Modeling Concurrent Systems

Hao Zheng

Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: haozheng@usf.edu Phone: (813)974-4757 Fax: (813)974-5456

Overview

Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW

Parallel Composition

- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition

Understanding State Space Explosion

Principle of Model Checking, Chapter 2

Contents

Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW

Parallel Composition

- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition

3 Understanding State Space Explosion

2.1 Transition Systems

Transition system is a common semantic model to describe computation/communcation in HW/SW systems.

Definition 2.1 Transition Systems

A transition system TS is a tuple $\langle S, Act, \longrightarrow, I, AP, L \rangle$ where:

- S is a set of states.
- Act is a set of actions.
- $\longrightarrow \subseteq S \times Act \times S$ is a transition relation (denoted $s \xrightarrow{\alpha} s'$).
- $I \subseteq S$ is a set of initial states.
- AP is a set of atomic propositions.
- $L: S \rightarrow 2^{AP}$ is a labeling function.
- Note that *S* and *Act* can be finite or countably infinite.

Example 2.2 Beverage Vending Machine

- *S* = {pay, select, soda, beer}
- $Act = \{insert_coin, get_soda, get_beer, \tau\}$
- $I = \{pay\}$
- AP = S
- $L(s) = \{s\}$

Example 2.2 Beverage Vending Machine

- *S* = {pay, select, soda, beer}
- $Act = \{insert_coin, get_soda, get_beer, \tau\}$
- *I* = {pay}
- $AP = \{paid, drink\}$
- $L(pay) = \emptyset, L(select) = \{paid\}, L(soda) = L(beer) = \{paid, drink\}$

- Used to model concurrency by interleaving.
 - No assumption about the relative speed of processes.
- Used to model implementation freedom.
 - Only describes what a system should do, not how.
- Used to model under-specified systems, or abstractions of real systems.
 - Use incomplete information.

Definition 2.3 Direct Successors and Predecessors

$$Post(s, \alpha) = \left\{ \begin{array}{ll} s' \in S \mid s \xrightarrow{\alpha} s' \end{array} \right\}, \quad Post(s) = \bigcup_{\alpha \in Act} Post(s, \alpha)$$
$$Pre(s, \alpha) = \left\{ \begin{array}{ll} s' \in S \mid s' \xrightarrow{\alpha} s \end{array} \right\}, \quad Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha).$$
$$Post(C, \alpha) = \bigcup_{s \in C} Post(s, \alpha), \quad Post(C) = \bigcup_{s \in C} Post(s) \text{ for } C \subseteq S.$$
$$Pre(C, \alpha) = \bigcup_{s \in C} Pre(s, \alpha), \quad Pre(C) = \bigcup_{s \in C} Pre(s) \text{ for } C \subseteq S.$$

Definition 2.4 Terminal State

State *s* is called *terminal* if and only if $Post(s) = \emptyset$.

Successors and Predecessors: Example

- *Post*(*pay*, *insert_coin*) = {*select*}
- $Pre(pay, get_soda) = \{soda\}$
- Pre(pay) = {soda, beer}

Definition 2.5 Deterministic Transition Systems

• Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is *action-deterministic* iff:

$$|I| \leq 1$$
 and $|Post(s, \alpha)| \leq 1$ for all s, α

- No more than 2 successor states due to the same action
- Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is *AP-deterministic* iff:

$$|I| \le 1$$
 and $|\underbrace{\textit{Post}(s) \cap \{s' \in S \mid L(s') = A\}}_{\text{equally labeled successors of }s}| \le 1$ for all $s, A \in 2^{AP}$

No more than 2 successor states of same labeling

Deterministic Transition Systems: Example

• Is this TS action-deterministic?

2.1.1 Executions

- An execution (run) is a linear sequence of state transitions.
- Used to describe dynamic behavior of transition systems.

Definition 2.6 Execution Fragments

• A *finite execution fragment* ρ of *TS* is an alternating sequence of states and actions ending with a state:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$.

• An *infinite execution fragment* ρ of *TS* is an infinite, alternating sequence of states and actions:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$$
 such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i$.

Definition 2.7 Maximal and Initial Execution

An *execution* of *TS* is an *initial*, *maximal* execution fragment

- An execution fragment is *initial* if $s_0 \in I$.
- A maximal execution fragment can be finite, ending in a terminal state, or infinite.

Definition 2.9 Executions

An *execution* of transition system TS is an initial, maximal execution fragment.

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$$

• Which execution fragments are initial?

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

 $\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$

Which execution fragments are initial? ρ₁ and ρ₃

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$$

- Which execution fragments are initial? ρ_1 and ρ_3
- Which execution fragments are maximal?

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$$

- Which execution fragments are initial? ρ₁ and ρ₃
- Which execution fragments are maximal? ρ₁ and ρ₂

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$$

- Which execution fragments are initial? ρ_1 and ρ_3
- Which execution fragments are maximal? ρ₁ and ρ₂
- Which execution fragments are "executions"?

$$\rho_1 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} \dots$$

$$\rho_2 = select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_3 = pay \xrightarrow{coin} select \xrightarrow{\tau} soda \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} soda$$

- Which execution fragments are initial? ρ_1 and ρ_3
- Which execution fragments are maximal? ρ₁ and ρ₂
- Which execution fragments are "executions"? p1

Executions: Another Example

An execution

$$\rho_4 = \textit{pay} \xrightarrow{\textit{insert_coin}} \textit{select} \xrightarrow{\textit{open}} \textit{error}$$

Hao Zheng (CSE, USF)

Definition 2.10 Reachable States

State s ∈ S is called *reachable* in TS if there exists an initial, finite execution fragment (execution)

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \ldots \xrightarrow{\alpha_n} s_n = s$$
.

Reach(TS) denotes the set of all reachable states in TS.

2.1.2 Modeling Sequential Circuits

- Transition system representation of a simple hardware circuit.
- Input variable *x*, output variable *y*, and register *r*.
- Output function $\neg(x \oplus r)$ and register evaluation function $x \lor r$.
- Actions in *Act* are irrelevant here.

Atomic Propositions

Consider three possible state-labelings:

• Let
$$AP = \{x, y, r\}$$

•
$$L(\langle x=0,r=1\rangle)=\{r\}$$
 and $L(\langle x=1,r=1\rangle)=\{x,r,y\}$

•
$$L(\langle x = 0, r = 0 \rangle) = \{y\}$$
 and $L(\langle x = 1, r = 0 \rangle) = \{x\}$

- Property e.g., "once the register is one, it remains one"
- Let $AP' = \{x, y\}$ the register evaluations are now "invisible"

•
$$L(\langle x=0,r=1\rangle) = \emptyset$$
 and $L(\langle x=1,r=1\rangle) = \{x,y\}$

•
$$L(\langle x = 0, r = 0 \rangle) = \{y\}$$
 and $L(\langle x = 1, r = 0 \rangle) = \{x\}$

- Property e.g., "the output bit y is set infinitely often"
- Let $AP' = \{x, r\}$ output *y* can be derived from *x* and *r*.

•
$$L(\langle x=0,r=1\rangle) = \{$$
 } and $L(\langle x=1,r=1\rangle) = \{$ }

•
$$L(\langle x = 0, r = 0 \rangle) = \{$$
 } and $L(\langle x = 1, r = 0 \rangle) = \{$

• How to check "the output bit y is set infinitely often"?

ł

Atomic Propositions

Consider three possible state-labelings:

• Let
$$AP = \{x, y, r\}$$

•
$$L(\langle x = 0, r = 1 \rangle) = \{r\}$$
 and $L(\langle x = 1, r = 1 \rangle) = \{x, r, y\}$

•
$$L(\langle x = 0, r = 0 \rangle) = \{y\}$$
 and $L(\langle x = 1, r = 0 \rangle) = \{x\}$

• Property e.g., "once the register is one, it remains one"

• Let $AP' = \{x, y\}$ – the register evaluations are now "invisible"

•
$$L(\langle x=0,r=1\rangle) = \emptyset$$
 and $L(\langle x=1,r=1\rangle) = \{x,y\}$

•
$$L(\langle x = 0, r = 0 \rangle) = \{y\}$$
 and $L(\langle x = 1, r = 0 \rangle) = \{x\}$

- Property e.g., "the output bit y is set infinitely often"
- Let $AP' = \{x, r\}$ output *y* can be derived from *x* and *r*.

•
$$L(\langle x=0,r=1\rangle)=\{$$
 } and $L(\langle x=1,r=1\rangle)=\{$ }

•
$$L(\langle x = 0, r = 0 \rangle) = \{$$
 } and $L(\langle x = 1, r = 0 \rangle) = \{$

- How to check "the output bit y is set infinitely often"?
 - Convert to check " $\neg(x \oplus r)$ holds infinitely often"

}

Sequential Circuit Representation

A sequential circuit is typically represented in an intermediate format below before its TS is derived.

Cir = (X, Reg, I, R, AP, L)

where

- X is a set of input variables.
- *Reg* is a set of registers.
- $I = \{c_{0,1}, \dots, c_{0,k}\}$: a set of initial states. values assigned to Reg
- R is the transition relation of the following form

$$\bigwedge_{r_i \in Reg} r'_i = f(x_1, \dots, x_n, r_1, \dots, r_k)$$

where r'_i represents the value of r_i in the next state.

Sequential Circuit Representation – Example

2.1.2 Modeling SW: Program Graphs

How to model the following construct?

```
if x\%2 = 1 then
    x := x+1;
else
    x := 2 * x
```

- Two modeling issues:
 - Data variables
 - Data-dependent control

2.1.2 Modeling SW: Program Graphs

Definition 2.13 Program Graphs

A program graph PG over set Var of typed variables is a tuple

 $\langle Loc, Act, Effect, \hookrightarrow, Loc_0, g_0 \rangle$ where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- Effect : Act × Eval(Var) → Eval(Var) is the effect function
- $\hookrightarrow \subseteq Loc \times \underbrace{Cond(Var)}_{\text{Bolean conditions over Var}} \times Act \times Loc$, is the transition relation

```
• g_0 \in Cond(Var) is the initial condition.
```

Notation:
$$\ell \xrightarrow{g:\alpha} \ell'$$
 denotes $(\ell, g, \alpha, \ell') \in \hookrightarrow$

Suppose the VM keeps track of number of beer or soda bottles sold.

- $Loc = \{ start, select \}$ with $Loc_0 = \{ start \}$
- Act = { bget, sget, coin, ret_coin, refill }
- $Var = \{nsoda, nbeer\}$ with domain $\{0, 1, \dots, max\}$
- $g_0 = (nsoda = max \land nbeer = max)$

Example 2.12 – Beverage VM Revisited

• Transition relation \hookrightarrow is

Effects of actions

Action	Effect on variables
coin	
ret_coin	
sget	nsoda := nsoda - 1
bget	nbeer := nbeer - 1
refill	nsoda := max; nbeer := max

Definition 2.15 Transition Systems for Program Graphs

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0)$$

over set *Var* of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule:

$$\frac{\ell \stackrel{g:\alpha}{\longrightarrow} \ell' \land \eta \models g}{\langle \ell, \eta \rangle \stackrel{\alpha}{\to} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle}$$

- $I = \{ \langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- AP = { / * property dependent * / }
- $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in \textit{Cond}(\textit{Var}) \mid \eta \models g\}.$

$$start \xrightarrow{true}_{coin} select$$

$$start \xrightarrow{true:}_{refill} start$$

$$select \xrightarrow{nsoda>0:}_{sget} start$$

$$select \xrightarrow{nbeer>0:}_{bget} start$$

$$select \xrightarrow{nsoda=0 \land nbeer=0:}_{ret_coin} start$$

Hao Zheng (CSE, USF)
From Promela to Program Graphs

```
bool turn, flag[2];
byte ncrit;
```

```
active [2] proctype user()
{
        assert ( pid == 0 || pid == 1);
again: flag[pid] = 1;
        turn = pid;
        (flag[1 - _pid] == 0 || turn == 1 - _pid);
        ncrit++;
        assert (ncrit == 1); /* critical section */
        ncrit--;
        flag[_pid] = 0;
        goto again
```

From Promela to Program Graphs

bool turn, flag[2];
byte ncrit;

```
active [2] proctype user()
{
11: assert ( pid == 0 || pid == 1);
again: flag[pid] = 1;
12: turn = pid;
13: (flag[1 - _pid] == 0 || turn == 1 - _pid);
14: ncrit++;
15: assert (ncrit == 1); /* critical section */
16: ncrit--;
17: flag[_pid] = 0;
18:
   goto again
```

1

Contents

Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW

Parallel Composition

- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition

3 Understanding State Space Explosion

- Transition systems can model:
 - Sequential data-dependent systems.
 - Sequential hardware circuits.
- How about concurrent systems?
 - Multi-threading with shared variables.
 - Parallel distributed algorithms.
 - Synchronous/asynchronous communication protocols.
 - Synchronous/asynchronous composition of hardware.
- Parallel composition ||

$$TS = TS_1 \| TS_2 \| \dots \| TS_n$$

2.2.1 Concurrency and Interleaving

- *Interleaving* is a widely accepted paradigm for parallel systems.
- Actions of independent components are merged or "interleaved".
- No assumptions are made on the order of process executions.
- Possible orders for non-terminating independent processes *P* and *Q*:

- Assumption: there is a scheduler with an *a priori* unknown strategy.
 - Scheduling needs to fair.

Definition 2.18 Interleaving of Transition Systems

- Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ i=1, 2, be two transition systems
- Transition system

$$\mathsf{TS}_1 \parallel \mathsf{TS}_2 = (S_1 \times S_2, \mathsf{Act}_1 \cup \mathsf{Act}_2, \longrightarrow, I_1 \times I_2, \mathsf{AP}_1 \cup \mathsf{AP}_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \longrightarrow is defined by the rules:

$$\frac{s_1 \xrightarrow{\alpha} 1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \text{ and } \frac{s_2 \xrightarrow{\alpha} 2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

 TS_1 and TS_2 are assumed *independent*, ie, no shared actions or variables.

Hao Zheng (CSE, USF)

Two Independent Traffic Lights

- The effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order
- Symbolically this is stated as:

where ||| stands for the (binary) interleaving operator, ";" stands for sequential execution, and "+" for non-deterministic choice.

Another Interleaving Example

2.2.2 Communication via Shared Variables

Example 2.20

 $\langle x=6, x=4 \rangle$ is an *inconsistent* state!

 \Rightarrow Not a faithful model of the concurrent execution of α and β

Hao Zheng (CSE, USF)

Comp Sys Verification

Interleaving Program Graphs

For program graphs PG₁ (on Var₁) and PG₂ (on Var₂) without shared variables (i.e., Var₁ ∩ Var₂ = Ø):

```
TS(PG_1) \mid\mid\mid TS(PG_2)
```

Interleaving of transition systems

• If PG_1 and PG_2 share some variables (i.e., $Var_1 \cap Var_2 \neq \emptyset$):

 $TS(PG_1 \parallel \mid PG_2)$

Interleaving of program graphs

• In general: $TS(PG_1) \parallel TS(PG_2) \neq TS(PG_1) \parallel PG_2$

Definition 2.21 Interleaving of Program Graphs

- Let $PG_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .
- Program graph $PG_1 ||| PG_2$ over $Var_1 \cup Var_2$ is defined by:

 $(Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \hookrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2})$

where \hookrightarrow is defined by the inference rules:

$$\frac{\ell_1 \stackrel{g:\alpha}{\longrightarrow}_1 \ell'_1}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha}{\longrightarrow} \langle \ell'_1, \ell_2 \rangle} \text{ and } \frac{\ell_2 \stackrel{g:\alpha}{\longrightarrow}_2 \ell'_2}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha}{\longrightarrow} \langle \ell_1, \ell'_2 \rangle}$$

and $\textit{Effect}(\alpha,\eta) = \textit{Effect}_i(\alpha,\eta)$ if $\alpha \in \textit{Act}_i$.

For PG_1 and PG_2 , $Loc_1 \cap Loc_2 = \emptyset$ and $Act_1 \cap Act_2 = \emptyset$.

Example 2.22 Interleaving of Program Graphs

Hao Zheng (CSE, USF)

Critical and Noncritical Actions

- Actions that access shared variables are *critical*, otherwise they are *noncritical*.
- Nondeterminism in a state may be due to:
 - An internal nondeterministic choice within program graph PG_1 or PG_2 .
 - The interleaving of noncritical actions of *PG*₁ and *PG*₂.
 - The resolution of a contention between critical actions of *PG*₁ and *PG*₂ (concurrency).
- A noncritical action can be executed in parallel with any other action.
- The schedule of concurrent critical actions affects the global state.
 - Different order of executions of critical actions may lead to different states.

- Atomicity is used to capture granularity of concurrency.
- Actions $\alpha \in Act$ are consider indivisible.

$$\langle x := x + 1; y := 2x + 1;$$
 if $x < 12$ then $z := (x - z)^2 * y$ fi \rangle

Banking System

Person Left behaves as follows:

Person Right behaves as follows:

	while true {
<i>nc</i> :	$\langle b_2 := $ true; $x := 1; \rangle$
<i>wt</i> :	wait until $(x == 2 \neg b_1) \{$
<i>cs</i> :	@account}
	$b_2 = false;$
	}

Can we guarantee that only one person at a time has access to the bank account?

Peterson's Mutual Exclusion Algorithm

 b_i is true if and only if process P_i is waiting or in critical section If both processes want to enter their critical section, *x* decides who gets access

Hao Zheng (CSE, USF)

Program Graph Representation

Transition System

Is mutual exclusion guaranteed?

Hao Zheng (CSE, USF)

Comp Sys Verification

Person Left behaves as follows:

	while true {
<i>nc</i> :	x := 2;
<i>rq</i> :	$b_1 := $ true;
wt:	wait until $(x = 1 \neg b_2)$ {
<i>cs</i> :	@account}
	$b_1 := false;$
	}

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	n
<i>rq</i> :	$b_1 := $ true;	n
wt:	wait until $(x = 1 \neg b_2)$ {	и
<i>cs</i> :	@account}	С
	$b_1 := false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

1: $\langle nc_1, nc_2, x=1, b_1 = \text{false}, b_2 = \text{false} \rangle$

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	1
<i>rq</i> :	$b_1 := $ true;	
<i>wt</i> :	wait until $(x = 1 \neg b_2)$ {	
<i>cs</i> :	@account}	
	$b_1 := false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

2: $\langle nc_1, rq_2, x=1, b_1 = \text{false}, b_2 = \text{false} \rangle$

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	
<i>rq</i> :	$b_1 := $ true;	
<i>wt</i> :	wait until $(x = 1 \neg b_2)$ {	
<i>cs</i> :	@account}	
	$b_1 := false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

3: $\langle rq_1, rq_2, x=2, b_1 = \text{false}, b_2 = \text{false} \rangle$

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	nc
<i>rq</i> :	$b_1 := $ true;	rq
<i>wt</i> :	wait until $(x = 1 \neg b_2)$ {	wt
<i>cs</i> :	@account}	CS
	$b_1 := false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

4: $\langle wt_1, rq_2, x=2, b_1 = true, b_2 = false \rangle$

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	
<i>rq</i> :	$b_1 := $ true;	
wt:	wait until $(x = 1 \neg b_2)$ {	
<i>cs</i> :	@account}	
	$b_1 := false;$	
	}	

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

5: $\langle cs_1, rq_2, x=2, b_1 = true, b_2 = false \rangle$

Person Left behaves as follows:

while true {		
<i>nc</i> :	x := 2;	<i>nc</i> :
<i>rq</i> :	$b_1 := $ true;	<i>rq</i> :
wt:	wait until $(x = 1 \neg b_2)$ {	wt:
<i>cs</i> :	@account}	<i>cs</i> :
	$b_1 := false;$	
	}	

Person Right behaves as follows:

while true {	
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

6: $\langle cs_1, wt_2, x=2, b_1 = \text{true}, b_2 = \text{true} \rangle$

Person Left behaves as follows:

	while true {
<i>nc</i> :	x := 2;
<i>rq</i> :	$b_1 := $ true;
wt:	wait until $(x = 1 \neg b_2)$ {
<i>cs</i> :	@account}
	$b_1 := false;$
	}

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
<i>wt</i> :	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

7: $\langle cs_1, cs_2, x=2, b_1 = \text{true}, b_2 = \text{true} \rangle$

Violation of the mutual exclusion property!

Hao Zheng (CSE, USF)

Person Left behaves as follows:

while true { *nc*: x := 2; $b_1 :=$ true: rq: wait until $(x = 1 || \neg b_2)$ { wt: ...@account...} CS: $b_1 :=$ false; }

Person Right behaves as follows:

	while true {
<i>nc</i> :	x := 1;
<i>rq</i> :	$b_2 := $ true;
wt:	wait until $(x=2 \neg b_1)$ {
<i>cs</i> :	@account}
	$b_2 := false;$
	}

7: $\langle cs_1, cs_2, x=2, b_1 = \text{true}, b_2 = \text{true} \rangle$

Violation of the mutual exclusion property! Note that protocol is okay if b_i is assigned before x.

Hao Zheng (CSE, USF)

Comp Sys Verification

- If processes are distributed there is no shared memory.
- Communications for distributed systems:
 - Synchronous message passing (= handshaking)
 - Asynchronous message passing (= channel communication)
- Concurrent processes interact by synchronous message passing.
 - Processes execute synchronized actions together at the same time.
 - The interacting processes "shake hands".
- This does NOT mean it is implemented with synchronous hardware.
- Introduce set *H*, the *handshake actions*.
 - Actions outside *H* are independent and are interleaved.
 - Actions in *H* need to be synchronized.
 - Abstracts away the information that is exchanged.

Handshaking: Formal Definition

• Let
$$TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i), i=1, 2 \text{ and } H \subseteq Act_1 \cap Act_2$$

 $TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$
where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:
 $\frac{s_1 \stackrel{\alpha}{\rightarrow} 1 s'_1}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\rightarrow} \langle s'_1, s_2 \rangle} \quad \frac{s_2 \stackrel{\alpha}{\rightarrow} 2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\rightarrow} \langle s_1, s'_2 \rangle}$ interleaving for $\alpha \notin H$
 $\frac{s_1 \stackrel{\alpha}{\rightarrow} 1 s'_1 \wedge s_2 \stackrel{\alpha}{\rightarrow} 2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\rightarrow} \langle s'_1, s'_2 \rangle}$ handshaking for $\alpha \in H$

 TS_1 and TS_2 do **NOT** share variables.

.

Handshaking Properties

• For an empty set of handshake actions:

```
TS_1 \parallel_{\emptyset} TS_2 = TS_1 \mid\mid \mid TS_2
```

- Note that it is commutative (i.e., $TS_1 \parallel_H TS_2 = TS_2 \parallel_H TS_1$), but
- Not always associative, i.e.,

.

 $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3).$

• It is, however, associative for a fixed set *H*:

$$TS = TS_1 \parallel_H TS_2 \parallel_H \ldots \parallel_H TS_n.$$

• Useful to model broadcast communications.

Example 2.28 A Booking System

BCR \parallel BP \parallel Printer (\parallel is a shorthand for \parallel_H with $H = Act_1 \cap Act_2$)

Hao Zheng (CSE, USF)

2.2.6 Synchronous Parallelism

Definition 2.41 Synchronous Product

Let *TS_i* = (*S_i*, *Act_i*, →*i*, *I_i*, *AP_i*, *L_i*), *i*=1,2, the *synchronous product* of *TS*₁ and *TS*₂, *TS*₁ ⊗ *TS*₂, is given by

 $\textit{TS}_1 \otimes \textit{TS}_2 = (S_1 \times S_2, \textit{Act}_1 \times \textit{Act}_2, \rightarrow, I_1 \times I_2, \textit{AP}_1 \cup \textit{AP}_2, L)$

where $L(\langle s_1,s_2\rangle)=L_1(s_1)\cup L_2(s_2)$ and with ightarrow defined by:

$$\frac{s_1 \xrightarrow{\alpha} s_1 s'_1 \wedge s_2 \xrightarrow{\beta} s_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{(\alpha, \beta)} \langle s'_1, s'_2 \rangle}$$

• Often used for composing synchronous digital circuits.

Synchronous Product: Example

Synchronous Product: Example

Contents

Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW

2 Parallel Composition

- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition

Understanding State Space Explosion
• Given a program graph, the number of states is

$$|Loc| \cdot \prod_{x \in Var} |dom(x)|$$

• Consider $TS = TS_1 || \dots || TS_n$, the number of states is

 $|S_1| \cdot \ldots \cdot |S_n|$

- Transition systems
 - A fundamental model for modeling software and hardware systems.
- Executions
 - Alternating sequences of states and actions that cannot be prolonged.
- Interleaving
 - Execution of independent concurrent processes by nondeterminism.
- Shared variables
 - Parallel composition on transition systems is not adequate.
 - Instead, parallel composition of program graphs is used.
- Handshaking on a set *H* of actions
 - Execute actions in *H* simultaneously and those not in *H* autonomously.