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Reading

Principle of Model Checking, Chapter 2

Hao Zheng (CSE, USF) Comp Sys Verification 3 / 57



Contents

1 Modeling Formalisms
Transition Systems
Modeling HW
Modeling SW

2 Parallel Composition
Composing Independent Processes
Composing Concurrent Processes: Shared Variables
Composing Concurrent Processes: Handshaking
Synchronous Composition

3 Understanding State Space Explosion

Hao Zheng (CSE, USF) Comp Sys Verification 4 / 57



2.1 Transition Systems

Transition system is a common semantic model to describe
computation/communcation in HW/SW systems.

Definition 2.1 Transition Systems
A transition system TS is a tuple 〈S,Act,−→, I,AP,L〉 where:

• S is a set of states.

• Act is a set of actions.

• −→⊆ S×Act×S is a transition relation (denoted s α−→ s′).
• I ⊆ S is a set of initial states.

• AP is a set of atomic propositions.

• L : S→ 2AP is a labeling function.

• Note that S and Act can be finite or countably infinite.
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Example 2.2 Beverage Vending MachineA Beverage Vending Machine Example

pay

selectsoda beer

insert_coin

τ
τ

get_soda get_beer

S = {pay,select,soda,beer}
Act = {insert_coin,get_soda,get_beer,t}
I = {pay}
AP = S

L(s) = {s}
Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 4 / 76

• S = {pay,select,soda,beer}
• Act = {insert_coin,get_soda,get_beer,τ}
• I = {pay}
• AP = S
• L(s) = {s}
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• S = {pay,select,soda,beer}
• Act = {insert_coin,get_soda,get_beer,τ}
• I = {pay}
• AP = {paid,drink}
• L(pay) = /0,L(select) = {paid},L(soda) = L(beer) = {paid, drink}
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The Role of Nondeterminism

• Used to model concurrency by interleaving.
• No assumption about the relative speed of processes.

• Used to model implementation freedom.
• Only describes what a system should do, not how.

• Used to model under-specified systems, or abstractions of real
systems.
• Use incomplete information.
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Definition 2.3 Direct Successors and Predecessors

Post(s,α) =
{

s′ ∈ S | s α−→ s′
}
, Post(s) =

⋃
α∈Act

Post(s,α)

Pre(s,α) =
{

s′ ∈ S | s′ α−→ s
}
, Pre(s) =

⋃
α∈Act

Pre(s,α).

Post(C,α) =
⋃
s∈C

Post(s,α), Post(C) =
⋃
s∈C

Post(s) for C ⊆ S.

Pre(C,α) =
⋃
s∈C

Pre(s,α), Pre(C) =
⋃
s∈C

Pre(s) for C ⊆ S.

Definition 2.4 Terminal State
State s is called terminal if and only if Post(s) = /0.
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Successors and Predecessors: Example
A Beverage Vending Machine Example

pay

selectsoda beer

insert_coin

τ
τ

get_soda get_beer

S = {pay,select,soda,beer}
Act = {insert_coin,get_soda,get_beer,t}
I = {pay}
AP = S

L(s) = {s}
Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 4 / 76

• Post(pay, insert_coin) = {select}
• Pre(pay,get_soda) = {soda}
• Pre(pay) = {soda,beer}
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Definition 2.5 Deterministic Transition
Systems

• Transition system TS = (S,Act,→, I,AP,L) is action-deterministic iff:

| I | ≤ 1 and |Post(s,α) | ≤ 1 for all s,α

• No more than 2 successor states due to the same action

• Transition system TS = (S,Act,→, I,AP,L) is AP-deterministic iff:

| I | ≤ 1 and | Post(s) ∩ {s′ ∈ S | L(s′) = A}︸ ︷︷ ︸
equally labeled successors of s

| ≤ 1 for all s,A∈ 2AP

• No more than 2 successor states of same labeling
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Deterministic Transition Systems: Example

A Beverage Vending Machine Example

pay

selectsoda beer

insert_coin

τ
τ

get_soda get_beer

S = {pay,select,soda,beer}
Act = {insert_coin,get_soda,get_beer,t}
I = {pay}
AP = S

L(s) = {s}
Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 4 / 76

• Is this TS action-deterministic?
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2.1.1 Executions

• An execution (run) is a linear sequence of state transitions.

• Used to describe dynamic behavior of transition systems.

Definition 2.6 Execution Fragments
• A finite execution fragment ρ of TS is an alternating sequence of

states and actions ending with a state:

ρ = s0 α1 s1 α2 . . .αn sn such that si
αi+1−−→ si+1 for all 0≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating
sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−→ si+1 for all 0≤ i.
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2.1.1 Executions

Definition 2.7 Maximal and Initial Execution
An execution of TS is an initial, maximal execution fragment

• An execution fragment is initial if s0 ∈ I.

• A maximal execution fragment can be finite, ending in a terminal state,
or infinite.

Definition 2.9 Executions
An execution of transition system TS is an initial, maximal execution
fragment.
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Example 2.8 Executions of the Vending
Machine

ρ1 = pay coin−−→ select τ−→ soda
sget−−→ pay coin−−→ select τ−→ soda

sget−−→ . . .

ρ2 = select τ−→ soda
sget−−→ pay coin−−→ select τ−→ beer

bget−−→ . . .

ρ3 = pay coin−−→ select τ−→ soda
sget−−→ pay coin−−→ select τ−→ soda

• Which execution fragments are initial?
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Executions: Another ExampleA Beverage Vending Machine Example

pay

selectsoda beer

insert_coin

τ
τ

get_soda get_beer

S = {pay,select,soda,beer}
Act = {insert_coin,get_soda,get_beer,t}
I = {pay}
AP = S

L(s) = {s}
Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 4 / 76

error

open open open

• An execution

ρ4 = pay
insert_coin−−−−−−−→ select

open−−→ error
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Definition 2.10 Reachable States
• State s ∈ S is called reachable in TS if there exists an initial, finite

execution fragment (execution)

s0
α1−→ s1

α2−→ . . .
αn−→ sn = s .

• Reach(TS) denotes the set of all reachable states in TS.

A Beverage Vending Machine Example

pay

selectsoda beer

insert_coin

τ
τ

get_soda get_beer

S = {pay,select,soda,beer}
Act = {insert_coin,get_soda,get_beer,t}
I = {pay}
AP = S

L(s) = {s}
Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 4 / 76
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2.1.2 Modeling Sequential Circuits

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y

• Transition system representation of a simple hardware circuit.

• Input variable x, output variable y, and register r.

• Output function ¬(x⊕ r) and register evaluation function x∨ r.

• Actions in Act are irrelevant here.
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Atomic Propositions

Consider three possible state-labelings:
• Let AP = {x,y,r}
• L(〈x = 0,r = 1〉) = {r} and L(〈x = 1,r = 1〉) = {x,r,y}
• L(〈x = 0,r = 0〉) = {y} and L(〈x = 1,r = 0〉) = {x}
• Property e.g., “once the register is one, it remains one”

• Let AP′ = {x,y} – the register evaluations are now “invisible”
• L(〈x = 0,r = 1〉) = /0 and L(〈x = 1,r = 1〉) = {x,y}
• L(〈x = 0,r = 0〉) = {y} and L(〈x = 1,r = 0〉) = {x}
• Property e.g., “the output bit y is set infinitely often”

• Let AP′ = {x,r} – output y can be derived from x and r.
• L(〈x = 0,r = 1〉) = { } and L(〈x = 1,r = 1〉) = { }
• L(〈x = 0,r = 0〉) = { } and L(〈x = 1,r = 0〉) = { }
• How to check “the output bit y is set infinitely often”?

• Convert to check “¬(x⊕ r) holds infinitely often"
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Sequential Circuit Representation

A sequential circuit is typically represented in an intermediate format
below before its TS is derived.

Cir = (X,Reg, I,R,AP,L)

where

• X is a set of input variables.

• Reg is a set of registers.

• I = {c0,1, . . . ,c0,k}: a set of initial states. − values assigned to Reg
• R is the transition relation of the following form∧

ri∈Reg

r′i = f (x1, . . . ,xn,r1, . . . ,rk)

where r′i represents the value of ri in the next state.
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Sequential Circuit Representation − Example

How to represent the previous circuit example and find it TS?

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y
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2.1.2 Modeling SW: Program Graphs

• How to model the following construct?

if x\%2 = 1 then
x := x+1;

else
x := 2 * x

• Two modeling issues:
• Data variables
• Data-dependent control
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2.1.2 Modeling SW: Program Graphs

Definition 2.13 Program Graphs
A program graph PG over set Var of typed variables is a tuple

〈Loc,Act,Effect, ↪→,Loc0,g0〉 where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act×Eval(Var)→ Eval(Var) is the effect function

• ↪→⊆ Loc× Cond(Var)︸ ︷︷ ︸
Boolean conditions overVar

×Act×Loc, is the transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: `
g:α−−→ `′ denotes (`,g,α, `′) ∈ ↪→

Hao Zheng (CSE, USF) Comp Sys Verification 22 / 57



Example 2.12 − Beverage VM Revisited

Suppose the VM keeps track of number of beer or soda bottles sold.

• Loc = {start,select} with Loc0 = {start}
• Act = {bget,sget,coin,ret_coin,refill}
• Var = {nsoda, nbeer} with domain {0,1, . . . ,max}
• g0 = (nsoda = max ∧ nbeer = max)
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Example 2.12 − Beverage VM Revisited

• Transition relation ↪→ is

start
true:coin
↪−−−−→ select and start

true:refill
↪−−−−−→ start

select
nsoda>0:sget
↪−−−−−−−→ start and select

nbeer>0:bget
↪−−−−−−−→ start

select
nsoda=0∧nbeer=0:ret_coin
↪−−−−−−−−−−−−−−−→ start

• Effects of actions
Action Effect on variables

coin
ret_coin
sget nsoda := nsoda−1
bget nbeer := nbeer−1
refill nsoda := max; nbeer := max
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Definition 2.15 Transition Systems for
Program Graphs
The transition system TS(PG) of program graph

PG = (Loc,Act,Effect, ↪→,Loc0,g0)

over set Var of variables is the tuple (S,Act,−→, I,AP,L) where
• S = Loc×Eval(Var)
• −→⊆ S×Act×S is defined by the rule:

`
g:α
↪−→ `′ ∧ η |= g

〈`,η〉 α−→ 〈`′,Effect(α,η)〉
• I = {〈`,η〉 | ` ∈ Loc0,η |= g0}
• AP = {/∗ property dependent ∗/}
• L(〈`,η〉) = {`} ∪ {g ∈ Cond(Var) | η |= g}.
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Transition System for Beverage Machine

start
true
↪−−→
coin

select

start
true:
↪−−→
refill

start

select
nsoda>0:
↪−−−−−→

sget
start

select
nbeer>0:
↪−−−−−→

bget
start

select
nsoda=0∧nbeer=0:
↪−−−−−−−−−−−→

ret_coin
start

start
•• ◦◦

select
•• ◦◦

coinrefill

start
• ◦◦

start
•• ◦

bget sget
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Transition System for Beverage MachineTransition System for Beverage Machine

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

sodabeer

bget

sget

bget

sget

coinret_coin

refill

refill refill
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bget sget
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From Promela to Program Graphs
bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{

assert(_pid == 0 || _pid == 1);
again: flag[_pid] = 1;

turn = _pid;
(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;
goto again

}
Hao Zheng (CSE, USF) Comp Sys Verification 28 / 57



From Promela to Program Graphs
bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
l1: assert(_pid == 0 || _pid == 1);
again: flag[_pid] = 1;
l2: turn = _pid;
l3: (flag[1 - _pid] == 0 || turn == 1 - _pid);

l4: ncrit++;
l5: assert(ncrit == 1); /* critical section */
l6: ncrit--;

l7: flag[_pid] = 0;
l8: goto again
}
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2.2 Parallelism and Communications

• Transition systems can model:
• Sequential data-dependent systems.
• Sequential hardware circuits.

• How about concurrent systems?
• Multi-threading with shared variables.
• Parallel distributed algorithms.
• Synchronous/asynchronous communication protocols.
• Synchronous/asynchronous composition of hardware.

• Parallel composition ‖

TS = TS1‖TS2‖ . . .‖TSn

Hao Zheng (CSE, USF) Comp Sys Verification 31 / 57



2.2.1 Concurrency and Interleaving

• Interleaving is a widely accepted paradigm for parallel systems.

• Actions of independent components are merged or “interleaved”.

• No assumptions are made on the order of process executions.

• Possible orders for non-terminating independent processes P and Q:

P Q P Q P Q Q Q P . . .
P P Q P P Q P P Q . . .
P Q P P Q P P P Q . . .

• Assumption: there is a scheduler with an a priori unknown strategy.
• Scheduling needs to fair.

Hao Zheng (CSE, USF) Comp Sys Verification 32 / 57



Definition 2.18 Interleaving of Transition
Systems

• Let TSi = (Si,Acti,→i, Ii,APi,Li) i=1,2, be two transition systems

• Transition system

TS1 |||TS2 = (S1×S2,Act1∪Act2,−→, I1× I2,AP1∪AP2,L)

where L(〈s1,s2〉) = L1(s1) ∪ L2(s2) and the transition relation −→ is
defined by the rules:

s1
α−→1 s′1

〈s1,s2〉 α−→ 〈s′1,s2〉
and

s2
α−→2 s′2

〈s1,s2〉 α−→ 〈s1,s′2〉

TS1 and TS2 are assumed independent, ie, no shared actions or
variables.
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Two Independent Traffic Lights
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Justification for Interleaving

• The effect of concurrently executed, independent actions α and β
equals the effect when α and β are successively executed in
arbitrary order

• Symbolically this is stated as:

Effect(α |||β,η) = Effect((α ; β)+(β ; α),η)
= Effect((α ; β),η)
= Effect((β ; α),η)

where ||| stands for the (binary) interleaving operator, “;” stands for
sequential execution, and “+” for non-deterministic choice.
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Another Interleaving Example

x := x+1︸ ︷︷ ︸
=α

||| y := y−2︸ ︷︷ ︸
=β

with initially x = 0 and y = 7

Interleaving Example

x := x +1| {z }
=a

||| y := y �2| {z }
=b

with initially x = 0 and y = 7

x=0

x=1

α |||

y=7

y=5

β = x=1,y=7

x=0,y=7

x=0,y=5

x=1,y=5

α

β α

β

Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 24 / 1
Hao Zheng (CSE, USF) Comp Sys Verification 36 / 57



2.2.2 Communication via Shared Variables

Example 2.20

x := 2·x︸ ︷︷ ︸
=α

||| x := x+1︸ ︷︷ ︸
=β

with initially x = 3

Interleaving Example with Shared Variables

x := 2·x| {z }
=a

||| x := x +1| {z }
=b

with initially x = 3

x=3

x=6

α |||

x=3

x=4

β = x=6,x=3

x=3,x=3

x=3,x=4

x=6,x=4

α

β α

β

hx=6,x=4i is an inconsistent state!

) Not a faithful model of the concurrent execution of a and b

Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 25 / 1

〈x=6,x=4〉 is an inconsistent state!

⇒ Not a faithful model of the concurrent execution of α and β
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Interleaving Program Graphs

• For program graphs PG1 (on Var1) and PG2 (on Var2) without shared
variables (i.e., Var1∩Var2 = /0):

TS(PG1) ||| TS(PG2)

Interleaving of transition systems

• If PG1 and PG2 share some variables (i.e., Var1∩Var2 6= /0):

TS(PG1 ||| PG2)

Interleaving of program graphs

• In general: TS(PG1) ||| TS(PG2) 6= TS(PG1 ||| PG2)
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Definition 2.21 Interleaving of Program
Graphs

• Let PGi = (Loci,Acti,Effecti, ↪→ i,Loc0,i,g0,i) over variables Vari.

• Program graph PG1 |||PG2 over Var1∪Var2 is defined by:

(Loc1×Loc2,Act1]Act2,Effect, ↪→,Loc0,1×Loc0,2,g0,1∧g0,2)

where ↪→ is defined by the inference rules:

`1
g:α
↪−→1 `

′
1

〈`1, `2〉
g:α
↪−→ 〈`′1, `2〉

and
`2

g:α
↪−→2 `

′
2

〈`1, `2〉
g:α
↪−→ 〈`1, `

′
2〉

and Effect(α,η) = Effecti(α,η) if α ∈ Acti.

For PG1 and PG2, Loc1∩Loc2 = /0 and Act1∩Act2 = /0.

Hao Zheng (CSE, USF) Comp Sys Verification 39 / 57



Example 2.22 Interleaving of Program Graphs
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Critical and Noncritical Actions

• Actions that access shared variables are critical, otherwise they are
noncritical.

• Nondeterminism in a state may be due to:
• An internal nondeterministic choice within program graph PG1 or PG2.
• The interleaving of noncritical actions of PG1 and PG2.
• The resolution of a contention between critical actions of PG1 and PG2

(concurrency).

• A noncritical action can be executed in parallel with any other action.
• The schedule of concurrent critical actions affects the global state.
• Different order of executions of critical actions may lead to different

states.
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On Atomicity

• Atomicity is used to capture granularity of concurrency.

• Actions α ∈ Act are consider indivisible.

〈x := x+1; y := 2x+1; if x < 12 then z := (x− z)2 ∗ y fi〉
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Banking System

Person Left behaves as follows:

while true {

. . . . . .

nc : 〈b1 := true, x := 2;〉
wt : wait until (x == 1 || ¬b2){
cs : . . .@account . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : 〈b2 := true; x := 1;〉
wt : wait until (x == 2 || ¬b1){
cs : . . .@account . . .}

b2 = false;

. . . . . .

}

Can we guarantee that only one person at a time has access to the bank
account?
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Peterson’s Mutual Exclusion Algorithm

P1 loop forever

... (* non-critical actions *)

〈b1 := true; x := 2〉; (* request *)

wait until (x = 1 ∨ ¬b2)

do critical section od

b1 := false (* release *)

... (* non-critical actions *)

end loop

bi is true if and only if process Pi is waiting or in critical section
If both processes want to enter their critical section, x decides who gets access
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Program Graph Representation
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Transition System

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Is mutual exclusion guaranteed?
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Banking System with Non-atomic Assignment

Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

Hao Zheng (CSE, USF) Comp Sys Verification 47 / 57



Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

1 : 〈nc1, nc2, x = 1, b1 = false, b2 = false〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

2 : 〈nc1, rq2, x = 1, b1 = false, b2 = false〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

3 : 〈rq1, rq2, x = 2, b1 = false, b2 = false〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

4 : 〈wt1, rq2, x = 2, b1 = true, b2 = false〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

5 : 〈cs1, rq2, x = 2, b1 = true, b2 = false〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

6 : 〈cs1, wt2, x = 2, b1 = true, b2 = true〉
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

7 : 〈cs1, cs2, x = 2, b1 = true, b2 = true〉

Violation of the mutual exclusion property!
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Banking System with Non-atomic Assignment
Person Left behaves as follows:

while true {

. . . . . .

nc : x := 2;

rq : b1 := true;

wt : wait until (x = 1 || ¬b2){
cs : . . .@account . . .}

b1 := false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc : x := 1;

rq : b2 := true;

wt : wait until (x = 2 || ¬b1){
cs : . . .@account . . .}

b2 := false;

. . . . . .

}

7 : 〈cs1, cs2, x = 2, b1 = true, b2 = true〉
Violation of the mutual exclusion property!

Note that protocol is okay if bi is assigned before x.
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2.2.3 Handshaking

• If processes are distributed there is no shared memory.
• Communications for distributed systems:
• Synchronous message passing (= handshaking)
• Asynchronous message passing (= channel communication)

• Concurrent processes interact by synchronous message passing.
• Processes execute synchronized actions together at the same time.
• The interacting processes “shake hands”.

• This does NOT mean it is implemented with synchronous hardware.
• Introduce set H, the handshake actions.
• Actions outside H are independent and are interleaved.
• Actions in H need to be synchronized.
• Abstracts away the information that is exchanged.
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Handshaking: Formal Definition

• Let TSi = (Si,Acti,→i, Ii,APi,Li), i=1,2 and H ⊆ Act1 ∩ Act2

TS1 ‖H TS2 = (S1×S2,Act1∪Act2,→, I1× I2,AP1∪AP2,L)

where L(〈s1,s2〉) = L1(s1) ∪ L2(s2) and with→ defined by:

s1
α−→ 1 s′1

〈s1,s2〉 α−→ 〈s′1,s2〉
s2

α−→ 2 s′2
〈s1,s2〉 α−→ 〈s1,s′2〉

interleaving for α 6∈ H

s1
α−→ 1 s′1 ∧ s2

α−→ 2 s′2
〈s1,s2〉 α−→ 〈s′1,s′2〉

handshaking for α ∈ H

TS1 and TS2 do NOT share variables.
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Handshaking Properties

• For an empty set of handshake actions:

TS1 ‖ /0 TS2 = TS1 |||TS2

.
• Note that it is commutative (i.e., TS1 ‖H TS2 = TS2 ‖H TS1), but
• Not always associative, i.e.,

(TS1 ‖H1 TS2) ‖H2 TS3 6= TS1 ‖H1 (TS2 ‖H2 TS3).

• It is, however, associative for a fixed set H:

TS = TS1 ‖H TS2 ‖H . . . ‖H TSn.

• Useful to model broadcast communications.

Hao Zheng (CSE, USF) Comp Sys Verification 50 / 57



Example 2.28 A Booking System

A Booking System

0

1

scanstore

0

1

storeprt_cmd

0

1

prt_cmdprint

BCR k BP k Printer

k is a shorthand for kH with H = Act1 \ Act2

Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 42 / 1

BCR ‖ BP ‖ Printer (‖ is a shorthand for ‖H with H = Act1 ∩ Act2)

The Parallel Composition

100 000 001

101

010

110 111 011scan print print scan

store print
prt_cmd scan

print store
scan prt_cmd

Chris J. Myers (Lecture 2: Modeling) Verification of Cyber-Physical Systems 43 / 1
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2.2.6 Synchronous Parallelism

Definition 2.41 Synchronous Product
• Let TSi = (Si,Acti,→i, Ii,APi,Li), i=1,2, the synchronous

product of TS1 and TS2, TS1⊗TS2, is given by

TS1⊗TS2 = (S1×S2,Act1×Act2,→, I1× I2,AP1∪AP2,L)

where L(〈s1,s2〉) = L1(s1) ∪ L2(s2) and with→ defined by:

s1
α−→1 s′1 ∧ s2

β−→2 s′2

〈s1,s2〉
(α,β)−−−→ 〈s′1,s′2〉

• Often used for composing synchronous digital circuits.
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Synchronous Product: Example
Synchronous product: example pc2.2-52

yyy

not

r1r1r1

T1T1T1 000 111

initially:
r1 = 0r1 = 0r1 = 0

transition function:
δr1 = ¬r1δr1 = ¬r1δr1 = ¬r1

zzz

r2r2r2

orxxx

T2T2T2

000000 101010

010101

111111

initially:
r2 = 0r2 = 0r2 = 0

transition function:
δr2 = r2 ∨ xδr2 = r2 ∨ xδr2 = r2 ∨ x

124 / 131
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Synchronous Product: ExampleSynchronous product: example pc2.2-52

yyy

not

r1r1r1

T1T1T1 000 111

zzz

r2r2r2

orxxx

T2T2T2

000000 101010

010101

111111

TS for the
composite
circuit
T1 ⊗ T2T1 ⊗ T2T1 ⊗ T2

000000000

010010010

100100100

101101101

111111111

001001001

011011011

110110110
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2.3 State Explosion

• Given a program graph, the number of states is

|Loc| · ∏
x∈Var

|dom(x)|

• Consider TS = TS1‖ . . .‖TSn, the number of states is

|S1| · . . . · |Sn|
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Summary

• Transition systems
• A fundamental model for modeling software and hardware systems.

• Executions
• Alternating sequences of states and actions that cannot be prolonged.

• Interleaving
• Execution of independent concurrent processes by nondeterminism.

• Shared variables
• Parallel composition on transition systems is not adequate.
• Instead, parallel composition of program graphs is used.

• Handshaking on a set H of actions
• Execute actions in H simultaneously and those not in H autonomously.
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