Modeling Concurrent Systems

Hao Zheng

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
Email: haozheng@usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Overview

(1) Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW
(2) Parallel Composition
- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition
(3) Understanding State Space Explosion

Reading

Principle of Model Checking, Chapter 2

Contents

(1) Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW
(2) Parallel Composition
- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition
(3) Understanding State Space Explosion

2.1 Transition Systems

Transition system is a common semantic model to describe computation/communcation in HW/SW systems.

Definition 2.1 Transition Systems

A transition system TS is a tuple $\langle S, A c t, \longrightarrow, I, A P, L\rangle$ where:

- S is a set of states.
- Act is a set of actions.
- $\longrightarrow \subseteq S \times A c t \times S$ is a transition relation (denoted $s \xrightarrow{\alpha} s^{\prime}$).
- $I \subseteq S$ is a set of initial states.
- $A P$ is a set of atomic propositions.
- $L: S \rightarrow 2^{A P}$ is a labeling function.
- Note that S and Act can be finite or countably infinite.

Example 2.2 Beverage Vending Machine

- $S=\{$ pay, select, soda, beer $\}$
- $A c t=\{$ insert_coin, get_soda, get_beer, $\tau\}$
- $I=\{$ pay $\}$
- $A P=S$
- $L(s)=\{s\}$

Example 2.2 Beverage Vending Machine

- $S=\{$ pay, select, soda, beer $\}$
- $A c t=\{$ insert_coin, get_soda, get_beer, $\tau\}$
- $I=\{$ pay $\}$
- $A P=\{$ paid, drink $\}$
- $L($ pay $)=\emptyset, L($ select $)=\{$ paid $\}, L($ soda $)=L($ beer $)=\{$ paid, drink $\}$

The Role of Nondeterminism

- Used to model concurrency by interleaving.
- No assumption about the relative speed of processes.
- Used to model implementation freedom.
- Only describes what a system should do, not how.
- Used to model under-specified systems, or abstractions of real systems.
- Use incomplete information.

Definition 2.3 Direct Successors and Predecessors

$$
\begin{aligned}
& \operatorname{Post}(s, \alpha)=\left\{s^{\prime} \in S \mid s \xrightarrow[\rightarrow]{\alpha} s^{\prime}\right\}, \quad \operatorname{Post}(s)=\bigcup_{\alpha \in A c t} \operatorname{Post}(s, \alpha) \\
& \operatorname{Pre}(s, \alpha)=\left\{s^{\prime} \in S \mid s^{\prime} \xrightarrow[\rightarrow]{\alpha}\right\}, \quad \operatorname{Pre}(s)=\bigcup_{\alpha \in \operatorname{Act}} \operatorname{Pre}(s, \alpha) . \\
& \operatorname{Post}(C, \alpha)=\bigcup_{s \in C} \operatorname{Post}(s, \alpha), \quad \operatorname{Post}(C)=\bigcup_{s \in C} \operatorname{Post}(s) \text { for } C \subseteq S . \\
& \operatorname{Pre}(C, \alpha)=\bigcup_{s \in C} \operatorname{Pre}(s, \alpha), \quad \operatorname{Pre}(C)=\bigcup_{s \in C} \operatorname{Pre}(s) \text { for } C \subseteq S .
\end{aligned}
$$

Definition 2.4 Terminal State

State s is called terminal if and only if $\operatorname{Post}(s)=\emptyset$.

Successors and Predecessors: Example

- Post $($ pay, insert_coin $)=\{$ select $\}$
- $\operatorname{Pre}($ pay, get_soda $)=\{$ soda $\}$
- $\operatorname{Pre}($ pay $)=\{$ soda,beer $\}$

Definition 2.5 Deterministic Transition Systems

- Transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ is action-deterministic iff:

$$
|I| \leq 1 \quad \text { and } \quad|\operatorname{Post}(s, \alpha)| \leq 1 \quad \text { for all } s, \alpha
$$

- No more than 2 successor states due to the same action
- Transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ is $A P$-deterministic iff:

$$
|I| \leq 1 \text { and }|\underbrace{\operatorname{Post}(s) \cap\left\{s^{\prime} \in S \mid L\left(s^{\prime}\right)=A\right\}}_{\text {equally labeled successors of } s}| \leq 1 \quad \text { for all } s, A \in 2^{A P}
$$

- No more than 2 successor states of same labeling

Deterministic Transition Systems: Example

- Is this TS action-deterministic?

2.1.1 Executions

- An execution (run) is a linear sequence of state transitions.
- Used to describe dynamic behavior of transition systems.

Definition 2.6 Execution Fragments

- A finite execution fragment ρ of $T S$ is an alternating sequence of states and actions ending with a state:

$$
\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots \alpha_{n} s_{n} \text { such that } s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1} \text { for all } 0 \leq i<n
$$

- An infinite execution fragment ρ of $T S$ is an infinite, alternating sequence of states and actions:

$$
\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} s_{2} \alpha_{3} \ldots \text { such that } s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1} \text { for all } 0 \leq i
$$

2.1.1 Executions

Definition 2.7 Maximal and Initial Execution

An execution of $T S$ is an initial, maximal execution fragment

- An execution fragment is initial if $s_{0} \in I$.
- A maximal execution fragment can be finite, ending in a terminal state, or infinite.

Definition 2.9 Executions

An execution of transition system $T S$ is an initial, maximal execution fragment.

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial?

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial? ρ_{1} and ρ_{3}

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial? ρ_{1} and ρ_{3}
- Which execution fragments are maximal?

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial? ρ_{1} and ρ_{3}
- Which execution fragments are maximal? ρ_{1} and ρ_{2}

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial? ρ_{1} and ρ_{3}
- Which execution fragments are maximal? ρ_{1} and ρ_{2}
- Which execution fragments are "executions"?

Example 2.8 Executions of the Vending Machine

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2}=\text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \rho_{3}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { soda }
\end{aligned}
$$

- Which execution fragments are initial? ρ_{1} and ρ_{3}
- Which execution fragments are maximal? ρ_{1} and ρ_{2}
- Which execution fragments are "executions"? ρ_{1}

Executions: Another Example

- An execution

$$
\rho_{4}=\text { pay } \xrightarrow{\text { insert_coin }} \text { select } \xrightarrow{\text { open }} \text { error }
$$

Definition 2.10 Reachable States

- State $s \in S$ is called reachable in TS if there exists an initial, finite execution fragment (execution)

$$
s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n}} s_{n}=s .
$$

- Reach(TS) denotes the set of all reachable states in $T S$.

2.1.2 Modeling Sequential Circuits

- Transition system representation of a simple hardware circuit.
- Input variable x, output variable y, and register r.
- Output function $\neg(x \oplus r)$ and register evaluation function $x \vee r$.
- Actions in Act are irrelevant here.

Atomic Propositions

Consider three possible state-labelings:

- Let $A P=\{x, y, r\}$
- $L(\langle x=0, r=1\rangle)=\{r\}$ and $L(\langle x=1, r=1\rangle)=\{x, r, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- Property e.g., "once the register is one, it remains one"
- Let $A P^{\prime}=\{x, y\}$ - the register evaluations are now "invisible"
- $L(\langle x=0, r=1\rangle)=\emptyset$ and $L(\langle x=1, r=1\rangle)=\{x, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- Property e.g., "the output bit y is set infinitely often"
- Let $A P^{\prime}=\{x, r\}$ - output y can be derived from x and r.
- $L(\langle x=0, r=1\rangle)=\{\quad\}$ and $L(\langle x=1, r=1\rangle)=\{\quad\}$
- $L(\langle x=0, r=0\rangle)=\{\quad\}$ and $L(\langle x=1, r=0\rangle)=\{\quad\}$
- How to check "the output bit y is set infinitely often"?

Atomic Propositions

Consider three possible state-labelings:

- Let $A P=\{x, y, r\}$
- $L(\langle x=0, r=1\rangle)=\{r\}$ and $L(\langle x=1, r=1\rangle)=\{x, r, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- Property e.g., "once the register is one, it remains one"
- Let $A P^{\prime}=\{x, y\}$ - the register evaluations are now "invisible"
- $L(\langle x=0, r=1\rangle)=\emptyset$ and $L(\langle x=1, r=1\rangle)=\{x, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- Property e.g., "the output bit y is set infinitely often"
- Let $A P^{\prime}=\{x, r\}$ - output y can be derived from x and r.
- $L(\langle x=0, r=1\rangle)=\{\quad\}$ and $L(\langle x=1, r=1\rangle)=\{\quad\}$
- $L(\langle x=0, r=0\rangle)=\{\quad\}$ and $L(\langle x=1, r=0\rangle)=\{\quad\}$
- How to check "the output bit y is set infinitely often"?
- Convert to check " $\neg(x \oplus r)$ holds infinitely often"

Sequential Circuit Representation

A sequential circuit is typically represented in an intermediate format below before its TS is derived.

$$
\operatorname{Cir}=(X, \operatorname{Reg}, I, R, A P, L)
$$

where

- X is a set of input variables.
- Reg is a set of registers.
- $I=\left\{c_{0,1}, \ldots, c_{0, k}\right\}$: a set of initial states. - values assigned to Reg
- R is the transition relation of the following form

$$
\bigwedge_{r_{i} \in \operatorname{Reg}} r_{i}^{\prime}=f\left(x_{1}, \ldots, x_{n}, r_{1}, \ldots, r_{k}\right)
$$

where r_{i}^{\prime} represents the value of r_{i} in the next state.

Sequential Circuit Representation - Example

How to represent the previous circuit example and find it $T S$?

2.1.2 Modeling SW: Program Graphs

- How to model the following construct?

$$
\begin{aligned}
& \text { if } x \backslash 2=1 \text { then } \\
& x:=x+1 ; \\
& \text { else } \\
& x:=2 * x
\end{aligned}
$$

- Two modeling issues:
- Data variables
- Data-dependent control

2.1.2 Modeling SW: Program Graphs

Definition 2.13 Program Graphs

A program graph $P G$ over set Var of typed variables is a tuple
$\left\langle\right.$ Loc, Act, Effect, \hookrightarrow, Loc $\left._{0}, g_{0}\right\rangle \quad$ where

- Loc is a set of locations with initial locations $L O c_{0} \subseteq$ Loc
- Act is a set of actions
- Effect: Act \times Eval(Var) \rightarrow Eval(Var) is the effect function
- $\hookrightarrow \subseteq L o c \times \underbrace{\text { Cond(Var) }}_{\text {Boolean conditions overVar }} \times \operatorname{Act} \times$ Loc, is the transition relation
- $g_{0} \in \operatorname{Cond}(\mathrm{Var})$ is the initial condition.

Notation: $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ denotes $\left(\ell, g, \alpha, \ell^{\prime}\right) \in \hookrightarrow$

Example 2.12 - Beverage VM Revisited

Suppose the VM keeps track of number of beer or soda bottles sold.

- Loc $=\{$ start, select $\}$ with $L o c_{0}=\{$ start $\}$
- Act $=\{$ bget,sget, coin, ret_coin,refill $\}$
- Var $=\{$ nsoda, nbeer $\}$ with domain $\{0,1, \ldots, \max \}$
- $g_{0}=($ nsoda $=\max \wedge$ nbeer $=\max)$

Example 2.12 - Beverage VM Revisited

- Transition relation \hookrightarrow is

$$
\begin{aligned}
& \text { start } \xrightarrow{\text { true:coin }} \text { select and } \text { start } \xrightarrow{\text { true:refill }} \text { start } \\
& \text { select } \xrightarrow{\text { nsoda }>0: \text { sget }} \text { start and select } \xrightarrow{\text { nbeer }>0 \text { :bget }} \text { start } \\
& \text { select } \xrightarrow{\text { nsoda }=0 \wedge \text { nbeer }=0: \text { ret_coin }} \text { start }
\end{aligned}
$$

- Effects of actions

Action	Effect on variables
coin	
ret_coin	
sget	nsoda $:=$ nsoda -1
bget	nbeer $:=$ nbeer -1
refill	nsoda $:=$ max; nbeer $:=$ max

Definition 2.15 Transition Systems for Program Graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(L o c, A c t, E f f e c t, \hookrightarrow, L o c_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \longrightarrow, I, A P, L)$ where

- $S=$ Loc \times Eval(Var)
- $\longrightarrow \subseteq S \times A c t \times S$ is defined by the rule:

$$
\frac{\ell \stackrel{g: \alpha}{\stackrel{\alpha}{\longrightarrow}} \ell^{\prime} \wedge \eta \models g}{\langle\ell, \eta\rangle \stackrel{\leftrightarrow}{\longrightarrow}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

- $I=\left\{\langle\ell, \eta\rangle \mid \ell \in L_{o c}, \eta \models g_{0}\right\}$
- $A P=\{/ *$ property dependent $* /\}$
- $L(\langle\ell, \eta\rangle)=\{\ell\} \cup\{g \in \operatorname{Cond}(\operatorname{Var}) \mid \eta \models g\}$.

Transition System for Beverage Machine

$$
\begin{aligned}
& \text { start } \xrightarrow[\text { coin }]{\stackrel{\text { true }}{\longrightarrow}} \text { select } \\
& \text { start } \underset{\text { refill }}{\text { true: }} \text { start } \\
& \text { select } \xrightarrow[\text { sget }]{\stackrel{\text { nsoda }>0}{\longrightarrow}} \text { start } \\
& \text { select } \xrightarrow[\text { bget }]{\stackrel{\text { nbeer }>0 \text { : }}{\longrightarrow}} \text { start } \\
& \text { select } \stackrel{\text { nsoda }=0 \wedge \text { nbeer }=0 \text { : }}{\text { ret_coin }} \text { start }
\end{aligned}
$$

Transition System for Beverage Machine

$$
\begin{aligned}
& \text { start } \underset{\text { coin }}{\stackrel{\text { true }}{\longrightarrow}} \text { select } \\
& \text { start } \underset{\text { refill }}{\stackrel{\text { true: }}{\longrightarrow}} \text { start } \\
& \text { select } \xrightarrow[\text { sget }]{\stackrel{\text { nsoda }>0:}{\longrightarrow}} \text { start } \\
& \text { select } \xrightarrow[\text { bget }]{\stackrel{\text { nbeer }>0 \text { : }}{\longrightarrow}} \text { start } \\
& \text { select } \xlongequal[\text { ret_coin }]{\text { nsoda }=0 \wedge \text { nbeer }=0 \text { : }} \text { start }
\end{aligned}
$$

Transition System for Beverage Machine

Transition System for Beverage Machine

From Promela to Program Graphs

```
bool turn, flag[2];
byte ncrit;
active [2] proctype user()
{
assert(_pid == 0 || _pid == 1);
again: flag[_pid] = 1;
turn = _pid;
(flag[1 - _pid] == 0 || turn == 1 - _pid);
ncrit++;
assert(ncrit == 1); /* critical section */
ncrit--;
flag[_pid] = 0;
goto again
```


From Promela to Program Graphs

```
bool turn, flag[2];
byte ncrit;
active [2] proctype user()
{
11: assert(_pid == 0 || _pid == 1);
again: flag[_pid] = 1;
12: turn = _pid;
13: (flag[1 - _pid] == 0 || turn == 1 _ _pid);
14: ncrit++;
15: assert(ncrit == 1); /* critical section */
l6: ncrit--;
17: flag[_pid] = 0;
18: goto again
}
```


Contents

(1) Modeling Formalisms
 - Transition Systems
 - Modeling HW
 - Modeling SW

(2) Parallel Composition

- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition
(3) Understanding State Space Explosion

2.2 Parallelism and Communications

- Transition systems can model:
- Sequential data-dependent systems.
- Sequential hardware circuits.
- How about concurrent systems?
- Multi-threading with shared variables.
- Parallel distributed algorithms.
- Synchronous/asynchronous communication protocols.
- Synchronous/asynchronous composition of hardware.
- Parallel composition ||

$$
T S=T S_{1}\left\|T S_{2}\right\| \ldots \| T S_{n}
$$

2.2.1 Concurrency and Interleaving

- Interleaving is a widely accepted paradigm for parallel systems.
- Actions of independent components are merged or "interleaved".
- No assumptions are made on the order of process executions.
- Possible orders for non-terminating independent processes P and Q :

- Assumption: there is a scheduler with an a priori unknown strategy.
- Scheduling needs to fair.

Definition 2.18 Interleaving of Transition Systems

- Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right) i=1,2$, be two transition systems
- Transition system

$$
T S_{1}\| \| S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \cup A c t_{2}, \longrightarrow, I_{1} \times I_{2}, A P_{1} \cup A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and the transition relation \longrightarrow is defined by the rules:

$$
\frac{s_{1} \stackrel{\alpha}{\rightarrow}_{1} s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \quad \text { and } \frac{s_{2} \stackrel{\alpha}{\rightarrow}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

$T S_{1}$ and $T S_{2}$ are assumed independent, ie, no shared actions or variables.

Two Independent Traffic Lights

Justification for Interleaving

- The effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order
- Symbolically this is stated as:

$$
\begin{aligned}
\operatorname{Effect}(\alpha\|\| \beta, \eta) & =\operatorname{Effect}((\alpha ; \beta)+(\beta ; \alpha), \eta) \\
& =\operatorname{Effect}((\alpha ; \beta), \eta) \\
& =\operatorname{Effect}((\beta ; \alpha), \eta)
\end{aligned}
$$

where ||| stands for the (binary) interleaving operator, ";" stands for sequential execution, and "+" for non-deterministic choice.

Another Interleaving Example

$$
\underbrace{x:=x+1}_{=\alpha} \| \underbrace{y:=y-2}_{=\beta} \quad \text { with initially } x=0 \text { and } y=7
$$

2.2.2 Communication via Shared Variables

Example 2.20

$$
\underbrace{x:=2 \cdot x}_{=\alpha}| | \mid \underbrace{x:=x+1}_{=\beta} \text { with initially } x=3
$$

$$
\langle x=6, x=4\rangle \text { is an inconsistent state! }
$$

\Rightarrow Not a faithful model of the concurrent execution of α and β

Interleaving Program Graphs

- For program graphs $P G_{1}$ (on $V a r_{1}$) and $P G_{2}$ (on $V a r_{2}$) without shared variables (i.e., $\operatorname{Var}_{1} \cap \operatorname{Var}_{2}=\emptyset$):

$$
T S\left(P G_{1}\right)\left\|\| S\left(P G_{2}\right)\right.
$$

Interleaving of transition systems

- If $P G_{1}$ and $P G_{2}$ share some variables (i.e., $\operatorname{Var}_{1} \cap \operatorname{Var}_{2} \neq \emptyset$):

$$
T S\left(P G_{1}\| \| P G_{2}\right)
$$

Interleaving of program graphs

- In general: $T S\left(P G_{1}\right) \| \mid T S\left(P G_{2}\right) \neq T S\left(P G_{1} \| \mid P G_{2}\right)$

Definition 2.21 Interleaving of Program Graphs

- Let $P G_{i}=\left(\right.$ Loc $_{i}$, Act $_{i}$, Effect $_{i}, \hookrightarrow_{i}$, Loc $\left._{0, i}, g_{0, i}\right)$ over variables Var $_{i}$.
- Program graph $P G_{1} \| \mid P G_{2}$ over $\operatorname{Var}_{1} \cup V a r_{2}$ is defined by:

$$
\left(L o c_{1} \times L o c_{2}, A c t_{1} \uplus A c t_{2}, E f f e c t, \hookrightarrow, L o c_{0,1} \times L o c_{0,2}, g_{0,1} \wedge g_{0,2}\right)
$$

where \hookrightarrow is defined by the inference rules:

$$
\frac{\ell_{1} \stackrel{g: \alpha}{\longleftrightarrow} 1 \ell_{1}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \stackrel{g: \alpha}{\longleftrightarrow}\left\langle\ell_{1}^{\prime}, \ell_{2}\right\rangle} \text { and } \frac{\ell_{2} \stackrel{g: \alpha}{\longleftrightarrow} 2 \ell_{2}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \stackrel{g: \alpha}{\longleftrightarrow}\left\langle\ell_{1}, \ell_{2}^{\prime}\right\rangle}
$$

and $\operatorname{Effect}(\alpha, \eta)=\operatorname{Effect}_{i}(\alpha, \eta)$ if $\alpha \in \operatorname{Act}_{i}$.
For $P G_{1}$ and $P G_{2}, L o c_{1} \cap L o c_{2}=\emptyset$ and $A c t_{1} \cap A c t_{2}=\emptyset$.

Example 2.22 Interleaving of Program Graphs

Critical and Noncritical Actions

- Actions that access shared variables are critical, otherwise they are noncritical.
- Nondeterminism in a state may be due to:
- An internal nondeterministic choice within program graph $P G_{1}$ or $P G_{2}$.
- The interleaving of noncritical actions of $P G_{1}$ and $P G_{2}$.
- The resolution of a contention between critical actions of $P G_{1}$ and $P G_{2}$ (concurrency).
- A noncritical action can be executed in parallel with any other action.
- The schedule of concurrent critical actions affects the global state.
- Different order of executions of critical actions may lead to different states.

On Atomicity

- Atomicity is used to capture granularity of concurrency.
- Actions $\alpha \in$ Act are consider indivisible.

$$
\left\langle x:=x+1 ; y:=2 x+1 ; \text { if } x<12 \text { then } z:=(x-z)^{2} * y \mathbf{f i}\right\rangle
$$

Banking System

Person Left behaves as follows:

Person Right behaves as follows:

$$
\begin{array}{ll}
& \text { while true }\{ \\
& \ldots \ldots . \\
n c: & \left\langle b_{2}:=\text { true } ; x:=1 ;\right\rangle \\
w t: & \text { wait until }\left(x==2 \| \neg b_{1}\right)\{ \\
\text { cs : } & \ldots . @ \text { account } \ldots\} \\
& b_{2}=\text { false; } \\
& \ldots \ldots . \\
& \}
\end{array}
$$

Can we guarantee that only one person at a time has access to the bank account?

Peterson's Mutual Exclusion Algorithm

$P_{1} \quad$ loop forever

$$
\begin{array}{lr}
\vdots & \left({ }^{*}\right. \text { non-critical actions *) } \\
\left\langle b_{1}:=\text { true; } x:=2\right\rangle ; & \text { (* request } \left.^{*}\right) \\
\text { wait until }\left(x=1 \vee \neg b_{2}\right) & \\
\text { do critical section od } & \\
b_{1}:=\text { false } & \left({ }^{*}\right. \text { release *) } \\
\vdots & \left({ }^{*}\right. \text { non-critical actions *) } \\
\text { end loop } &
\end{array}
$$

b_{i} is true if and only if process P_{i} is waiting or in critical section
If both processes want to enter their critical section, x decides who gets access

Program Graph Representation

Transition System

Is mutual exclusion guaranteed?

Banking System with Non-atomic Assignment

Person Left behaves as follows:

	while true \{	
	$x:=2$	
$r q$:	$b_{1}:=\text { true; }$	
$w t$:	wait until ($x=1 \\| \neg b_{2}$) $\{$	
$c s:$...@account...\}	
	b_{1} : $=$ false;	
	\}	

Person Right behaves as follows:

	while true $\{$	
	$\ldots \ldots$.	
$n c:$	$x:=1 ;$	
$r q:$	$b_{2}:=$ true;	
$w t:$	wait until $\left(x=2 \\| \neg b_{1}\right)\{$	
$c s:$	$\ldots . @$ account $\ldots\}$	
	$b_{2}:=$ false;	
	$\ldots .$.	

Banking System with Non-atomic Assignment

Person Left behaves as follows:

Person Right behaves as follows:

			while true $\{$	
	$\ldots \ldots$			
$n c:$	$x:=1 ;$			
$r q:$	$b_{2}:=$ true;			
$w t:$	wait until $\left(x=2 \\| \neg b_{1}\right)\{$			
$c s:$	$\ldots @$ account $\ldots\}$			
	$b_{2}:=$ false;			
	$\ldots \ldots$			
	$\}$			

1: $\quad\left\langle n c_{1}, \quad n c_{2}, \quad x=1, \quad b_{1}=\right.$ false,$\quad b_{2}=$ false \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$x:=2 ;$	
$r q:$	$b_{1}:=$ true;	
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$	
$c s:$	\ldots @account $\ldots\}$	
	$b_{1}:=$ false;	
	$\ldots \ldots$	
	$\}$	

2: $\left\langle n c_{1}, r q_{2}, x=1, \quad b_{1}=\right.$ false,$\quad b_{2}=$ false \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

3: $\left\langle r q_{1}, r q_{2}, x=2, \quad b_{1}=\right.$ false,$\quad b_{2}=$ false \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$x:=2 ;$	
$r q:$	$b_{1}:=$ true;	
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$	
$c s:$	\ldots @account $\ldots\}$	
	$b_{1}:=$ false;	
	$\ldots \ldots$	
	$\}$	

$4:\left\langle w t_{1}, r q_{2}, x=2, \quad b_{1}=\right.$ true, $\quad b_{2}=$ false \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$x:=2 ;$	
$r q:$	$b_{1}:=$ true;	
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$	
$c s:$	$\ldots @$ account $\ldots\}$	
	$b_{1}:=$ false;	
	$\ldots \ldots$	
	$\}$	

$5:\left\langle c s_{1}, r q_{2}, \quad x=2, \quad b_{1}=\right.$ true,$\quad b_{2}=$ false \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$x:=2 ;$	
$r q:$	$b_{1}:=$ true;	
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$	
$c s:$	\ldots @account $\ldots\}$	
	$b_{1}:=$ false;	
	$\ldots \ldots$	
	$\}$	

Person Right behaves as follows:

$6:\left\langle c s_{1}, \quad w t_{2}, x=2, \quad b_{1}=\right.$ true,$\quad b_{2}=$ true \rangle

Banking System with Non-atomic Assignment

Person Left behaves as follows:

while true $\{$		
	$\ldots \ldots$	
$n c:$	$x:=2 ;$	
$r q:$	$b_{1}:=$ true;	
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$	
$c s:$	$\ldots @$ @ccount $\ldots\}$	
	$b_{1}:=$ false;	
	$\ldots \ldots$	
	$\}$	

Person Right behaves as follows:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$x:=1 ;$	
$r q:$	$b_{2}:=$ true;	
$w t:$	wait until $\left(x=2 \\| \neg b_{1}\right)\{$	
$c s:$	$\ldots @$ account $\ldots\}$	
	$b_{2}:=$ false;	
	$\ldots \ldots$	
	$\}$	

$7:\left\langle c s_{1}, c s_{2}, x=2, \quad b_{1}=\right.$ true,$\quad b_{2}=$ true \rangle
Violation of the mutual exclusion property!

Banking System with Non-atomic Assignment

Person Left behaves as follows:

			while true $\{$	
	$\ldots \ldots$			
$n c:$	$x:=2 ;$			
$r q:$	$b_{1}:=$ true;			
$w t:$	wait until $\left(x=1 \\| \neg b_{2}\right)\{$			
$c s:$	\ldots @account...\}			
	$b_{1}:=$ false;			
	$\ldots \ldots$			
	$\}$			

Person Right behaves as follows:

while true $\{$		
	$\ldots \ldots$	
$n c:$	$x:=1 ;$	
$r q:$	$b_{2}:=$ true;	
$w t:$	wait until $\left(x=2 \\| \neg b_{1}\right)\{$	
$c s:$	$\ldots @$ account $\ldots\}$	
	$b_{2}:=$ false;	
	$\ldots \ldots$	
	$\}$	

$7: \quad\left\langle c s_{1}, c s_{2}, x=2, \quad b_{1}=\right.$ true,$\quad b_{2}=$ true \rangle
Violation of the mutual exclusion property!
Note that protocol is okay if b_{i} is assigned before x.

2.2.3 Handshaking

- If processes are distributed there is no shared memory.
- Communications for distributed systems:
- Synchronous message passing (= handshaking)
- Asynchronous message passing (= channel communication)
- Concurrent processes interact by synchronous message passing.
- Processes execute synchronized actions together at the same time.
- The interacting processes "shake hands".
- This does NOT mean it is implemented with synchronous hardware.
- Introduce set H, the handshake actions.
- Actions outside H are independent and are interleaved.
- Actions in H need to be synchronized.
- Abstracts away the information that is exchanged.

Handshaking: Formal Definition

- Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right), i=1,2$ and $H \subseteq A c t_{1} \cap A c t_{2}$

$$
T S_{1} \|_{H} T S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \cup A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \cup A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and with \rightarrow defined by:

$$
\begin{aligned}
& \frac{s_{1} \xrightarrow{\alpha}_{1} s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \quad \frac{s_{2} \xrightarrow{\alpha}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle} \\
& \frac{s_{1} \xrightarrow{\alpha}_{1} s_{1}^{\prime} \wedge s_{2}^{\prime} \xrightarrow[\rightarrow]{\rightarrow}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
\end{aligned}
$$

interleaving for $\alpha \notin H$
handshaking for $\alpha \in H$
$T S_{1}$ and $T S_{2}$ do NOT share variables.

Handshaking Properties

- For an empty set of handshake actions:

$$
T S_{1}\left\|_{\emptyset} T S_{2}=T S_{1}\right\| \mid T S_{2}
$$

- Note that it is commutative (i.e., $T S_{1}\left\|_{H} T S_{2}=T S_{2}\right\|_{H} T S_{1}$), but
- Not always associative, i.e.,

$$
\left(T S_{1} \|_{H_{1}} T S_{2}\right)\left\|_{H_{2}} T S_{3} \neq T S_{1}\right\|_{H_{1}}\left(T S_{2} \|_{H_{2}} T S_{3}\right)
$$

- It is, however, associative for a fixed set H :

$$
T S=T S_{1}\left\|_{H} T S_{2}\right\|_{H} \ldots \|_{H} T S_{n}
$$

- Useful to model broadcast communications.

Example 2.28 A Booking System

$B C R\|B P\| \operatorname{Printer}\left(\|\right.$ is a shorthand for $\|_{H}$ with $\left.H=A c t_{1} \cap A c t_{2}\right)$

2.2.6 Synchronous Parallelism

Definition 2.41 Synchronous Product

- Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right), i=1,2$, the synchronous product of $T S_{1}$ and $T S_{2}, T S_{1} \otimes T S_{2}$, is given by

$$
T S_{1} \otimes T S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \times A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \cup A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and with \rightarrow defined by:

$$
\frac{s_{1} \stackrel{\alpha}{\rightarrow}_{1} s_{1}^{\prime} \wedge s_{2} \xrightarrow{\beta}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{(\alpha, \beta)}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
$$

- Often used for composing synchronous digital circuits.

Synchronous Product: Example

initially:

$$
r_{1}=0
$$

transition function:

$$
\delta_{r_{1}}=\neg r_{1}
$$

initially:

$$
r_{2}=0
$$

transition function:

$$
\delta_{r_{2}}=r_{2} \vee x
$$

Synchronous Product: Example

TS for the composite circuit $\mathcal{T}_{1} \otimes \mathcal{T}_{2}$

Contents

(1) Modeling Formalisms

- Transition Systems
- Modeling HW
- Modeling SW
(2) Parallel Composition
- Composing Independent Processes
- Composing Concurrent Processes: Shared Variables
- Composing Concurrent Processes: Handshaking
- Synchronous Composition

3 Understanding State Space Explosion

2.3 State Explosion

- Given a program graph, the number of states is

$$
|L o c| \cdot \prod_{x \in \operatorname{Var}}|\operatorname{dom}(x)|
$$

- Consider $T S=T S_{1}\|\ldots\| T S_{n}$, the number of states is

$$
\left|S_{1}\right| \cdot \ldots \cdot\left|S_{n}\right|
$$

Summary

- Transition systems
- A fundamental model for modeling software and hardware systems.
- Executions
- Alternating sequences of states and actions that cannot be prolonged.
- Interleaving
- Execution of independent concurrent processes by nondeterminism.
- Shared variables
- Parallel composition on transition systems is not adequate.
- Instead, parallel composition of program graphs is used.
- Handshaking on a set H of actions
- Execute actions in H simultaneously and those not in H autonomously.

