|| =b2) {
cs ...@account...}
by :=false;
}

Person Right behaves as follows:

Hao Zheng (CSE, USF)

while true {

nc: x:=1;
rq: by :=true;
Wt : wait until (x=2|| -5;){
cs: ...@account...}
b, :=false;
}

Comp Sys Verification

4757

Banking System with Non-atomic Assignment

Person Left behaves as follows:

while true {
nc: x:=2;
rq: by := true;
wt wait until (x=1|| =b2) {
cs ...@account...}
by :=false;
}

Person Right behaves as follows:

while true {
nc: x:=1;
rq : by :=true;
wi wait until (x =21 —b1) {
cs: ...@account...}
b, :=false;
}

1: (ncy, ncy, x=1, b =false, b, ="false)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: x:=2; ne: x:=1;
rq: by :=true; rq: by :=true;
Wi wait until (x=1|| =5,){ wit wait until (x=2|| =5){
cs: ...@account...} cs: ...@account...}
by :=false; b, :=false;
} }

2: (ncy, rqp, x=1, by =false, b, ="false)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: x:=2; ne: x:=1;
rq: by :=true; rq: by :=true;
Wi wait until (x=1|| =5,){ wit wait until (x=2|| =5){
cs: ...@account...} cs: ...@account...}
by :=false; b, :=false;
} }

3: (rq1, rqx, x=2, by =false, b)="false)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: x:=2; ne: x:=1;
rq: by :=true; rq: by :=true;
Wi wait until (x=1|| =5,){ wit wait until (x=2|| =5){
cs: ...@account...} cs: ...@account...}
by :=false; b, :=false;
} }

4: (wty, rqy, x=2, by =true, b, =false)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: x:=2; ne: x:=1;
rq: by :=true; rq: by :=true;
Wi wait until (x=1|| =5,){ wit wait until (x=2|| =5){
cs: ...@account...} cs: ...@account...}
by :=false; b, :=false;
} }

5: {cs1, rgp, x=2, by =true, by ="false)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows:

while true {
nc: x:=2;
rq: by := true;
wt wait until (x=1|| =b2) {
cs ...@account...}
by :=false;
}

Person Right behaves as follows:

while true {
nc: x:=1;
rq : by :=true;
wi wait until (x =21 —b1) {
cs: ...@account...}
b, :=false;
}

6: (cs;, wh, x=2, by =true, by =true)

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows:

nc:
rq :
wt .

Ccs

while true {
x:=2;
by := true;

wait until (x=1|| =b){
...@account...}
b .= false;

Person Right behaves as follows:

while true {
ne: x:=1;
rq: by :=true;
wt wait until (x=2|| -5;){
cs ...@account...}
b, :=false;
}

7: (cs1, ¢so, x=2, by =true, by =true)

Violation of the mutual exclusion property!

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

Banking System with Non-atomic Assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
ne: x:=2 ne: x:=1;
rq: by :=true; rq: by :=true;
wt : wait until (x= 1| =b) { wt wait until (x =2|| =5;){
s ...@account. ..} st ...@account...}
by :=false; b, :=false;
} }

7: (csy, c¢so, x=2, by =true, by =true)

Violation of the mutual exclusion property!
Note that protocol is okay if b; is assigned before x.

Hao Zheng (CSE, USF) Comp Sys Verification 47 /57

2.2.3 Handshaking

e |f processes are distributed there is no shared memory.
e Communications for distributed systems:

e Synchronous message passing (= handshaking)
e Asynchronous message passing (= channel communication)

e Concurrent processes interact by synchronous message passing.

e Processes execute synchronized actions together at the same time.
e The interacting processes “shake hands”.

e This does NOT mean it is implemented with synchronous hardware.
e Introduce set H, the handshake actions.

e Actions outside H are independent and are interleaved.
e Actions in H need to be synchronized.
e Abstracts away the information that is exchanged.

Hao Zheng (CSE, USF) Comp Sys Verification 48 /57

Handshaking: Formal Definition

o Let TS; = (S;, Acti, —i,1;, AP;, L;), i=1,2 and H C Act; N Acty
TS, HH TS, = (Sl X S»,Acti UAch,—, 11 X I, AP, UAPz,L)
where L({s1,s2)) = Li(s1) U Ly(s2) and with — defined by:

o ! o /
ST —19] $2 =28

interleaving for o ¢ H
<S17S2> &> <S/1,S2> <S1,S2> % <S1,S/2>

a a,
S1 —>1S11 N S2—>2S’2

<Sl?52> % <S,1 7S,2>

handshaking for o € H

TS; and 7S, do NOT share variables. J

Hao Zheng (CSE, USF) Comp Sys Verification 49 /57

Handshaking Properties

e For an empty set of handshake actions:

TSi |lo TS =TS ||| TS:

e Note that it is commutative (i.e., TS| ||z TS: = TS, ||z TS1), but
e Not always associative, i.e.,

(TS1 |, TS2) |lm, TS3# TSt |lm, (TS2 ||m, TS3).
e |t is, however, associative for a fixed set H:

TS=TSi |t TS ||a --- ||z TSh.

e Useful to model broadcast communications.

Hao Zheng (CSE, USF) Comp Sys Verification 50 /57

Example 2.28 A Booking System

o) o) [0
store scan prt_cmd store print| prt_cmd
() () ()

BCR || BP || Printer (|| is a shorthand for || with H = Act; N Act)

Hao Zheng (CSE, USF) Comp Sys Verification 51/57

2.2.6 Synchronous Parallelism

Definition 2.41 Synchronous Product

e Let TS; = (S;,Act;, —,1;, AP, L;), i=1,2, the synchronous
product of TSy and TSy, TS; ® TS,, is given by

TSI®TS, = (Sl X 8, Act; X Acty, —, 11 X I, APy UAPz,L)

where L({s1,s2)) = Li(s1) U Ly(s2) and with — defined by:

o p
S1 %1S’1 N S2—>2S/2

(s1,52) 22 (sl)

e Often used for composing synchronous digital circuits.

Hao Zheng (CSE, USF) Comp Sys Verification 52 /57

Synchronous Product: Example

initially: initially:
n = 0 n = 0
transition function: transition function:
0, =1 0, =NV X

Hao Zheng (CSE, USF) Comp Sys Verification 53 /57

Synchronous Product: Example

n

% (T

TS for the
composite
circuit

The®T

Hao Zheng (CSE, USF) Comp Sys Verification

9 Understanding State Space Explosion

Hao Zheng (CSE, USF) Comp Sys Verification 55/57

2.3 State Explosion

e Given a program graph, the number of states is

|Loc| - H |dom (x)|

xeVar

e Consider TS =TS\ || ... ||TS,, the number of states is

1S1] ...+ |Sh]

Hao Zheng (CSE, USF) Comp Sys Verification 56 /57

Transition systems
e A fundamental model for modeling software and hardware systems.
Executions

e Alternating sequences of states and actions that cannot be prolonged.
Interleaving

e Execution of independent concurrent processes by nondeterminism.
Shared variables

e Parallel composition on transition systems is not adequate.
e Instead, parallel composition of program graphs is used.

Handshaking on a set H of actions
e Execute actions in H simultaneously and those not in H autonomously.

Hao Zheng (CSE, USF) Comp Sys Verification 57 /57

	Modeling Formalisms
	Transition Systems
	Modeling HW
	Modeling SW

	Parallel Composition
	Composing Independent Processes
	Composing Concurrent Processes: Shared Variables
	Composing Concurrent Processes: Handshaking
	Synchronous Composition

	Understanding State Space Explosion

